Overview

• Pickup HW1 handout! HW1 due in one week.

• Last lecture
 – Set Definitions: Equality, Cardinality, Subset, Proper Subset
 – Tool: Venn diagram,
 – Set Definition: Power set

• Today’s lecture
 – Proof templates for sets: I and II
 – Set Operations: Union, Intersection, Difference, Sym Diff., Complement, Cartesian products
 – Set Identities

Chapter 1.1 : Set Theory
Cond.
Several Proof Templates for Sets

• \(x \in A \): show that \(x \) has the property that defines membership of \(A \).

Example: Let \(A = \{ n : n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \} \), show that \(x = 8 \in A \):

\[x = 8 = 2k_0 \Rightarrow 4 = k_0 \]

Since \(4 \in \mathbb{N} \), therefore \(8 \in A \)

• \(A \subseteq B \): show that every element of \(A \) is also in \(B \). For \(A \subset B \): also show that some element \(x \) of \(B \) is not in \(A \).

Example: Let \(B = \{ n : n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \} \) and \(A = \{ n : n \in \mathbb{N} \text{ and } n = 4t+6 \text{ for some } t \in \mathbb{N} \} \), show that \(A \subseteq B \):

Let \(x \) be an arbitrary element of \(A \), i.e. \(x = 4t_0 + 6 \in A \), (your goal is to show that this property also holds the property of \(B \) too!), first property of \(B \) is obvious.

Second property of \(B \):

\[x = 4t_0 + 6 = 2(2t_0 + 3) = 2k_0 \text{ where } k_0 = 2t_0 + 3 \]

Since \(t_0 \in \mathbb{N} \), it follows that \(k_0 \in \mathbb{N} \), thus \(x = 2k_0 \in B \) is true, therefore \(A \subseteq B \)

• \(A = B \): show that \(A \subseteq B \) and \(B \subseteq A \).

Example: try yourself

• \(A \neq B \): show that \(A \notin B \) (i.e. some element \(x \) of \(A \) is not in \(B \)) or \(B \notin A \) (i.e. some element \(x \) of \(B \) is not in \(A \)).

Example: Let \(B = \{ n : n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \} \) and \(A = \{ n : n \in \mathbb{N} \text{ and } n = 4t+6 \text{ for some } t \in \mathbb{N} \} \), show that \(B \not\subseteq A \):

Let \(x = 4 = 2*2 \in B \), (Must find an element by yourself)

Each element of \(A \) must satisfies \(4t_0 + 6 \) for some \(t_0 \in \mathbb{N} \). Thus \(A = \{ 6, 10, 14, 18, ... \} \)

Clearly, \(x = 4 \notin A \)

Therefore, \(B \not\subseteq A \)

Therefore, \(A \neq B \)

• If \(A \), then \(B \): suppose \(A \) is true then derive \(B \) from the supposition

\[A \Rightarrow B \]

• \(A \) if and only if \(B \): show “if \(A \), then \(B \)” and “if \(B \), then \(A \)”

Example: try yourself

\[A \Rightarrow B \land B \Rightarrow A \]
Set Operations

1. Union
 \[A \cup B = \{x \mid x \in A \text{ or } x \in B\} \]

 Example: \(A = \{a, b\}, B = \{b, c, d\} \)
 \(A \cup B = \{a, b, c, d\} \)

2. Intersection
 \[A \cap B = \{x \mid x \in A \text{ and } x \in B\} \]

 Example: \(A = \{a, b\}, B = \{b, c, d\} \)
 \(A \cap B = \{b\} \)

 Note: Cardinality: \(|A \cup B| = |A| + |B| - |A \cap B| \)

 What if \(A \) and \(B \) are mutually exclusive/disjoint?

3. Difference
 \[A - B = \{x \mid x \in A \text{ and } x \not\in B\} \]

 Example: \(A = \{a, b\}, B = \{b, c, d\} \)
 \(A-B = \{a\} \quad B-A? \)

4. Complement
 \[A' = \{x \mid x \in U \text{ and } x \not\in A\} \]

 where \(U \) is the Universal Set

 Example: \(U = \mathbb{N}, B = \{250, 251, 252, \ldots\} \)
 \(B' = \{0, 1, 2, \ldots, 248, 249\} \)

 Note: Cardinality: \(|A-B| = |A| - |A \cap B|, \text{ M.E.?} \)
Venn Diagrams

Let U be universal set in all diagrams

- **Union** $A \cup B$
 \[|A \cup B| = |A| + |B| - |A \cap B| \]

- **Intersection** $A \cap B$
 \[|A \cap B| = 0 \]

- **Difference** $A - B$
 \[|A - B| = |A| - |A \cap B| \]

- **Complement** A'

5. **Symmetric difference** $A \oplus B = (A - B) \cup (B - A)$

Cardinality?
\[
|A \oplus B| = |A| + |B| - 2|A \cap B| = |A \cup B| - |A \cap B| = |A| - |A \cap B| + |B - A|
\]

Note: When two sets are disjoint, $A \cap B = \emptyset$, we have
\[|A \oplus B| = |A \cup B| = |A| + |B| \]
Example Problem: On Compound Sets

A = {1, 2, 3, 5, 10}, B = {2, 4, 7, 8, 9}
C = {5, 8, 10}, U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

A ∪ B = {1, 2, 3, 4, 5, 7, 8, 9, 10}; A − C = {1, 2, 3}
B′ ∩ (A ∪ C) = {1, 3, 5, 6, 10} ∩ {1, 2, 3, 5, 8, 10} = {1, 3, 5, 10};
B ⊕ C = {2, 4, 7, 9} ∪ {5, 10} = {2, 4, 5, 7, 9, 10};

What is the compound set of ...?

6. Cartesian Product

A × B = {(x, y) | x ∈ A and y ∈ B}

Example: A = {a, b}, B = {x, y, z}
A × B = {(a, x), (a, y), (a, z), (b, x), (b, y), (b, z)}

Note that:
• For non-empty sets A and B: A ≠ B ⇔ A × B ≠ B × A
• A × ∅ = ∅
• ∅ × A = ∅
• |A × B| = |A| × |B|

• The Cartesian product of two or more sets is defined as:
A₁ × A₂ × ... × Aₙ = {(a₁, a₂, ..., aₙ) | aᵢ ∈ Aᵢ for 1 ≤ i ≤ n}
Cardinality?
|A₁ × A₂ × ... × Aₙ| = |A₁| × |A₂| × ... × |Aₙ|
Set Identities (properties)

1. **Identity laws**
 \[A \cup \emptyset = A, \ A \cap U = A \]

2. **Domination laws**
 \[A \cup U = U, \ A \cap \emptyset = \emptyset \]

3. **Idempotent laws**
 \[A \cup A = A, \ A \cap A = A \]

4. **Complementation law**
 \[(A')' = A \]

5. **Commutative laws**
 \[A \cup B = B \cup A, \ A \cap B = B \cap A \]

6. **Associative laws**
 \[A \cup (B \cup C) = (A \cup B) \cup C, \ A \cap (B \cap C) = (A \cap B) \cap C \]

7. **More properties**:
 \[A \subseteq A \cup B, \ B \subseteq A \cup B, \ A \cap B \subseteq A, \ A \cap B \subseteq B \]
 \[A \Rightarrow A \subseteq A \cup B \]
 \[A \cap B \Rightarrow A \cap B \subseteq A \cup B \]

8. **Distributive laws**
 \[A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \]
 \[A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \]

9. **De Morgan’s laws**
 \[(A \cup B)^c = A^c \cap B^c \]
 \[(A \cap B)^c = A^c \cup B^c \]
 \[\text{Note: } A^c = A' \]
10. Absorption laws

\[A \cup (A \cap B) = A \]
\[A \cap (A \cup B) = A \]

11. Complement laws

\[A \cup A^c = U \]
\[A \cap A^c = \emptyset \]

Note: You can prove all above identities. You may use basic definitions and existing identities to prove new set relations/properties.

\[\overline{A \cup A} = \emptyset \]
\[\overline{A \cap A} = U \]

Several Proof Templates

• \(x \in A \): show that \(x \) has the property that defines membership of \(A \).

 Example: Let \(A = \{ n : n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \} \), show that \(x=8 \in A \):

 \[x=8 \text{ is obviously } x \in \mathbb{N} \text{ (so the first property of } A \text{ holds)} \]

 \[8 = 2k_0 \Rightarrow 4 = k_0 \]

 Since \(4 \in \mathbb{N} \) (the second property of \(A \) holds), (thus) \(x = 8 \in A \)

• \(A \subseteq B \): show that every element of \(A \) is also in \(B \).

 Example: Let \(B = \{ n : n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \} \) and
 \(A = \{ n : n \in \mathbb{N} \text{ and } n = 4t+6 \text{ for some } t \in \mathbb{N} \} \), show that \(A \subseteq B \):

 Let \(x \) be an arbitrary element of \(A \), i.e. \(x = 4t + 6, x \in \mathbb{N} \)

 (your goal is to show that \(x \) also holds the property of \(B \) too!)

 first property is obvious. For second, \(x = 4t + 6 = 2(2t + 3) = 2k_0 \) where \(k_0 = 2t + 3 \)

 clearly, \(k_0 \in \mathbb{N} \) thus \(x = 4t + 6 = 2k_0 \in B \), therefore \(A \subseteq B \)

• \(A \subset B \): show \(A \subseteq B \) and also show that some element \(x \) of \(B \) is not in \(A \)
• **A = B**: show that $A \subseteq B$ and $B \subseteq A$

Example: try yourself

• **A ≠ B**: show that $A \subseteq B$ (i.e. some element x of A is not in B) or $B \subseteq A$ (i.e. some element x of B is not in A)

Example: Let $B = \{ n : n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \}$ and $A = \{ n : n \in \mathbb{N} \text{ and } n = 4t+6 \text{ for some } t \in \mathbb{N} \}$, show that $B \not\subseteq A$:

 - Let $x = 4 = 2 \times 2 \in B$, (Must find an element by yourself)
 - Each element of A must satisfies $4t_o + 6$ for some $t_o \in \mathbb{N}$. Thus $A = \{ 6, 10, 14, 18, \ldots \}$
 - Clearly, $x = 4 \notin A$
 - Therefore, $B \not\subseteq A$

• **If A, then B**: suppose A is true then derive B from the supposition
• **A if and only if B**: show “if A, then B” and “if B, then A”

Example: try yourself

$A \iff B$ show $(A \Rightarrow B) \land (B \Rightarrow A)$