Overview

• Last Lecture on Set Theory
 – Definition: an unordered collection of distinct discrete objects
 – Notation:
 • Memberships: \(a \in A, a \notin A \)
 • Enumeration: e.g., \(\{A,5,\{cat, dog\}, car, o\} \)
 • Property description: e.g., \(\{x| x \text{ is odd } \& \text{ x is prime} \} \)

• Today’s Lecture on Set Theory
 – Standard sets: \(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \emptyset \)
 – Equality: \(A=B \) if and only if they contain exactly same elements
 – Subset
 – Cardinality (Size of Sets)
 – Venn Diagram
 – Power set
 – Proof Templates

Chapter 1.1 : Set Theory
Cond.
Standard sets (or Special Sets):

\(\mathbb{N} \) = set of natural numbers or set of all nonnegative integers
\(\{0,1,2,3,\ldots\} \)

\(\mathbb{Z} \) = set of all integers \(\{\ldots,-3,-2,-1,0,1,2,3,\ldots\} \)

\(\mathbb{Q} \) = set of all rational numbers or the set of fractions of integer with nonzero denominator, i.e. \(\{m/n : m \in \mathbb{Z}, n \in \mathbb{Z}, n \neq 0\} \).

E.g. \(5/22 \), \(-2568/535 \)

\(\mathbb{R} \) = set of all real numbers. E.g. \(9.5656282 \), \(-5.6723 \), or \(0.333333 \ldots \)

\(\emptyset \) = the empty set or the set \(\{\} \) with no elements

• Use special sets to describe elements in a set
 e.g. \(S = \{x : x \in \mathbb{N} \text{ and } x < 0\} \), then \(S = \{\} = \emptyset \)
 e.g. \(A = \{x : x \in \mathbb{N} \text{ and } x > 10 \text{ and } x \leq 20\} = \{11,12,13,\ldots,20\} \)

Set Equality:

Sets \(A \) and \(B \) are equal if and only if they contain exactly the same elements.

Examples:
\(A = \{9, 2, 7, -3\} \), \(B = \{7, 9, -3, 2\} : A = B \)

\(A = \{\text{dog, cat, horse}\} \), \(B = \{\text{cat, horse, rabbit, dog}\} : A \neq B \)

\(A = \{x : x \in \mathbb{Z} \text{ and } x^2 - x - 2 = 0\} \), \(B = \{2, -1\} : A = B \)

\[\begin{align*}
(x+1)(x-2) &= 0 \\
\therefore x &= 2, -1
\end{align*} \]
Subsets:

Given \(A = \{a_1, a_2, \ldots, a_n\} \), if \(a_1 \in B, a_2 \in B, \ldots, a_n \in B \) then \(A \subseteq B \).

A is a subset of \(B \), denoted by \(A \subseteq B \), if every element of \(A \) is also an element of \(B \).

A is a proper subset of \(B \), denoted by \(A \subset B \), if \(A \subseteq B \) and \(A \neq B \).

\(\emptyset \subseteq A \) for any set \(A \) (see text theorem 1)

(though \(\emptyset \in A \) may not hold for any set \(A \), Q: when \(\emptyset \in A \) true?)

\(A \subseteq A \) for any set \(A \) (see text theorem 1)

Examples: \(A = \{1, 7, 9, 15\} \) and \(B = \{7, 9\} \) then list all possible subset relations.

\[B \subseteq A \\
B \subseteq A \\
A \subseteq A, B \subseteq B \\
\emptyset \subseteq A, \emptyset \subseteq B \\
\emptyset \subseteq A, \emptyset \subseteq B \]

Rules on Subsets:

- \(A = B \iff (A \subseteq B) \land (B \subseteq A) \)
- \((A \subseteq B) \land (B \subseteq C) \Rightarrow A \subseteq C \)

Note: \(\land \) “and”

\(\iff \) “if and only if” or “iff”

\(\Rightarrow \) “if... then...”
Size of Sets:

{A, {cat, dog}, ∅, 1035, {1,2,3,...}}?

{1,2,3,4,5}?

How many elements in a set? (intuitive definition)

Finite set: a set with no elements or its elements can be matched with the elements of some subset \{0,1,2,...,n\} of \mathbb{N}. Informally, a set whose count stop somewhere

Infinite set:

is a set which is not finite

Cardinality of Sets:

If a set \(S \) contains \(n \) distinct elements \((n \in \mathbb{N}) \), Cardinality of the set \(S \), denoted by \(|S| \), is \(n \). \(|S| = n\)

Examples:

\(A = \{Mercedes, BMW, Porsche\}, \ |A| = 3 \)

\(B = \{1, \{2, 3\}, \{4, 5\}, 6\}, \ |B| = ? \)

\(C = \emptyset, \ |C| = ? \)

\(D = \{x : x \in \mathbb{N} \text{ and } x \leq 7000 \}, \ |D| = ? \)

\(E = \{x \mid x \in \mathbb{N} \text{ and } x \geq 7000 \}, \ |E| = ? \)

\(F = \emptyset\), \(|F| = ? \)

\(G = \{1, 1, 1, 1\}, \ |G| = ? \)

\(H = \{0,1,2,3,...\}, \ |H| = ? \)

\(I = \{0,1,2,3,...\}, \ |I| = ? \)
Venn Diagram:

• To illustrate set-theoretic relationship in a diagram
• \(U \) = universal set (set of all elements) that you define (can be \(\mathbb{N} \) or \(\mathbb{Z} \) or \(\mathbb{R} \) or anything!), denoted by a box

Given a set \(A \)
1. \(A \subseteq U \) (a circle inside the U-box)
2. \(A = U \)

Given two sets, \(A \) & \(B \)
1. \(A = \{1, 2\}, B = \{3, 4\} \)
2. \(A = \{1, 2, 3\}, B = \{3, 4\} \)
3. \(A \subseteq B, (A = \{1, 2\}, B = \{1, 2, 3, 4\}) \)
4. \(A = B, (A = \{1, 2\}, B = \{1, 2\}) \)

Venn Diagram:

• Example:
\(U \) = universal set (set of all elements)
\(A \subseteq B \) and \(B \subseteq C \)
Power sets:

Power set of S, denoted by \(P(S) \) or \(2^S \), contains all possible subsets of \(S \).

\[\varnothing \in P(S) \text{ and } S \in P(S) \text{ are always true.} \]

Example: \(S = \{1, 2, 3\} \)

\[P(S) = \{\varnothing, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\} \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>z</td>
<td>z</td>
<td>z</td>
<td>z</td>
<td>z</td>
<td>z</td>
<td>z</td>
<td>z</td>
<td>z</td>
</tr>
</tbody>
</table>

Example: \(T = \{\text{dog, cat}\} \)

\[P(T) = \{\varnothing, \{\text{dog}\}, \{\text{cat}\}, \{\text{dog, cat}\}\} \]

Example: \(A = \varnothing \)

\[P(A) = \{\varnothing\} \]

\[= \{\varnothing, A\} = \{\varnothing, \varnothing\} = \{\varnothing\} = \{\} \]

Note: \(|A| = 0 \), \(|P(A)| = 1 \)

Cardinality of power sets: \(|P(A)| = 2^{|A|} \)

Imagine each element in \(A \) has an “on/off” switch. Each possible switch configuration in \(A \) corresponds to one subset of \(A \), thus one element in \(P(A) \), e.g., \(A = \{x, y, z\} \)

\[2^3 = 8 \]

\[|P(\{x, y, z\})| = 2^3 \]

Create all possible on/off combinations & count them!
Proof Templates for Sets

• What is proof?
 – **Proof**: Use mathematically valid arguments to conclude that a given statement is True.
 – **Disproof**: Use mathematically valid arguments to conclude that a given statement is False.

• Templates
 – $x \in A$
 – $A \subseteq B$
 – $A \subset B$
 – $A = B$
 – $A \neq B$
 – If A, then B, A if and only if B

Several Set Proof Templates

• $x \in A$: show that x has the property that defines membership of A.

 Example: Let $A = \{ n \mid n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \}$, show that $x = 8 \in A$:

 P_x: $x = 8$ is obviously $x \in \mathbb{N}$ (so the first property of A holds)
 P_2: $x = 2k_o \Rightarrow 4 = k_o$

 Since $4 \in \mathbb{N}$ (the second property holds), therefore $8 \in A$.

• $A \subseteq B$: show that every element of A is also in B.

 Example: Let $B = \{ n \mid n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \}$ and $A = \{ n \mid n \in \mathbb{N} \text{ and } n = 4t + 6 \text{ for some } t \in \mathbb{N} \}$, show that $A \subseteq B$:

 Let x be an arbitrary element of A, i.e. $x = 4t_o + 6 \in \mathbb{N}$, $t_o \in \mathbb{N}$ (your goal is to show that this property also holds the property of B too!), first property PB_1 of B is obvious.

 Second property PB_2 of B:
 $x = 4t_o + 6 = 2(2t_o + 3) = 2k_o$ where $k_o = 2t_o + 3$

 Since $t_o \in \mathbb{N}$ it follows that $k_o \in \mathbb{N}$,

 thus $x = 2k_o \in B$ is true, therefore $A \subseteq B$.
• $A \subseteq B$: show $A \subseteq B$ and some element x of B is not in A

• $A = B$: show that $A \subseteq B$ and $B \subseteq A$

Example : try yourself

• $A \neq B$: show that $A \nsubseteq B$ (i.e. some element x of A is not in B)
or $B \nsubseteq A$ (i.e. some element x of B is not in A)

Example: Let $B = \{ n | n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \}$ and $A = \{ n | n \in \mathbb{N} \text{ and } n = 4t+6 \text{ for some } t \in \mathbb{N} \}$,

show that $B \nsubseteq A$:

Let $x = 4 = 2*2 \in B$, (Must find an element by yourself)

Each element of A must satisfies $4t_0 + 6$ for some $t_0 \in \mathbb{N}$. Thus $A = \{ 6, 10, 18, \ldots \}$

clearly, $x = 4 \notin A$

Therefore, $B \nsubseteq A$

Therefore, $A \neq B$ □

• If A, then B : suppose A is true then derive B from the supposition

• A if and only if B : show “if A, then B" and “if B, then A”

Example : try yourself