Overview

• Last Lecture on Set Theory
 – Definition: an unordered collection of distinct discrete objects
 – Notation: enumeration & property description, membership

 \{\text{A, 0, } x, \text{a, } \ldots \}
 \text{variable | property | and property \ldots }

• Today’s Lecture on Set Theory
 – Standard sets: \(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \emptyset \)
 – Equality: \(A = B \) if and only if they contain exactly same elements
 – Cardinality (Size of Sets)
 – Subset
 – Venn Diagram
 – Power set
 – Proof Templates

Chapter 1.1 : Set Theory
Cond.
Standard sets (or Special Sets):

- \(\mathbb{N} \) = set of natural numbers or set of all nonnegative integers
 \(\{0, 1, 2, 3, \ldots\} \)
 - \(\infty \)
 - "ininitely many elements in that!"

- \(\mathbb{Z} \) = set of all integers \(\{-\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\} \)

- \(\mathbb{Q} \) = set of all rational numbers or the set of fractions of integers with nonzero denominator, i.e. \(\{ \frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{Z}, n \neq 0 \} \).
 E.g. 5/22, -2568/535

- \(\mathbb{R} \) = set of all real numbers. E.g. 9.5656282, -5.6723, or 0.333333....

- \(\emptyset \) = the empty set or the set \(\{\} \) with no elements

- Use special sets to describe elements in a set
 e.g. \(S = \{ x : x \in \mathbb{N} \text{ and } x < 0 \} \), then \(S = \{\} = \emptyset \)
 e.g. \(A = \{ x \mid x \in \mathbb{N} \text{ and } x > 10 \text{ and } x \leq 20 \} = \{11, 12, 13, \ldots, 20\} \)

Set Equality:

Sets \(A \) and \(B \) are equal if and only if they contain exactly the same elements.

Examples:

\(C = \{7, 9, -3, 2, 7\} = \{7, 9, -3, 2\} \) (repeat does not count)

\(A = \{9, 2, 7, -3\}, B = \{7, 9, -3, 2\} : A = B \)

\(A = \{\text{dog, cat, horse}\}, B = \{\text{cat, horse, rabbit, dog}\} : A \neq B \)

\(A = \{x : x \in \mathbb{Z} \text{ and } x^2 - x - 2 = 0\}, B = \{2, -1\} : A = B \)

\((x+1)(x-2) = 0 \)

\(x = 2, -1 \)
Size of Sets

How many elements in a set? (intuitive definition)

Finite set: a set with no elements or its elements can be matched with the elements of some subset \{0,1,2,...,n\} of \(\mathbb{N}\). Informally, a set whose count stop somewhere

Infinite set:

is a set which is not finite

Cardinality of Sets

If a set \(S\) contains \(n\) distinct elements, \(n \in \mathbb{N}\), cardinality of the set \(S\), denoted by \(|S|\), is \(n\).

Examples:

\(A = \{\text{Mercedes, BMW, Porsche}\}, \quad |A| = 3\)
\(B = \{1, \{2, 3\}, \{4, 5\}, 6\}, \quad |B| = ?\)
\(C = \emptyset, \quad |C| = ?\)
\(D = \{x : x \in \mathbb{N} \text{ and } x \leq 7000\}, \quad |D| = ?\)
\(E = \{x \mid x \in \mathbb{N} \text{ and } x \geq 7000\}, \quad |E| = ?\)
\(F = \{\emptyset\}, \quad |F| = ?(F = \{\emptyset\})\)
\(G = \{1,1,1,1,1\}, \quad |G| = ?(G = \{1\})\)
\(H = \{0,1,2,3,...\}, \quad |H| = ?\)
\(I = \{0,1,2,3,...\}, \quad |I| = ?(I = \{H\})\)
Given \(A = \{a_1, \ldots, a_n\} \) if \(a_1 \in B, a_2 \in B, \ldots, a_n \in B \) then \(A \subseteq B \)

A is a **subset** of \(B \), denoted by \(A \subseteq B \), if every element of \(A \) is also an element of \(B \).

\(A = B \implies A \subseteq B \)

A is a **proper subset** of \(B \), denoted by \(A \subset B \), if \(A \subseteq B \) and \(A \neq B \).

\(\emptyset \subseteq A \forall A \) (see text theorem 1)

(But \(\emptyset \in A \) may not hold for any set \(A \)), when \(\emptyset \in A \) true?

\(\emptyset \subseteq A \forall A \) for any set \(A \) (see text theorem 1)

Examples: \(A = \{1, 7, 9, 15\} \) and \(B = \{7, 9\} \) then list all possible subset relations.

- \(B \subseteq A \)
- \(B \subset A \)
- \(A \subseteq A, B \subseteq B \)
- \(\emptyset \subseteq A, \emptyset \subseteq B \)
- \(\emptyset \subseteq A, \emptyset \subseteq B \)

Simple rules/definitions:

- \(A = B \iff (A \subseteq B) \land (B \subseteq A) \)
- \((A \subseteq B) \land (B \subseteq C) \implies A \subseteq C \)

Note: \(\land \) “and”

\(\iff \) “if and only if” or “iff”

\(\implies \) “if... then...”

Just use these “translation” for now

Logical connections to be explained later...
Venn Diagram

- To illustrate set-theoretic relationship in a diagram
- \(U = \) universal set (set of all elements) that you define (can be N or Z or R or anything!), denoted by a box

Given a set \(A \)

1. \(A \subseteq U \) (a circle in side the U-box)
2. \(A = U \)

Given two sets, \(A \) & \(B \)

1. \(A = \{1,2\}, B = \{3,4\} \)
2. \(A = \{1,2,3\}, B = \{3,4\} \)
3. \(A \subseteq B, (A = \{1,2\}, B = \{1,2,3,4\}) \)
4. \(A = B, (A = \{1,2\}, B = \{1,2\}) \)

Venn Diagram

- Example:

 \(U = \) universal set (set of all elements)

 \(A \subseteq B \) and \(B \subseteq C \)
Power set of S, denoted by \(P(S) \) or \(2^S \), contains all possible subsets of S.

\[
\phi \subseteq S \quad \text{and} \quad S \subseteq S
\]

\(\therefore \) \(\emptyset \in P(S) \) and \(S \in P(S) \) are always true.

Example: \(S = \{1, 2, 3\} \)

\[
P(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}
\]

\(|P(S)| = 8 \)

Example: \(A = \emptyset \)

\[
P(A) = \{\emptyset\} \quad \text{Note:} \quad |A| = 0, \quad |P(A)| = 1
\]

\[
\emptyset, \{\phi\}, \{\phi, \phi\}, \{\phi\} = \emptyset
\]

- **Cardinality of power sets:** \(|P(A)| = 2^{|A|} \)

Imagine each element in A has an “on/off” switch. Each possible switch configuration in A corresponds to one subset of A, thus one element in \(P(A) \), e.g., \(A = \{x, y, z\} \)
Several Proof Templates

• \(x \in A \): show that \(x \) has the property that defines membership of \(A \).

Example: Let \(A = \{ n : n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \} \), show that \(x=8 \in A \):
- \(x=8 \) is obviously \(x \in \mathbb{N} \) (so the first property of \(A \) holds)
- \(x = 8 = 2k_o \Rightarrow 4 = k_o \)
- Since \(4 \in \mathbb{N} \) (the second property holds), therefore \(8 \in A \) Q.E.D.

• \(A \subseteq B \): show that every element of \(A \) is also in \(B \). For \(A \subseteq B \) also show that some element \(x \) of \(B \) is not in \(A \).

Example: Let \(B = \{ n : n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \} \) and
\(A = \{ n : n \in \mathbb{N} \text{ and } n = 4t+6 \text{ for some } t \in \mathbb{N} \} \), show that \(A \subseteq B \):
- Let \(x \) be an arbitrary element of \(A \), i.e. \(x = 4t_o + 6 \in A \) (your goal is to show that this property also holds the property of \(B \) too!), first property of \(B \) is obvious.
- second property of \(B \):
- \(x=4t_o + 6 = 2(2t_o+3) = 2k_o \) where \(k_o = 2t_o+3 \)
- since \(t_o \in \mathbb{N} \) it follows that \(k_o \in \mathbb{N} \),
- thus \(x = 2k_o \in B \) is true, therefore \(A \subseteq B \).

• \(A = B \): show that \(A \subseteq B \) and \(B \subseteq A \)

Example: try yourself

• \(A \neq B \): show that \(A \notin B \) (i.e. some element \(x \) of \(A \) is not in \(B \)) or \(B \notin A \) (i.e. some element \(x \) of \(B \) is not in \(A \))

Example: Let \(B = \{ n : n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \} \) and \(A = \{ n : n \in \mathbb{N} \text{ and } n = 4t+6 \text{ for some } t \in \mathbb{N} \} \), show that \(B \notin A \):
- Let \(x = 4 = 2*2 \in B \), (Must find an element by yourself)
- Each element of \(A \) must satisfies \(4t_o + 6 \) for some \(t_o \in \mathbb{N} \). Thus \(A = \{ 6, 10, 14, ... \} \)
- clearly, \(x = 4 \notin A \)
- Therefore, \(B \notin A \)
- Therefore, \(A \neq B \) □

• If \(A \), then \(B \): suppose \(A \) is true then derive \(B \) from the supposition
• If \(A \) if and only if \(B \): show “if \(A \), then \(B \)” and “if \(B \), then \(A \)”

Example: try yourself