Overview

• Last Lecture on Set Theory
 – Definition: an unordered collection of distinct discrete objects
 – Notation:
 • Memberships: $a \in A, a \notin A$
 • Enumeration: e.g., \{A, 5, \{cat, dog\}, car, o\}
 • Property description: e.g., \{x | x is odd & x is prime\}

• Today’s Lecture on Set Theory
 – Standard sets: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \emptyset$
 – Equality: $A = B$ if and only if they contain exactly same elements
 – Subset
 – Cardinality (Size of Sets)
 – Venn Diagram
 – Power set
 – Proof Templates

Chapter 1.1 : Set Theory
Cond.
Standard sets (or Special Sets):

- \(\mathbb{N} \) = set of natural numbers or set of all nonnegative integers
 \(\{0,1,2,3,\ldots\} \)
- \(\mathbb{Z} \) = set of all integers \(\{-\ldots,-2,-1,0,1,2,3,\ldots\} \)
- \(\mathbb{Q} \) = set of all rational numbers or the set of fractions of integer with nonzero denominator, i.e. \(\{m/n \mid m \in \mathbb{Z}, n \in \mathbb{Z}, n \neq 0\} \).
 E.g. \(5/22 \), \(-2568/535 \)
- \(\mathbb{R} \) = set of all real numbers. E.g. \(9.5656282, -5.6723, \) or \(0.333333 \ldots \)
- \(\emptyset \) = the empty set or the set \{ \} with no elements

- Use special sets to describe elements in a set
 e.g. \(S = \{x \mid x \in \mathbb{N} \text{ and } x < 0\} \), then \(S = \emptyset = \{\} \)
 e.g. \(A = \{x \mid x \in \mathbb{N} \text{ and } x > 10 \text{ and } x \leq 20\} = \{11,12,13,\ldots,20\} \)

Set Equality:

Sets \(A \) and \(B \) are equal if and only if they contain exactly the same elements.

Examples:

- \(A = \{9, 2, 7, -3\}, B = \{7, 9, -3, 2\} : A = B \)
- \(A = \{\text{dog, cat, horse}\}, B = \{\text{cat, horse, rabit, dog}\} : A \neq B \)
- \(A = \{x \mid x \in \mathbb{Z} \text{ and } x^2 - x - 2 = 0\} , B = \{2, -1\} : A = B \)
 \[
 (x+1)(x-2) = 0 \\
 x = 2, -1
 \]
Subsets:

Given $A = \{a_1, a_2, \ldots, a_n\}$ if $a_1 \in B, a_2 \in B, \ldots, a_n \in B$ then $A \subseteq B$

A is a subset of B, denoted by $A \subseteq B$, if every element of A is also an element of B.

A is a proper subset of B, denoted by $A \subset B$, if $A \subseteq B$ and $A \neq B$.

$\emptyset \subseteq A$ for any set A (see text theorem 1)

$A = B \rightarrow A \subseteq B$

$A \neq B$ for any set A (but $\emptyset \in A$ may not hold for any set A), Q: when $\emptyset \in A$ true?

$A \subseteq A$ for any set A (see text theorem 1)

Examples: $A = \{1, 7, 9, 15\}$ and $B = \{7, 9\}$ then list all possible subset relations.

$\emptyset \subseteq A$

$\emptyset \subseteq A, \emptyset \subseteq B$

Rules on Subsets:

\begin{itemize}
 \item $A = B \iff (A \subseteq B) \land (B \subseteq A)$
 \item $(A \subseteq B) \land (B \subseteq C) \Rightarrow A \subseteq C$
\end{itemize}

Note: \land “and”

\iff “if and only if” or “iff”

\Rightarrow “if... then...”

$a \leq b \iff a \leq b$ and $b \leq q$

If $a \leq b$ and $b \leq c$ then $a \leq c$

Similar pattern!

But not the same.

Just use these “translation” for now.

logical connections to be explained later...
Size of Sets:

{A, {cat, dog}, ∅, 1035, {1,2,3,...}}?
{1,2,3,4,5}?

How many elements in a set? (intuitive definition)

Finite set: a set with no elements or its elements can be matched with the elements of some subset \{0,1,2,...,n\} of \(\mathbb{N}\). Informally, a set whose count stop somewhere.

Infinite set: is a set which is not finite.

Cardinality of Sets:

If a set \(S\) contains \(n\) distinct elements \((n \in \mathbb{N})\), Cardinality of the set \(S\), denoted by \(|S|\), is \(n\). \(|S| = n\)

Examples:

\(A = \{Mercedes, BMW, Porsche\}, \quad |A| = 3\)
\(B = \{1, \{2, 3\}, \{4, 5\}, 6\}, \quad |B| = ?\)
\(C = \emptyset, \quad |C| = ?\)
\(D = \{x : x \in \mathbb{N} \text{ and } x \leq 7000\}, \quad |D| = ?\)
\(E = \{x \mid x \in \mathbb{N} \text{ and } x \geq 7000\}, \quad |E| = ?\)
\(F = \{\emptyset\}, \quad |F| = ?\)
\(G = \{1,1,1,1,1\}, \quad |G| = ?\)
\(H = \{0,1,2,3,...\}, \quad |H| = ?\)
\(I = \{0,1,2,3,...\}, \quad |I| = ?\)
Venn Diagram:

• To illustrate set-theoretic relationship in a diagram
• $U =$ universal set (set of all elements) that you define (can be \mathbb{N} or \mathbb{Z} or \mathbb{R} or anything!), denoted by a box

Given a set A

1. $A \subseteq U$ (a circle in side the U-box)
2. $A = U$

Given two sets, A & B

1. $A = \{1,2\}, B = \{3,4\}$
2. $A = \{1,2,3\}, B = \{3,4\}$
3. $A \subseteq B, (A = \{1,2\}, B = \{1,2,3,4\})$
4. $A = B, (A = \{1,2\}, B = \{1,2\})$

© by Kazunori Okada, 2021

Venn Diagram:

• Example:
$U =$ universal set (set of all elements)
$A \subseteq B$ and $B \subseteq C$
Power sets:

Power set of S, denoted by $P(S)$ or 2^S, contains all possible subsets of S.

$\therefore \emptyset \in P(S)$ and $S \in P(S)$ are always true.

Example: $S = \{1, 2, 3\}$

$P(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$, $|P(S)| = 8$

Example: $T = \{\text{dog, cat}\}$

$P(T) = \{\emptyset, \{\text{dog}\}, \{\text{cat}\}, \{\text{dog, cat}\}\}$, $|P(T)| = 4$

Example: $A = \emptyset$

$P(A) = \{\emptyset\}$

$= \{\emptyset, A\} = \{\emptyset, \emptyset\} = \{\emptyset\}$

Note: $|A| = 0$, $|P(A)| = 1$

• Cardinality of power sets: $|P(A)| = 2^{|A|}$

Imagine each element in A has an “on/off” switch. Each possible switch configuration in A corresponds to one subset of A, thus one element in $P(A)$, e.g., $A = \{x, y, z\}$

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>z</td>
<td>z</td>
<td>z</td>
<td>z</td>
<td>z</td>
<td>z</td>
<td>z</td>
<td>z</td>
<td>z</td>
</tr>
</tbody>
</table>

$8 = 2^3 = \frac{2^3}{2^0}$

$32 = 2^5 = \frac{2^5}{2^0}$
Proof Templates for Sets

• What is proof?
 – **Proof**: Use mathematically valid arguments to conclude that a given statement is True.
 – **Disproof**: Use mathematically valid arguments to conclude that a given statement is *False*.

• Templates
 – \(x \in A \)
 – \(A \subseteq B \)
 – \(A \subset B \)
 – \(A = B \)
 – \(A \neq B \)
 – If \(A \), then \(B \), \(A \) if and only if \(B \)

Several Set Proof Templates

• \(x \in A \): show that \(x \) has the property that defines membership of \(A \).

 Example: Let \(A = \{ n \mid n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \} \), show that \(x = 8 \in A \):

 \(P_1 \): \(x = 8 \) is obviously \(x \in \mathbb{N} \) (so the first property of \(A \) holds)

 \(P_2 \): \(x = 8 = 2k_0 \Rightarrow 4 = k_0 \)

 Since \(4 \in \mathbb{N} \) (the second property holds), therefore \(8 \in A \)

• \(A \subseteq B \): show that every element of \(A \) is also in \(B \).

 Example: Let \(B = \{ n \mid n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \} \) and \(A = \{ n \mid n \in \mathbb{N} \text{ and } n = 4t+6 \text{ for some } t \in \mathbb{N} \} \), show that \(A \subseteq B \): Let \(x \) be an arbitrary element of \(A \), i.e. \(x = 4t_0 + 6 \in \mathbb{N} \), \(t_0 \in \mathbb{N} \) (your goal is to show that this property also holds the property of \(B \) too!), first property \(PB_1 \) of \(B \) is obvious.

 second property \(PB_2 \) of \(B \):

 \(x = 4t_0 + 6 = 2(2t_0 + 3) = 2k_0 \) where \(k_0 = 2t_0 + 3 \)

 since \(t_0 \in \mathbb{N} \) it follows that \(k_0 \in \mathbb{N} \),

 thus \(x = 2k_0 \in B \) is true, therefore \(A \subseteq B \)

© by Kazunori Okada, 2021
• $A \subseteq B$: show $A \subseteq B$ and some element x of B is not in A
• $A = B$: show that $A \subseteq B$ and $B \subseteq A$

Example : try yourself

• $A \neq B$: show that $A \not\subseteq B$ (i.e. some element x of A is not in B)
or $B \not\subseteq A$ (i.e. some element x of B is not in A)

Example: Let $B = \{ n \mid n \in \mathbb{N} \text{ and } n = 2k \text{ for some } k \in \mathbb{N} \}$ and $A = \{ n \mid n \in \mathbb{N} \text{ and } n = 4t+6 \text{ for some } t \in \mathbb{N} \}$,
show that $B \not\subseteq A$:

Let $x = 4 = 2^2 \in B$, (Must find an element by yourself)
Each element of A must satisfies $4t_0 + 6$ for
some $t_0 \in \mathbb{N}$. Thus $A = \{6, 10, 14, 18, ... \}$
clearly, $x = 4 \not\in A$
Therefore, $B \not\subseteq A$
Therefore, $A \neq B$ □

• If A, then B : suppose A is true then derive B from the supposition
• A if and only if B : show “if A, then B” and “if B, then A”

Example : try yourself

© by Kazunori Okada, 2021