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ABSTRACT  

 
 This paper presents a feature-based image registration framework which exploits a novel machine learning (ML)-

based interest point detection (IPD) algorithm for feature selection and correspondence detection. We use a feed-forward 

neural network (NN) with back-propagation as our base ML detector. Literature on ML-based IPD is scarce and to our best 

knowledge no previous research has addressed feature selection strategy for IPD purpose with cross-validation (CV) 

detectability measure. Our target application is the registration of clinical abdominal CT scans with abnormal anatomies. 

We evaluated the correspondence detection performance of the proposed ML-based detector against two well-known IPD 

algorithms: SIFT and SURF. The proposed method is capable of performing affine rigid registrations of 2D and 3D CT 

images, demonstrating more than two times better accuracy in correspondence detection than SIFT and SURF. The 

registration accuracy has been validated manually using identified landmark points. Our experimental results shows an 

improvement in 3D image registration quality of 18.92% compared with affine transformation image registration method 

from standard ITK affine registration toolkit. 
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1. MOTIVATION 

 
Interest point detection (IPD) is crucial for feature- and landmark-based medical image registration

1
 which 

requires accurate localization of corresponding anatomical features across target images. Well-known IPD methods, such 

as SIFT
3
, SURF

4
, and Harris Corner Detector

5
, have previously been applied to detect these features automatically in 

medical image applications
12-15

. Despite their promise, these methods suffer from relatively low detection rate of 

corresponding features when applied to real clinical applications, such as abdominal CT scan registration. The above 

mentioned standard IPD methods are designed to select interest points (IPs) that conform to a certain first principle such as 

scale invariance
16

 and cornerness
5
. These principles are not designed to explicitly improve accuracy for point-

correspondence detection so that they can increase the chance for point-correspondence failures due to domain-specific 

data and noise structures, leading to lower registration accuracy. Therefore, choosing an IPD principle that directly 

maximizes performance of correspondence detection would improve the registration accuracy. In this paper, we propose a 

novel machine learning (ML)-based IPD method that is designed to maximize the performance of the feature-based 

registration by using the same principle for feature selection and IPD. The target application of this work is registration of 

clinical abdominal CT scans. 

 

2. METHODOLOGY 

 
 The overall structure of the registration framework is depicted in Figure 1 and it can be divided into three 

successive phases: 

 

Phase 1: Feature Selection  

- Exhaustively building point-wise ML detectors for every data point  

- Performing feature selection according to trained detectors' cross validation (CV) performance 
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Phase 2: Feature Detection and Matching 

- Establishing correspondences by applying the selected ML detectors to target images 

Phase 3: Image Registration 

- Calculation of transformation model using RANSAC
9
 algorithm 

- Transform the floating image using the estimated transformation model 

Suppose a pair of images I
F
 (fixed) and I

M
 (moving) with Nx*Ny *Nz voxels are given, where spatial variables xF 

for I
F 

and xM for I
M

 are related by a coordinate transform T: xF =T(xM). A feature-based registration first detects a set of K 

corresponding points in I
F
 and I

M
, { (xF

k
 ; xM

k
 ) | k = 1, … K } and then estimates the transformation T from theses 

correspondences.  

 

 
Figure 1. Overview of ML-based Registration Framework 

 

 Our IPD consists of K feed-forward neural network (NN) classifiers { fk(y(c)) = p }, each of which is trained to 

detect a distinct easy-to-find feature point xk. The classifier maps an intensity feature vector y derived from a local 

intensity window centered at c to a likelihood p of c being the feature point xk. NN classifier has a static structure 

consisting of 2 hidden layers with 60-neurons each. We use two features as input vectors: 1) raw intensity values 

normalized to [-1 1] and 2) SIFT descriptor
3
. The standard sigmoid function

11
 is used as a transfer function in each neuron. 

The output layer of NN consists only of a single neuron whose value in [0 1] indicates the IP likelihood p. Higher p 

indicates higher likelihood of a window center c being the interest point (IP) sought after. 

A trained NN is scanned by sliding the input window within an image. The window center c that yields the 

maximum likelihood defines the detected IP,  

 
  (1) 

 
where Ω is the set of all pixel/voxel locations in the image. This is repeated to another image, yielding point-

correspondences (xF
k
 ; xM

k
 ) without any post point matching process. 



A set of K NN detectors { fk(y(c))} is constructed in three successive steps. First, we characterize each valid data 

point with detectability index. This index is computed as the leave-one-out CV (LOOCV) score of a NN classifier trained 

to detect an IP, given a set of M training CT scans. As a pre-process, the training scans are non-linearly registered to a 

fixed reference image by using B-spline based IRTK registration tool
8
. Next, background in each image is removed by 

intensity thresholding. Valid data points (VDP) are defined by the points that are a part of the patient's abdomen for at least 

one of the training images in the pre-registered coordinate frame. For computational efficiency and redundancy reduction, 

we uniformly sub-sample these data points, yielding R VDPs. At each VDP r = 1, ..,R, LOOCV is repeated M times. At 

each run, M-1 local windows centered at a VDP are used as positive samples (Figure 2 gives examples of image patterns 

used as “positive” input vectors for NN training), while 2M negative samples are collected randomly at various locations 

and scans (Figure 3 shows randomly chosen “negative” inputs). Conjugate gradient descent
17

 is used for optimization. The 

resulting LOOCV score (e.g. a detection rate with M trials) is associated with a VDP as its detectability index. 

 

 
Figure 2. “Positive” input patterns from central vertebrae region for training of neural network detector. 

 

 

 

Figure 3. Randomly chosen “negative” image patterns for central vertebrae region used for training of NN detector. 

 
Second, we select the top K VDPs from the total of R VDPs according to the detectability index. Finally, we build 

K IPDs by training NN classifiers using all M positive samples and the same negative samples at each selected IP. When 

top K IPDs are trained, we run the correspondence detection on pairs of CT scans. A correspondence between points is 

established when IPD detects a pattern in both images. After all chosen IPDs on the pair of images are run we will have up 

to K point correspondences which are used as input to RANSAC
9
 algorithm. RANSAC or Random Sample Consensus is 

an iterative method for estimating the parameters of a mathematical model from a set of observed data which is 

contaminated by a significant percentage of gross errors. It internally detects and removes outliers to get a transformation 



model. This is a non-deterministic algorithm and the resulting probability increases along with the number of input points 

and iterations. The output of RANSAC algorithm is a N
3 

affine transformation matrix which is applied to a floating 3D CT 

scan image to be aligned with a reference image. 

 

 

3. RESULTS 

 
 3.1. Data  

  
The dataset used in the project was obtained from NIH Clinical Center. It consists of two sets: a training a testing 

set. Both of them contain abdominal 3D CT images displaying a abdominal area of human body and consist of 50 slices 

with 5mm thickness. Training set consists of 29 3D images well registered to each other, which means that various image 

patterns in them are well aligned. Training dataset consists of cases with normal anatomy obtained from a control 

population of healthy volunteers with no known pathologies while the testing set consist of 12 diseased cases with surgical 

resections of spleens and kidneys (e.g. splenectomy and nephrectomy). The original dimensions of 3D scans were Nx = 

512, Ny = 512 and Nz = 50 with 12-bit intensity depth. For the project we down-sampled them using Gaussian pyramid 

blurring to Nx = 256, Ny = 256 and Nz = 50, but left the intensity of images unchanged. 

 
 3.2. Comparison of correspondence detection between ML-based IPD, SIFT and SURF in 2D 

 
We evaluated the correspondence detection quality of the proposed method and compared it against SIFT

3
 and 

SURF
4
 algorithms. It was performed on three 2D CT image sets sampled at different axial slice-depths in order to exploit 

the public 2D implementations of SIFT
7
 and SURF

10
 with their default parameters.  These public SIFT and SURF do not 

provide a function to rank VDPs required to perform feature selection. To compare both SIFT and SURF to our ML-based 

IPD, we chose the top 20 SIFT and SURF IPs by associating (e.g. ranking) them with the detectability index of the nearest 

VDP computed by our MI-based method. Figure 4 shows illustrative examples of these three slices. 

 

 
Figure 4. Three slice depths used for 2D comparative study. 

 

 Slice A Slice B Slice C 

ML-based 36.28 44.16 48.54 

SIFT 15.27 17.54 18.47 

SURF 11.18 12.79 13.26 

 
Table 1. Average percentage (%) of correctly identified point correspondences by ML-based IPD, SIFT and SURF in 2D 

The numbers in the Table 1 denote averaged percentages of correctly identified correspondences between all pairs 



of CT images of a corresponding testing set (e.g. Slice A, B, C). Correspondence detection was evaluated using the top 20 

features selected by NN and SIFT/SURF algorithms. Each estimated correspondence is visually inspected by an expert and 

classified to either correct or mismatch. The 2D sets were extracted from the original 3D training/testing sets. Each of the 

manually prepared 2D sets (abbreviated in Table 1 and Figure 4 as A, B and C) corresponds to a particular slice in a 3D CT 

volumetric image (e.g. between 1 and 50) . For example, set A was created for slice #18.  

For all three slice-depths that we evaluated the proposed method performed substantially better than SIFT and 

SURF. Please refer to Figure 5 for examples of correspondences detected by ML-based approach, SIFT and SURF 

algorithms. For slices A, B, and C, our method was approximately 2.6, 2.3, and 2.5 times better than the second best 

technique, namely SIFT.   

 
Figure 5. Illustrative examples of point-correspondences detected by ML-based IPD (top), SIFT(middle) and SURF (bottom) 



 

 

 3.3. Qualitative comparison of ML-based IPD with SIFT and SURF in 2D 
 
 While performing correspondence detection experiments we observed differences in the types of features selected 

by these three IPD methods. Figure 5 illustrates examples of the correspondence detection results by SIFT, SURF and our 

method. For our ML-based IPD, most of the highest ranked IPs are located around the spinal vertebrae and the outer body 

regions between the ribs and skin. There are just a few IPs with high CV-scores selected on the internal organs. IPs 

detected on rigid and/or highly structured regions seems to give good point-correspondences.  

 Top 20 filtered SIFT IPs were often similar (e.g. located in the same body regions) to those chosen by our ML-

based IPD (e.g. middle-left image in Figure 5). SIFT, on average, produced roughly around 200 points per image, we only 

compared the correspondence qualities of the filtered 20 points, and it was observed that their point-correspondences were 

substantially worse than those identified by our ML-based IPD.  

 Top 20 IPs by SURF seemed to be different from those found by ML-IPD and SIFT. IPs by SURF were often 

located on the internal organs, spreading across the abdomen region. Due to the highly variable nature of the abdominal 

CT scans, these IPs resulted in more  failures of point-correspondences than IPs identified by ML-IPD and SIFT. 

 In summary, our observations indicate i) that ML-IPD favor more rigid and structured regions while SURF favors 

internal organ regions more than the others, ii) that ML-IPD is better in detecting point-correspondences than 

SIFT for similarly identified points, and iii) the types of IPs chosen by SIFT and SURF tend to be different even though 

their point-correspondence detection performance is quantitatively similar. 

 

 

 3.4. Image registration with proposed ML-based IPD in 3D 

 
Image registration performance with the proposed feature detection method was evaluated by using a 3D affine 

transformation model. To validate the registration accuracy, we placed a set of 12 anatomical landmarks on each of our 

testing images. The registration errors were computed using root-mean-square (RMS) distance measure between the 

ground-truth and transformed landmarks. We tested two window sizes: 15 and 19 in voxels with two types of input 

features for the NN classifier: one was using raw intensity values for input vectors and another using 3D SIFT descriptor
6 

consisting of 121 values. The raw intensity feature assigns a vector of voxel intensities within the window to NN's input 

layer, while the SIFT descriptor is computed using the method presented by Scovanner et al.
6
 For comparison, the standard 

image-based 3D affine registration tool in Insight Toolkit
2
 is used with linear interpolation and gradient descent for 

optimization. Table 2 summarizes the experimental results. Window size of 19 voxels with SIFT descriptor as input feature 

performed the best, resulting in 43% reduction in error compared to data before registration. This parameter setup also 

showed an improvement of 35% over the baseline ITK affine registration error. The absolute errors were substantially 

higher for all cases due to the data set containing surgical resections and significant differences in organ geometry across 

the patients.  

 

 

Type RMS (mm) Std-Dev 

Before Registration 24.4 37.9 

Size-15 Raw 21.4 50.1 

Size-19 Raw 18.6 26.8 

Size-19 with SIFT descriptor 12.2 14.5 

ITK Affine 18.9 26.6 

 
Table 2. Averaged registration errors (RMS and with standard deviation) by ML-based method with various window sizes, 

different input features and by a base ITK affine registration algorithm. 

 

 



 

 
4. CONCLUSION 

  
This paper presents a novel feature-based registration framework with new feature selection and IPD method 

using NN classifier and CV-based detectability score. The key contribution of this work was to show that a ML method 

can be used to define (feature selection) and detect (point-correspondence) interest points which can help improve the 

registration accuracy for clinical medical images. Our experimental results show that the proposed ML-based IPD 

performs better than other standards: SIFT and SURF for correspondence detection and better than ITK built-in affine 

registration algorithm for image registration.  

For our future work, we plan to conduct experiments with the proposed method to include more valid points (R), 

more training and testing samples (M) and compare it with other competing IPD methods. The training phase of our 

method is time consuming, taking more than a week in 3D experiments. Developing efficient training algorithm is 

important for future work. Considering the abnormal anatomy in abdominal registration brings not only clinical relevance 

toward cancer staging and follow-up applications, but also additional technical challenges to the already difficult 

abdominal registration. Evaluating how the ML-based method performs with data from diseased population in more 

details is another critical future work. We also plan to extend our registration framework to work with non-rigid 

registration cases and test other ML algorithms such as Support Vector Machine, Random Forest and Adaboost as a base 

IPD. 
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