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ABSTRACT

We propose a new method of classifying the local structure types, such as nodules, vessels, and junctions, in thoracic CT
scans. This classification is important in the context of computer aided detection (CAD) of lung nodules. The proposed
method can be used as a post-process component of any lung CADsystem. In such a scenario, the classification results
provide an effective means of removing false positives caused by vessels and junctions thus improving overall performance.
As main advantage, the proposed solution transforms the complex problem of classifying various 3D topological structures
into much simpler 2D data clustering problem, to which more generic and flexible solutions are available in literature, and
which is better suited for visualization. Given a nodule candidate, first, our solution robustly fits an anisotropic Gaussian
to the data. The resulting Gaussian center and spread parameters are used to affine-normalize the data domain so as
to warp the fitted anisotropic ellipsoid into a fixed-size isotropic sphere. We propose an automatic method to extract a
3D spherical manifold, containing the appropriate bounding surface of the target structure. Scale selection is performed
by a data driven entropy minimization approach. The manifold is analyzed for high intensity clusters, corresponding to
protruding structures. Techniques involve EM clustering with automatic mode number estimation, directional statistics, and
hierarchical clustering with a modified Bhattacharyya distance. The estimated number of high intensity clusters explicitly
determines the type of pulmonary structures: nodule (0), attached nodule (1), vessel (2), junction (>3). We show accurate
classification results for selected examples in thoracic CTscans. This local procedure is more flexible and efficient than
current state of the art and will help to improve the accuracyof general lung CAD systems.

Keywords: Computer-Aided Diagnosis, CT, Pulmonary Nodules, Statistical Clustering, Directional Statistics

1. INTRODUCTION

Lung cancer is responsible for over 160,000 deaths in the past year in the United States alone. While not smoking is the
best prevention against lung cancer, early detection is thekey to improving patient prognosis. When the cancer is detected
early and surgery is performed, the 5-year survival rate forpatients with stage I non-small-cell lung cancer is 60% to 80%.
However, patients who do not have surgery face a 5-year survival rate of only 10%.1

Imaging techniques such as computer tomography (CT) scans offer noninvasive and sensitive approaches to early
detection. Computer-aided detection and diagnosis (CAD) of lung nodules in thoracic CT scans decreases the possibility
of human error for a more efficient and standardized diagnostic process. In CT scans, lung nodules appear as dense masses
of various shapes and sizes. They may be isolated from or attached to other structures such as blood vessels or the pleura.

Recently a number of techniques have been proposed for automated detection and classification of nodules in thin-slice
CT including: region growing and automatic threshold determination,2 template matching with Gaussian nodule models,3

using 3D nodule selective and noise suppressing filters,4 nodule matching,5 and deformable geometrical and intensity
templates.6

One of the main shortcomings of these state of the art CAD systems is the difficulty associated with differentiating
between nodules and other dense structures such as blood vessels. Due to the circular-shape assumptions used in most of
the systems, curved vessels and their junctions are often incorrectly detected as nodules, resulting in false positive(FP)
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Figure 1.Proposed method for pulmonary structure classification. Subfigure (a) shows the original voxel of interest (VOI), with ellipsoid
fitted nodule structure, here a vessel. The ellipsoid fitting is obtained from our segmentation module. Subfigure (b) represents an affine-
normalization of the original VOI, in that the ellipsoid is warped to an isotropic sphere. Subfigure (c) represents a bounding manifold
of the segmented structure at distancerbound, unwrapped to a 2D image and parameterized by the spherical polar coordinatesθ andφ.
Image grayscale values have been obtained via tri-linear interpolation.

cases. To reduce the number of such FPs, two types of solutions have been proposed previously: correlation-based filters
to enhance the area of interest with fuzzy shape analysis forvessel tree reconstruction7 and a method utilizing tracking of
the vessels medial axis given by Hessian-based analysis.8 The drawbacks of the former approach include its inflexibility.
Simple structural templates used in the study will not handle many complex vascular shapes and topologies. On the other
hand, the latter approach is computationally very expensive while being able to handle more irregular structures.

In this paper, we propose a novel method of classifying localstructure types, such as nodules, attached nodules, vessels,
and junctions, in thoracic CT scans. This solution is envisioned to serve as a post-process filter within an overall lung CAD
system so as to reduce FPs caused by the vessels and junctions. This study thus assumes that positive candidates are
provided by such a CAD system or from radiologist’s report, focusing on the problem of FP reduction.

The proposed method first fits an anisotropic Gaussian model to data by using a previously published one-click seg-
mentation method.9 Using the fitted anisotropic Gaussian spread, the data domain is affine-normalized so as to warp the
anisotropic ellipsoid into a fixed-size isotropic sphere. Next a 3D spherical manifold, containing the bounding surface of
the target structure, is automatically extracted. We propose an entropy-based data-driven solution for this manifoldextrac-
tion. The extracted 3D manifold in Cartesian coordinates will form a 2D image in spherical coordinates. This 2D bounding
manifold image contains some high intensity clusters whosenumber depends on the structure types. For a nodule, attached
nodule, vessel, or junction, there must be 0, 1, 2 or >3 numberof clusters, respectively. Thus we can apply a clustering
analysis to the manifold image and classify the structure type according to the estimated cluster numbers. Importantly,
this association of the cluster numbers and the structure types holds true regardless of vast geometrical and topological
variability of target structures. This endows the presented method with favorable flexibility against the variabilities.

Moreover, the proposed approach in effect transforms the difficult topological classification problem into a generic
2D clustering problem which can be solved much easily by using many well-studied solutions. We propose an EM-based
clustering solution by fitting a Gaussian mixture model to samples drawn from the bounding manifold image. It extends
a recently proposed Gaussian fitting method, including automatic mode number selection,10 with the use of directional
statistics, in particular a multivariate wrapped Gaussianmodeling.11

Beyond the scope of lung CAD, the presented classification method can be used to provide meaningful information of
vascular structures in various domains such as angiography.

The rest of paper is organized as follows. In the following section, we give a complete overview of the proposed
pulmonary structure recognition approach. Section 3 illustrates and verifies the feasibility by experiments with thoracic
CT scan data. Section 4 concludes this contribution.



2. PROPOSED METHOD FOR PULMONARY STRUCTURE CLASSIFICATION

The proposed classification solution is envisioned to serveas a post-process filter within a lung CAD system so as to reduce
FPs caused by the vessels and junctions. In this setting, it is assumed that approximate locations of pulmonary structures
are present, for instance, from an above mentioned a CAD system, a radiologists manual reading, or reports.

2.1. Local pulmonary structure segmentation

A previously developed one-click nodule segmentation algorithm9 is used to locate and segment target structures including
nodules, attached nodules, vessels, and vessel junctions.Nodule candidate locations, provideda priori, serve as initializa-
tion to this semi-automatic segmentation solution.

This algorithm is based on robustly fitting an anisotropic Gaussian-based intensity model to the data using Gaussian
scale-space mean shift analysis and Jensen-Shannon divergence-based automatic bandwidth selection. This segmentation
solution provides a precise estimate of target center from imprecise CAD or manual initialization. The robustness of this
solution also allow it to segment non-nodule areas such as vessels and vessel junctions/branches of our interest. An example
of this segmentation result is shown in Figure 1 (a).

2.2. Structure classification

In the setting of a nodule detection application, incorrectly detected and segmented vessel and vessel branch structures
represent a FP case. Main contribution of this paper is a classification method, which is targeted to reject all such non-
nodule structures, and, as a byproduct, to infer the category of the type of pulmonary structure under consideration, that is,
nodule, attached nodule, vessel, or vessel junction.

As will be explained, it is based on cluster analysis of an appropriate manifold, computed from the bounding area of
the target structure. The number of high intensity clustersin this analysis will directly determine the pulmonary structure
class.

2.2.1. Bounding manifold construction

Structure classification in the original 3D image space is usually a theoretically involved and computationally complex
problem. To overcome these difficulties, we propose to perform the classification in a less complex domain. Apart from the
computational benefits, such an approach has the advantage of a more generic and flexible inventory of analysis techniques
and more illustrative visualization potentiality, which is especially important in the context of a possible interaction with
the radiologist.

In particular, we consider an ellipsoidal manifold in 3D to be extracted from the target structure boundary. Ellipsoid
fitting is usually not a trivial problem, however, this task is alleviated by our choice of the local structure segmentation,
which gives accurate estimates of center and ellipsoidal shape of the nodule in terms of the Gaussian parameters mean and
covariance.

In the following, we will explain the construction of the bounding manifold. Illustrative aids with an exemplary case
are provided in Figure 1.

Affine-normalization In order to simplify the mathematical representation, the original volume of interest (VOI), illus-
trated in Figure 1 (a), is affine-normalized. In other words,we warp the VOI such that the segmented anisotropic ellipsoid
is transformed to a fixed-sized isotropic sphere, placed at the center of the VOI. Figure 1 (b) shows the affine-normalized
VOI.

The parameters of the affine-normalization, that is, scaling directions and factors, can be straightforwardly obtained
from an eigenvalue analysis of the structure covariance estimated by the segmentation module.
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Figure 2. Unwrapped ellipsoids of different radiir and the respective image intensity histogram entropy. These characteristics allow a
data driven radius selection for the bounding manifold.

Spherical manifold construction A manifold is constructed from the affine-normalized 3D image. Geometrically, it is
aimed to represent a spherical layer slightly beyond the target structure bounding surface, such that it contains information
about protruding objects passing through the surface. Its shape is assumed ellipsoidal in the original VOI, in particular,
proportional to the ellipsoid obtained from the anisotropic Gaussian-based segmentation. Hence, in the affine-normalized
representation it corresponds to an isotropic spherical shape as well, defined by center point(abound, bbound) and radius
rbound. Whereas the center point is identical with the one of the segmented ellipsoid, the spherical radiusrbound will be
determined in a data driven way, as will be explained shortly.

Assuming a fixedrbound, the bounding manifold representation can be transformed from Cartesian(x, y, z) to the
spherical coordinates(θ, φ). Here, θ refers to the azimuth, andφ to the polar angle. The result is an “unwrapped”
representation of the affine-normalized ellipsoid as a 2D image matrixI (θ, φ). Figure 1 (c) illustrates the result for
our well-known example. Note that there, contrary to commonconvention, the polar angle ranges over an interval of
Intervalφ = 2π (instead ofπ), that is,φ ∈ [−π, π], resulting in a double occurrence of the Cartesian voxels. The reason for
introducing this redundancy is that the clustering, which will be introduced in Section 2.2.2, requires a periodic behavior of
I (θ, φ) in both parameters over their respective intervals Intervalθ and Intervalφ, that is,I (θ + Intervalθ, φ + Intervalφ) =
I (θ, φ). For the case of spherical coordinates, this is obviously not fulfilled, if Intervalφ = π.

We now explain the determination of the appropriate radiusrbound. We advice a data driven approach, based on the
entropy of the intensity distributions. To motivate this approach, consider Figures 2 (a)–(f), each of which illustrates
the unwrapped ellipsoid representation in the(θ, φ)-domain with different radiir. Figure 2 (g) shows the entropyEr,
computed on image intensities, for radiir ∈ {1, . . . , 32}. We treat the unwrapped manifold image as a 2D likelihood
function after normalizing the CT intensity value distribution appropriately. Then intensity entropy is computed directly
with the normalized intensity values interpreted as probability values. The goal of radius selection is to automatically
choose a radius such that high intensity clusters, due to protruding structures, appear most distinctively in the corresponding
manifold. Such manifold image, consisting of a few clustersas shown in Figure 2 (d), should have lower entropy than
images with smaller and larger radii due to the following intuitive arguments. The smaller radii makes the corresponding
bounding ellipsoids go through inside target structures, resulting in high entropy values with more flat likelihoods asshown
in Figures 2 (a)–(b). On the other hand, the larger radii alsocauses high entropy due to appearance of other “non-target”
structures located nearby as shown in Figures 2 (e)–(f). Therefore the appropriate radiusrboundforms a local minimum of
the entropy distributionEr.

In this respect, we chooserbound to be located at the first appearance of a positive differencequotient∆Er

∆r
, that is,

rbound = min
r

{r |Er+1 > Er } .
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Figure 3. A problem of clustering with directional data. An appropriate clustering algorithm in the directional(θ, φ)-domain should
recover a single cluster. However, with a linear instead of directional modeling, each of the three observable structures would form an
independent cluster.

2.2.2. Cluster analysis of the bounding manifold

Having transformed parts of the 3D pulmonary structure to a 2D image, we can apply well-studied, efficient, and easily
visualizable 2D image analysis techniques. As can be seen from Figure 1 (c), the bounding manifold contains valuable
information for pulmonary structure classification. In fact, thenumber of high intensity clusters exposes the type of the
pulmonary structure, being equivalent to the number of protruding objects passing through the defined boundary. Our
classification builds upon this observation, having the following domain assumptions in mind:

• 0 clusters in the bounding manifold indicate a lack of connected adjacent structure, hence, the segmented structure
corresponding to a solitary nodule,

• 1 cluster in the bounding manifold indicates a single connection to an attached structure, which in many cases
originates from a nodule attached to larger structures, like the lung wall, etc.

• 2 clusters indicates two connections, which is most often observed for blood vessels, and

• >3 clusters indicate a vessel junction.

We propose to identify thenumber of high intensity clusters through a clustering algorithm. The clustering strategy chosen
is based on the widely used principle of EM-based fitting of Gaussians. In addition to those of the standard EM Gaussian
clustering, our variant requires to obey the following important properties:

1. Our bounding manifold representation is parameterized by the spherical angular variablesθ andφ, which correspond
to so-calleddirectional data.12 Hence, our clustering needs to reflect in particular the continuities in the(θ, φ)-
domain that appear at the edge of the 2D bounding manifold image. For an illustration of this problem, consider the
simplified illustration of Figure 3 and the caption thereof.

2. The number of modes has to be determined automatically.

Directional data modeling For statistical modeling of directional data, there are a number of models that have been
proposed previously. One is thevon Mises-Fisher distribution.12 In fact, EM-based clustering of von Mises-Fisher
distributions has been proposed very recently.13 However, parameter estimation for the von Mises-Fisher distribution
involves solving an implicit equation of a ratio of Bessel functions, for which no analytic solution exists, in general.

For this study, we utilize an alternative modeling, which allows a less restrictive parameter estimation than the von
Mises-Fisher modeling. It is themultivariate wrapped Gaussian distribution,11 which is an extension of the wrapped
Gaussian distribution.12



We briefly introduce the concept. For further details it is referred to literature.11, 12 A Gaussian distributionN (x) of a
variablex on the line can be “wrapped” around the circumference of a circle of unit radius. That is, the wrapped Gaussian
distributionNw (ϑ) of the wrapped variable

ϑ = xw = x mod 2π ∈ (−π, π]

is

Nw (ϑ) =

∞
∑

k=−∞

N (ϑ + 2πk) .

A multivariate wrapped Gaussian distribution of a vector variableϑ = (ϑ1, . . . , ϑF )
T can be defined similarly as

Nw (ϑ) =

∞
∑

k1=−∞

· · ·
∞
∑

kF =−∞

N (ϑ + 2πk1e1 + · · · + 2πkF eF ) , (1)

whereek = (0, . . . , 0, 1, 0, . . . , 0)
T is the k-th Euclidean basis vector (with an entry of1 at thek-th element and0

elsewhere). Figure 3 shows an example of a two dimensional multivariate wrapped Gaussian.

It has been shown11 that, given an appropriately small variance in the directional variables, accurate mean and covari-

ance estimateŝµϑ andΣ̂ϑ for Equation 1 can be obtained from a sample setX =
{

ϑ(1), . . . ,ϑ(M)
}

using

(µ̂ϑ)f = arg

(

1

M

M
∑

m=1

eJϑ
(m)
f

)

(2)

and

Σ̂ϑ =
1

M − 1

M
∑

m=1

ϑ(m)′ϑ(m)′T (3)

with
ϑ(m)′ =

(

ϑ
(m)
f − (µ̂ϑ)f

)

mod 2π,

J2 = −1 the imaginary unit, and “arg” the phase of a complex number. For simplicity, a periodicity of 2π and range of
ϑf ∈ (−π, π] has implicitly been assumed for all dimensionsf in ϑ.

In the context of the EM clustering algorithm, we can simply replace the regular, linear Gaussian model with the above
sketched multivariate wrapped Gaussian model. In particular, Equation (1) on the one hand and Equations (2) and (3) on
the other hand replace the original linear equivalents in the E and the M step, respectively. Readers can verify a result of
the multivariate wrapped Gaussian EM clustering in Figures4, row 3 and 4 as well as Figure 5, row 3 and 4.

EM clustering with integrated model selection In the context of EM-based clustering, several extensions have been
proposed for automatic mode number selection in the past. Webase our solution on a recent publication,10 which integrates
finite mixture of Gaussian estimation and model selection, using minimum description length (MDL) criterion, into a single
algorithm.

Note that, in general, input to EM clustering algorithms is asample setX = {(θ1, φ1) , . . . , (θM , φM )} of observations,
whereas the present data is the 2D (image) matrixI (θ, φ). To overcome this incompatibility, we draw observationsX

directly fromI (θ, φ), where the number of occurrences of each sampled(θm, φm) ∈ (−π, π]× (−π, π] is set proportional
to the corresponding image matrix valueI (θm, φm).
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Figure 4. This figure shows illustrative examples of the proposed pulmonary structure classification method for thoracic CT scans. Each
row corresponds to the segmentation and verification of one example, thefirst two rows with respect to a nodule object, the last two
rows with respect to nodules attached to the lung wall. (Cf. Figure 5 for similar illustrations with vessel and vessel junction examples.)
Column (a) illustrates the CT VOI in three orthogonal cross sections. The result of our segmentation is illustrated by the ellipses. Column
(b) represents the affine-normalization of the original VOI, such that the 3D ellipsoid becomes warps to a sphere. Column (c) shows the
constructed bounding manifold, including an additional intensity thresholding, unwrapped in the(θ, φ)-domain. The figures in column
(d) show the results of the Gaussian mixture model fitting by the EM-based algorithm. Dashed ellipses correspond to EM-based clustered
Gaussian components, the solid ellipses describe the clusters after post-processing.
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Figure 5. This figure is an extension of Figure 4. For explanation, please refer to the caption thereof. Row 1 and 2 show vascular
structures, row 3 and 4 vessel junctions.



Cluster post-processing One problem with the Gaussian EM clustering can arise if one of the true protruding structure
shapes in the bounding manifold do not correspond to the elliptical Gaussian shape. In such cases, it is expected that the
EM algorithm fits this structure with a set of Gaussian components. Such an effect would clearly affect our classification
adversely, where thenumber of components plays an integral role. To deal with this problem, we propose to apply a
post-processing, which aims to merge appropriate components.

In particular, this post-processing can be seen as a second cluster analysis, which analyzes the set of all EM-fitted
Gaussian components and merges subsets to a single cluster —up to a certain scale. A very flexible and widely used
technique for such problems is agglomerative hierarchicalclustering.14 In hierarchical clustering, the cluster space is
expressed in terms of distances of its elements. In the present case elements are multivariate wrapped Gaussian functions.
In conformity with previous proceeding in this paper, we make use of statistical descriptors for the geometric shapes. A
suitable (and analytically computable) statistical distance measure for Gaussian distributions is the Bhattacharyya distance

DBhatt(µ1,Σ1,µ2,Σ2) =
1

8
(µ2 − µ1)

T

(

Σ1 + Σ2

2

)

−1

(µ2 − µ1) +
1

2
ln

|Σ1 + Σ2|
√

|Σ1| |Σ2|
.

However,DBhatt does not take into account the directional characteristicsof the wrapped Gaussians. Hence we propose a
slightly modified variant ofDBhatt, the “wrapped Bhattacharyya distance”

Dw
Bhatt(µ1,Σ1,µ2,Σ2) =

1

8
((µ2 − µ1) mod 2π)

T

(

Σ1 + Σ2

2

)

−1

((µ2 − µ1) mod 2π) +
1

2
ln

|Σ1 + Σ2|
√

|Σ1| |Σ2|
.

Finally, the number of wrapped Gaussian component clusters, in the experiments referred to ask2, determines the class
of the pulmonary structure:0 for a solitary nodule,2 · 1 = 2 for an attached nodule,2 · 2 = 4 for a vessel, and> 2 · 3 = 6
for vessel junction. The factor of 2 is due to the double interval in the polar coordinateφ, as discussed in Section 2.2.1.

3. EXPERIMENTS

In this contribution, we present qualitative experiments for the proposed pulmonary structure classification. Figures 4 and 5
show illustrations of the classification for thoracic CT images, two examples for each of the classes “nodule”, “attached
nodule”, “vessel”, “vessel junction”.

As presented in column (a), the 3D segmentation method (as sketched in Section 2.1) can segment all solitary and
attached nodules (Figure 4) as well as the false positive blood vessels and vessel junctions (Figure 5). Column (b) illustrates
the respective VOIs after affine-normalization. Column (c)shows the bounding manifold, which is constructed from the
procedure described in Section 2.2.1. Note, however, that an additional intensity thresholding has been introduced. This
step is applied as a fast and simple means for eliminating low-intensity structures, which may confuse the Gaussian EM
clustering. In column (d) the bounding manifold image is transformed to a sampled data setX, as it has been described
in Section 2.2.1. Further, column (d) shows the result of theEM-based wrapped Gaussian clustering, that is, mean and
covariance of thek components are illustrated by the dashed ellipses. In particular, note the continuities at the edges of the
(θ, φ)-domain in Figures 4, row 3 and 4, and Figure 5, row 3 and 4. For visualization purposes, we have also included an
illustration of the hierarchical clustering post-processing. Clusters from this post-processing are represented bythek2 solid
ellipses, the center point and spread of which correspond tomean and covariance computed from means of all wrapped
Gaussians within one post-processed cluster. Note that this illustration may lead to degenerated ellipses, for instance in
Figure 5, row 2, if the cluster cardinality is low. Inferringthe structure class from the component numberk2, it can be
verified that the presented classification gives correct answer for all eight examples. Similar results were obtained with
other cases.

It is worthwhile to point out limitations of the algorithm, which may lead to misclassifications in some situations.
Structures at the poles of the manifold 3D sphere (corresponding toφ = 0 andφ = π) become disproportionately large
in the θ-dimension of the 2D image after the unwrapping. This situation can be compared with a phenomenon from
cartography where arctic and antarctic regions occupy comparably larger regions on a 2D world map than on the 3D
spherical world globe. In the examples illustrated above, this behavior can be observed in Figure 5, row 4, where the
high intensity structure atφ ≈ π extends over the entire range(−π, π] in θ. As a consequence, caution is advised, when
drawing conclusions from scale relations in the unwrapped manifold, in particular, for those pole regions. This is, in fact,
a drawback of the wrapped Gaussian modeling, in particular,the unwrapping. At this point, it shall be noted that the above
mentioned von Mises-Fisher modeling circumvents this phenomenon, because no unwrapping is assumed.



4. CONCLUSION

We have proposed a novel method of classifying pulmonary structures, such as nodules, attached nodules, vessels and
vessel junctions. Such a classification can be advantageously applied in a CAD system for nodule detection, in particular,
for false positive removal. Further, VOI representations chosen in the parts of the modeling have beneficial visualization
capabilities, in particular the unwrapped 2D bounding manifold of Figure 1 (c). This is an important advantage in the
context of a user (radiologist) interaction.

Main elements of the presented classification include (i) a module for anisotropic Gaussian fitting, (ii) a construction
of a 2D manifold at the boundary of the pulmonary structure, and (iii) a robust cluster analysis of this manifold. Part (i)is
based on our previous work. For part (ii), we have proposed a data driven scale selection based on entropy minimization.
For the solution of part (iii), we have brought together powerful statistical analysis methods, such as EM-based clustering
with automatic mode number selection, directional data modeling, and hierarchical clustering based on a variant of the
Bhattacharyya distance. Unlike other global methods such as vessel tree reconstruction, this method allows for the localized
flexible examination of pulmonary structures.

We have shown a qualitative study with thoracic CT images anddemonstrated and illustrated favorable classification
results in this domain. The presented algorithm could robustly classify examples of nodules, attached nodules, vessels and
vessel junctions.

Building on these promising results, we plan to perform quantitative performance validation in order to show the
effectiveness of the proposed solution in more clinically relevant settings. A main limitation of the proposed method
is the fact that scales are position dependent within the(θ, φ)-domain. In this respect, future research should focus on
improving this deficiency. For instance, modeling with von Mises-Fisher distribution could circumvent this problem.
Complementary to the statistical clustering approach, we want to pursue the idea of mode number detection based on
connected component approaches. Similar to the proposed wrapped Gaussian modeling, such an approach needs to address
the directional characteristics in spheres. Another possible improvement concerns the use of more topological knowledge.
So far, classification is solely based on thenumber of identified protruding structures. Certainly, additional information
lies in their size and relative position. For further studies, we plan to incorporate this extra information.
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