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Abstract

We propose a novel and robust detection of semantically
equivalent but visually dissimilar object parts with the pres-
ence of geometric domain variations. The presented al-
gorithms follow a part-based object learning and recog-
nition framework proposed by Epshtein and Ullman. This
approach characterizes the location of a visually dissimi-
lar object (i.e., root fragment) as a function of its relative
geometrical configuration to a set of local context patches
(i.e., context fragments). This work extends the original
detection algorithm for handling more realistic geometric
domain variation by using robust candidate generation, ex-
ploiting geometric invariances of a pair of similar polygons,
as well as SIFT-based context descriptors. An entropic fea-
ture selection is also integrated in order to improve its per-
formance. Furthermore, robust voting in a maximum den-
sity framework is realized by variable bandwidth mean shift,
allowing better root detection performance with the pres-
ence of significant errors in detecting corresponding context
fragments. We evaluate the proposed solution for the task of
detecting various facial parts using FERET database. Our
experimental results demonstrate the advantage of our solu-
tion by indicating significant improvement of detection per-
formance and robustness over the original system.

1. Introduction

Part-based object recognition [2, 4, 5, 7] is an effective
approach to make recognition more robust against common
geometric variations and photometric noises. Representing
a target object by a constellation of small image patches has
an advantage of absorbing errors due to non-linear distor-
tions in geometrical configuration of object parts across dif-
ferent same-class object instances. At the same time, how-
ever, it makes it more difficult to detect such small patches
because their discriminative power tends to decrease by re-
ducing the patch size. By semantically equivalent but visu-
ally dissimilar, we mean local object parts, sharing the same
name but also being highly dissimilar in their visual appear-

ance (e.g., a mouth in a face or a wing in an airplane). Such
visual dissimilarity often renders the common detection ap-
proach with image-based similarity measures ineffective.
For detecting such object parts, Epshtein and Ullman [4]
recently proposed to exploit geometrically stable configu-
ral context. This approach characterizes the location of a
visually dissimilar object (i.e., root fragment) with respect
to its articulative configuration to a set of visually stable
patches (i.e., context fragments) learned from the data. Ex-
perimentally, they demonstrate that correct detection of the
visually dissimilar parts does improve recognition perfor-
mance. The proposed method however does not allow any
view-variations (i.e., scaling/rotation), preventing it from its
practical applications.

Addressing this issue, this paper presents extensions of
the Epshtein and Ullman’s framework for robust detection
of visually dissimilar objects with the presence of geomet-
ric domain variations up to similarity transformation. For
this purpose, we integrate SIFT-based descriptor [9] for de-
tecting context fragments using image-based similarity. A
closed-form formula is also offered for generating scale-
and rotation-invariant root candidates, exploiting geometric
invariants of similar triangles without explicitly estimating
an underlying domain transformation. An entropic feature
selection is performed as a pre-process for improving over-
all performance by removing context fragments without sig-
nificant image structures.

Another contribution of this work is to robustify the root
location estimation from a collection of root candidates.
The original formulation of a maximum likelihood estima-
tor with i.i.d. Gaussians are highly sensitive to outliers
caused by errors in finding context correspondences (see
Figure 6 for example). To mitigate this, we propose an al-
ternative maximum density framework that leads to a robust
consensus voting. This framework models a root estimate
as a statistical mode of a heteroscedastic kernel density esti-
mator by interpreting each root candidate as an independent
Gaussian sample. Resulting multi-modal density function is
then analyzed with multiple seeds to detect the most signif-
icant mode by using variable bandwidth mean shift [3]. Ro-
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bust estimation is possible by avoiding negative influences
from outliers captured in non-significant modes.

The rest of this paper is organized as follows. Section 2
briefly introduces the Epshtein and Ullman’s framework.
Sections 3 and 4 describe our contributions in two succes-
sive steps of detecting context and root fragments, respec-
tively. An overview of the overall algorithm is presented
in Section 5. The proposed algorithms are experimentally
evaluated for detecting various facial parts using the FERET
database [10, 11]. Section 6 presents our experimental re-
sults which demonstrate the robustness of our approach. Fi-
nally, in Section 7 we conclude this paper by discussing our
future work.

2. Related Work by Epshtein and Ullman

This section briefly introduces the semantically equiva-
lent object detection framework proposed by Epshtein and
Ullman [4], which serves us as a foundation of our work.
The framework consists of two successive learning and de-
tection phases. It takes a root fragment F and a set of train-
ing images Tr as an input. Root fragment F is a rectangular
image patch which indicates a target object to be detected.
The training image set Tr is then assumed to contain differ-
ent instances of the same object.

The learning phase extracts a context C from Tr (context
retrieval), where context C is defined as a set of N local im-
age region called context fragments: Ci, i = 1, .., N . The
main idea is to select a set of image patches that are geomet-
rically consistent with the target root fragment as a context
so that the root can be detected according to collective ge-
ometrical configuration on to such contexts. First step of
this learning phase is to detect object parts visually similar
to F . Normalized cross correlation (NCC) was used to ex-
haustively match F against Tr after applying difference of
Gaussian (DoG) filtering. This procedure, called DNCC, re-
sults in a subset {Ik ∈ Tr, k = 1, ..,Ki}. This subset con-
tains Ki root-similar fragments Fk, centered at xfk, with
their DNCC score exceeding a pre-defined threshold. In
the next step, C is extracted from Ik as a collection of lo-
cal image patches that are likely to co-occur with Fk in a
stable geometric configuration. Local image patches with
various sizes and locations x are exhaustively paired with
Fk then posterior probability P (Fk|Patch) and variance of
coordinate differences V ar(x − xfk) are computed. After
removing obviously unwanted patches using various thresh-
olds, the patches are evaluated according to weights that are
proportional to P (Fk|Patch) and inversely proportional to
V ar(x− xfk). Context C is then constructed by including
patches that receive high weights, simultaneously maximiz-
ing the posterior and minimizing the configuration variance.
For each Ci, the mean and variance of coordinate difference
are also recorded.

The detection phase localizes root-similar fragments

Figure 1. Process of detecting context fragments. Left: Selecting
context fragments Ci ∈ Cs using entropy. Center: Extracting
SIFT-based descriptors D(Ci). Right: Matching Ci to In ∈ Te,
resulting in detected context fragments {Cin}.

Fn, n = 1, ..,K in a set of test images Te given the learned
context C. Each context fragment Ci is first matched
against Te by using the same procedure as in the learning
phase. Only images In that produce at least one confident
match are considered for further processing. Finally, root
fragment Fn for these K images are estimated with respect
to the matched context fragments as a standard maximum
likelihood estimator of F with a normal form of data like-
lihood P (C1, .., CN |F ), assuming independence of context
fragments.

In this paper, we generalize the detection phase of this
framework toward more realistic image and geometric vari-
ations up to similarity transformation. For the learning
phase, we use a reimplementation of the original algorithm
as described above without any algorithmic modifications.
For this study, we conducted the context learning of five
facial parts F (i.e., mouth, nose, eye, ear, chin). We assem-
ble Tr consisting of 20 images collected from the FAME
database [15]. The above learning algorithm results in more
than 100 context fragments Ci for each root fragment. Note
that we consider the training set Tr and test set Te to be
disjoint sets while the original work consider them identi-
cal. This is also a straightforward extension of the original
framework.

3. Detecting Context Fragments

3.1. Overview

This section summarizes our approach for localizing the
context C in the test set Te with the presence of image and
geometric variations, given a pre-learned C for a root F . It
is obvious to see that DNCC is suboptimal for our task and
that more invariant image feature and/or similarity measures
for matching are required. As was also suggested in [4], we
adopt SIFT descriptors [9].

Figure 1 illustrates our approach. In order to improve
the overall matching performance, we first perform a data-
driven entropic feature selection, resulting in Cs ⊂ C by



removing non-structural fragments detected by the origi-
nal learning algorithm. For each selected context fragment
Ci ∈ Cs (e.g., left nostril), we extract a SIFT-based descrip-
tor D(Ci). Then D(Ci) is matched against SIFT descrip-
tors computed at various locations of each test image in Te.
The location that yields the highest similarity (or lowest dis-
tance) is given as the final estimate, resulting in a set of de-
tected context fragments {Cin, i = 1, .., Nn, n = 1, ..,K}
for a subset of K test images {In} ⊂ Te each of which
produces at least two confident matches. Nn denotes the
number of context fragments detected for In.

We also evaluate three different similarity measures in
order to improve the matching performance. Euclidean
distance ED(Ci, Cj), chi-square distance χ2(Ci, Cj) [12],
and earth mover’s distance with L1 ground distance EMD-
L1(Ci, Cj) [8] are compared. Our experimental evaluation
suggest that χ2 performs better than other measures.

3.2. Data-Driven Context Selection with Entropy

Our pilot study indicated that the learning phase of the
original framework can result in a large number of hard-to-
detect context fragments which lack much spatial structure,
resembling a homogeneous patch. This is due to the fact
that the learning algorithm does not take into account such
intensity statistics. These fragments therefore tend to result
in low performance in detecting them on a test image.

Exploiting this observation, prior to the subsequent
matching, we subject the context C to a data-driven feature
selection using Shannon entropy [14] in order to remove
such non-structural fragments. We first represent intensity
distribution of Ci as a normalized histogram P (Ci) with R
bins. The entropy H(P (Ci)) is then defined,

H(P (Ci)) = −
R∑

r=1

P (Ci)r ln P (Ci)r (1)

We rank all Ci with H(P (Ci)). Then choose only Cis
whose entropy exceeds a pre-defined threshold THH . This
results in a subset Cs ⊂ C of Ns selected context fragments
such that Ns ≤ N .

3.3. SIFT-based Descriptor

For each selected context fragment Ci ∈ Cs, we extract
a SIFT-based descriptorD(Ci). The descriptor is computed
following the Lowe’s convention with 4×4 spatial sampling
regions and 8 bins for the orientation histograms. We em-
ploy the public SIFT software developed at UCLA [1].

We compute D(Ci) at the center (xci, yci) of Ci unlike
the original SIFT by Lowe [9], which extracts a set of de-
scriptors at the selected interest-points (i.e., key-points) for
each patch. This is because our pilot studies show that the
success rate of locating Ci was too low when using the

original SIFT for matching context fragments across differ-
ent instances of the same object. Image variations beyond
affine transformation, which occur naturally in such a sit-
uation, will prevent SIFT key-points from frequently cor-
responding to each other. Thus a matching with a single
descriptor can outperform another matching with multiple
descriptors extracted at such multiple key-points. However,
in our descriptor design, the scale and rotation invariances
become compromised because the descriptor is computed
at a point other than the SIFT key-point. To address this
issue, we compute a set of SIFT descriptors for Bs scales
and Br rotations for each Ci. Therefore, D(Ci) consists of
a set of Bs × Br SIFT descriptors. A similarity value of
a pair of fragments Ci and Cj is then given by the highest
value among those computed for all permutation of descrip-
tor pairs.

3.4. Similarity Measurement of Local Descriptors

We compare three aforementioned similarity measures
for matching the SIFT-based descriptors. Let D(Ci)p be
pth bin ofD(Ci) and similarlyD(Cj)p be pth bin ofD(Cj).
The Euclidean distance betweenD(Ci) andD(Cj) from Ci

and Cj , respectively, is then defined,

ED(Ci, Cj) = ‖Ci −Cj‖2 =

√√√√
P∑

p=1

(D(Ci)p −D(Cj)p)2

(2)
We choose a match according to the lowest distance be-
tween D(Ci) and D(Cj).

Chi-square (χ2) distance [12] compares a pair of descrip-
tors D(Ci) with P number of bins. χ2 is a hypothesis test-
ing which evaluates null hypothesis that given D(Ci) and
D(Cj) are dissimilar. Then, the χ2 distance betweenD(Ci)
and D(Cj) is defined,

χ2(Ci, Cj) =
p∑

p=1

(D(Ci)p − µp)2

µp

µp =
D(Ci)p +D(Cj)p

2
(3)

We also choose a match according to the lowest distance be-
tween D(Ci) and D(Cj), assuming the corresponding hy-
pothesis has the least possibility to be rejected.

EMD-L1 [8] is an efficient algorithm to compute
the earth mover’s distance (EMD) [13] between multi-
dimensional histograms. Unlike the typical bin-to-bin dis-
tances, such as ED and χ2, EMD can absorb errors due
to specific histogram binning as a cross-bin measure. By
considering a specific case of L1 ground distance, EMD-L1

computes an EMD measure faster than the original formula-
tion. In the following, we denote EMD-L1 between D(Ci)
and D(Cj) as EMD-L1(Ci, Cj).



Figure 2. Data-driven entropic context selection. Detection rate of
context fragment matching is shown as a function of the entropy
threshold THH

3.5. Experimental Evaluations

This section presents our experimental validations of
methods described in this section: 1) data-driven entropic
context selection, 2) SIFT-based scale and rotation invari-
ant context descriptors, and 3) similarity measures of the
descriptors. These experiments use the contexts learned for
detecting five facial parts F of mouth, nose, eye, ear, and
chin as described in Section 2. In the following experi-
ments, detection statistics are computed manually by visual
inspection. We consider an estimated fragment to be a cor-
rect detection when a rectangle whose size is 130% of the
estimated fragment fully contains the target region.

Figure 2 shows the results of our experiments for validat-
ing our data-driven context selection process. We conduct
1000 matching tests by locating 40 randomly chosen con-
text fragments Cis for each of 5 roots in 5 randomly chosen
test images In ⊂ Tn �= Te. The SIFT-based descriptor and
χ2 distance are used for matching. The figure displays cor-
rect detection rates as a function of the entropy threshold
THH . The results show that increasing THH yields better
detection rate with less Cis. For the following study, we set
THH by 3.5, which results in Ns � 15 where N > 100.

Figure 3 and 4 illustrates robustness of the SIFT-based
descriptors in comparison to the DNCC matching used
in [4]. For rotation variation, we conduct 17500 context
matching tests for 7 rotations, 0◦, 15◦, 30◦, 45◦, 60◦, 75◦,
and 90◦, with 500 Cis for 5 F s in 5 test images {In}.
For scale variations, we have 1200 matching tests for 12
scales factors from 0.5 to 2.0. χ2 distance was again used
for matching. The results show that detection rates of the
SIFT-based descriptors are more consistent than the DNCC
matching across the scale and rotation variations.

Finally, figure 5 compares three different histogram sim-
ilarity measures χ2, ED, and EMD-L1 in the same rotation
matching tests above. The results show that χ2 consistently
bests other two measures. Following this result, χ2 will be
used in the rest of our experiments.

Figure 3. Comparing percentage of correctly locating Ci between
SIFT-based matching and DNCC matching with rotation variance

Figure 4. Comparing percentage of correctly locating Ci between
SIFT-based matching and DNCC matching with scale variance

Figure 5. Comparing percentage of correctly locating Ci among
different descriptor matching methods, χ2, ED, and EMD-L1.

4. Detecting a Root Fragment F

4.1. Overview

This section summarizes how we detect a root fragment
Fn in a target test image In by using the detected context
fragments Cin used as contextual clue. This part of our
system consists of two successive steps: geometrically in-



variant candidate generation (GICG) and robust consensus
voting using mean shift. Given a set of detected context
fragments {Cin} , GICG generates a set of M scale- and
rotation-invariant root candidates Fmn,m = 1, ...,M in a
test image In ∈ Te. Taking Fmn as inputs, the following
mean shift-based robust consensus voting yields a final lo-
calization of the root fragment Fn. The proposed algorithm
parallels with RANSAC [6] however it offers more robust
way for consensus voting without an explicit estimation of
domain transformation. Details of these steps are described
below.

4.2. Geometrically Invariant Candidate Genera-
tion

In [4], a root candidate Fmn is generated for each de-
tected context fragment Cin in a test image In. Thus in
this case the number of root candidates M is equivalent to
the number of detected context fragments Nn. The center
coordinate xfn of each root candidate is estimated by,

xfn = xcin + ∆xi (4)

where xcin denotes the center coordinate of Cin and ∆xi

denotes the mean coordinate difference between the root
and the i-th context fragment Ci learned in the training
phase.

The above formula obviously fails when some domain
variations are present as was also mentioned in [4]. This
is because geometric constraints captured in the relative co-
ordinate difference ∆xi are not enough to uniquely deter-
mined the underlying transform (i.e., similarity transforma-
tion in R

2 in our case). To address this, we estimate a root
candidate from a pair of context fragments (Cin, Cjn), i �=
j, sampled from the set ofNn detected fragments Cin in
In. It is straightforward to see that two independent cor-
respondences between learned and detected fragments can
determine the similarity transform. When Nn is small, we
can exhaust all 2-subsets of Cin, resulting in M =

(
Nn

2

)
root candidates. When Nn is large, a random sampling of
2-subsets from Cin can be performed for M <

(
Nn

2

)
times.

The following derives a closed-form formula for esti-
mating xfn from each pair (Cin, Cjn). Let xf , xci, and
xcj denote the latent variables for center coordinates of the
root fragment F and the corresponding context fragments
Ci and Cj so that ∆xi = xf − xci and ∆xj = xf − xcj ,
respectively.

The main idea is to consider a pair of triangles A1 =
(xf ,xci,xcj) and A2 = (xfn,xcin,xcjn) in R

2. Then a
specific assumption about the underlying domain variability
can be interpreted as a corresponding geometrical relation
between A1 and A2. This yields a set of equations repre-
senting geometric invariants that must hold true under the
relationship. Finally, the set of equations can be solved to
yield a closed-form formula for the unknown xf . Under our

assumption that we allow up to the similarity transformation
as the domain variability, therefore, trianglesA1 andA2 are
geometrically similar.

With different domain variability assumption, this gen-
eral procedure can be readily extended by considering ge-
ometric invariants of a (S+1)-polygon pair. Such polygons
can be constructed by sampling S-subsets from Cin where
the value S is chosen such that S correspondences can suf-
ficiently constrain the full degrees of freedom of the under-
lying transformation.

First, we re-describe the triangles with relative vectors
from xci and xcin so that A1 can be determined with infor-
mation available during the detection phase,

A1 = (c1,a1) = (∆xi, ∆xi −∆xj)
A2 = (c2,a2) = (xfn − xcin, xcjn − xcin)

Let u1 and u2 denote projections of c1 and c2 onto a1 and
a2, respectively. Then we also re-describe xf and xfn,

xf = xci + c1 = xci + u1 + v1

xfn = xcin + c2 = xcin + u2 + v2 (5)

where

u1 = k1a1

k1 = c1 · a1/‖a1‖2
v1 = c1 − u1

u2 = k2a2 (6)

Furthermore, v2 can be written as a function of normal vec-
tors n1 and n2 to a1 and a2,

v2 = sign(c1 · n1)‖v2‖n2 (7)

where a1 = (a11, a12), a2 = (a21, a22), n1 =
(a12,−a11)/‖a1‖, and n2 = (a22,−a21)/‖a2‖. Be-
cause A1 and A2 are similar triangles, the projection factor
and ratio of vector lengths are invariant, yielding

k2 = k1 (8)

‖v2‖/‖u2‖ = ‖v1‖/‖u1‖ (9)

Plugging in (8) and (9) to (5), (6), and (7) results in the final
result that extends (4),

xfn = xcin +k1a2 +sign(c1 ·n1)‖c1−u1‖‖a2‖
‖a1‖n2 (10)

4.3. Robust Consensus Voting using Mean Shift

In [4], the center location of root fragment Fn is esti-
mated from M root candidates Fmn using maximum like-
lihood estimation (MLE). They model a probability dis-
tribution of Fn being found at coordinate x given an ob-
served context fragment Cin as a 2D Gaussian centered at



Figure 6. Illustration of difference between maximum likelihood
and maximum density approaches. Left: maximum likelihood es-
timation. Right: maximum density-based robust consensus voting
using mean shift. White dots indicate center locations of root can-
didates Fmn for mouth case.

xfn with sample covariance of coordinate difference ∆xi

between F and C. Under the independence assumption,
the closed-form global maximizer x̂ of the data likelihood
P (C1n, .., Cin, .., CNnn|Fn) is analytically derived.

This approach is sensitive to errors in detecting context
fragments. Figure 6 demonstrates this shortcoming for the
mouth detection case. Such detection errors results in a sig-
nificant number of largely false root candidates while ma-
jority of candidates are still estimated correctly. The MLE
solution cannot yield correct root estimate in this case.

To address this issue, we propose an alternative prob-
abilistic model using a density estimator framework. We
interpret each root candidate Fmn as an independent sam-
ple with an associated uncertainty in the Gaussian form.
The heteroscedastic kernel density estimator f(x) is then
defined by summing these Gaussians,

f(x) =
M∑

m=1

N (x;xfmn,Σm) (11)

where xfmn is the estimated center coordinate for Fmn and
Σm is the corresponding covariance matrix, derived from
sample covariances with i-th and j-th context fragments

used to estimate xfmn, Σm = Cov(∆xi)+Cov(∆yi)

2 .
We define a mode of this density function to be an esti-

mated root center xfn. Such a mode indicates the maximum
density location. It is intuitively a location with strongest
evidence with many other estimates with similar values.
This model uses the exactly same amount of information
in comparison to [4] but results in a multi-modal distri-
bution (i.e., Gaussian sum) unlike the uni-modal one (i.e.,
Gaussian product) in [4]. Robust estimation is possible
by choosing a mode with correct estimates thus avoiding
the negative influence from outlier candidates. Figure 6 il-
lustrates the advantage of this approach in comparison to
the MLE solution shown in the left image of the figure.
As a local maximum density estimator, we use variable-
bandwidth mean shift proposed by Comaniciu [3]. This it-
erative mode-seeking algorithm is provably convergent to a

density mode in the vicinity of the initialization xinit sim-
ilar to the gradient-descent but without the need for tuning
the nuisance learning rate parameter. The iterator is defined,

mv(x) = H(x)
M∑

m=1

wm(x)Σ−1
m xfmn − x (12)

where H(x) denotes the data-weighted harmonic mean of
the bandwidth matrices at x such that

H−1(x) =
M∑

m=1

wm(x)Σ−1
m

The weight wm(x) represents the influence from m-th
Gaussian component at x normalized over all the compo-
nents

wm(x) = |Σm|− 1
2 exp(− 1

2 (x−xfmn)T Σ−1
m (x−xfmn))

∑ M
m=1 |Σm|− 1

2 exp(− 1
2 (x−xfmn)T Σ−1

m (x−xfmn))

.
In order to robustly detect the most significant mode

among others, we use the following voting scheme with
multiple initializations. First, we set M initializations by
xinit,m ← xfmn. Second, we perform M mean shift proce-
dures, resulting in M convergences ym. Third, we perform
voting by grouping {ym} into D clusters then choosing the
cluster C with the most members. Finally, we set the final
estimate xfn by the average: xfn ← 1

Nd

∑
d∈C yd

5. Algorithm Overview

INPUT: A context C = {Ci} trained for a root fragment
F , average root location ∆xi and its covariance Cov(∆xi),
and a test image set Te

OUTPUT: A set of estimated center location xfn in Fn

for a test image In ∈ Te

ALGORITHM

1. Add Ci into Cs if H(P (Ci)) > THH [Section3.2]

2. Extract D(Ci), Ci ∈ Cs with Br rotations and Bs

scales [Section3.3]

3. Detect Ci in each image In ∈ Te by finding a location
with minimum χ2(Ci, Cj) (3), resulting in detected
context fragments {Cin}

4. Generate M root candidates {Fmn} in In for every
context fragment pairs (Ci, Cj) from {Cin} by using
(10) [Section4.2]

5. Estimate the location of root fragment xfn from
{Fmn} by using (12) [Section4.3]



6. Experiments

This section presents the results of testing feasibility and
robustness of detecting F in an image with geometric vari-
ation using various combination of the mentioned compo-
nent algorithms: robust consensus voting with mean shift
(MS), geometrically invariant candidate generation (GICG),
the original Epshtein and Ullman’s system with the MLE
formulation (E+U), and DNCC matching (DNCC) [4] Sim-
ilar to our previous experiments, we consider detecting five
facial subparts, mouth, right eye, nose, ear, and chin, as
root fragments F . Prior to our detection experiments, cor-
responding context C for each root F is also learned using
the method described in Section 2.

6.1. Data

For our detection experiments, we use 1000 faces which
are collected from FERET database [10, 11]. These faces
exhibit some facial expressions (i.e., choosing from FERET
database’s ”fa” and ”fb” subsets equally). After the collec-
tion, each image is cropped so that parts other than face (e.g.
shoulder) is removed. The cropped image is then resized to
150 × 200 (width × height) using bi-cubic interpolation
and then is rotated counter clockwise (CCW) 15◦, 30◦, 45◦,
60◦, and 75◦ for the rotation invariance test and also resized
with 0.5 and 1.5 scale for the scale invariance test. The re-
sulting set of images constitute our testing image set Te.

6.2. Methods

The detection phase is divided into three steps where dif-
ferent methods can be applied. The first step of the detection
phase is to locate Ci using SIFT-based or DNCC match-
ing. The second step is to generate candidates Fmn,m =
1, ...,M in a test image In ∈ Te by GICG. The third step
is then to estimate the root location of Fn in In using MS
or MLE. As was described in Section 3.5, we consider Fn

correctly estimated when the region around Fn with the size
of 130% as the size of F has all the contents of F .

6.3. Results

First we perform an experiment to investigate effective-
ness of GICG and MS (GICG + MS) while using the orig-
inal DNCC matching on data without scaling and rotation
variations. We conducted the root detection matching tests
only with non-rotated data set TCCW00 ⊂ Te. As you can
see in Figure 7, (GICG + MS) bests (E+U) with at most
28% difference using the same parameter settings for the
context fragments Ci, the number of Ci used, and threshold
for DNCC matching. The difference in performance is due
to the ability of (GICG + MS) to effectively filter out many
outliers due to errors in finding corresponding context frag-
ments.

Figure 7. Comparing percentage of correctly locating Ci between
DNCC+GICG+MS and E+U with no-rotation data set.

Figure 8. Comparing percentage of correctly locating Ci among
SIFT-based + GICG + MS (RD SEVDO), E+U, DNCC matching
and SIFT-based matching for different rotation variance.

For the invariance test of rotation and scale, Figure 8
and Figure 9 show the results of 5000 tests each for ro-
tation and scale with 1000 test images for each F . Com-
paring to the baseline SIFT-based and DNCC matching as
well as (E+U), our system, (SIFT-based + GICG + MS)
labeled ”RD SEVDO”, yields consistent detection perfor-
mance over scale and rotation variations. Note that the base-
line SIFT-based and DNCC matching are performed as di-
rect template matching with these image-based similarity
measures for detecting the root fragments without using the
contexts.

7. Discussion and Future Work

This paper presents our robust detection framework for
locating semantically equivalent but visually dissimilar ob-



Figure 9. Comparing percentage of correctly locating Ci among
SIFT-based + GICG + MS (RD SEVDO), E+U, and DNCC
matching for different scale variance.

ject parts with the presence of scale and rotation view-
variations. Our experiments demonstrate our approach’s
significant improvements over the original Epshtein and
Ullman’s system in terms of detection performance and of
robustness against the domain scaling and rotation. This
allows us to consider practical usage of the overall frame-
work toward more realistic application scenarios, contribut-
ing to improve the general part-based object recognition
paradigm. As our future work, we plan to experimentally
evaluate the proposed algorithm with articulated objects
other than faces in both 2D and 3D domains. The mean
shift-based maximum density voting is not restricted to the
domain’s dimensionality. Furthermore, the proposed GIGC
can be readily extended to 3D domains. Another interesting
future work is to extend the learning phase of the Epshtein
and Ullman’s framework toward scale and rotation invari-
ance so that context fragments can be learned from images
with arbitrary view-variations. The SIFT-type invariant fea-
tures can also be incorporated into the learning process, fa-
cilitating to select better context locations that contain cer-
tain image structures that current learning phase ignores.
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