Matching face-like objects is invariant to differences in direction of contrast

Marissa Nederhouser, Michael C. Mangini, Irving Biederman, & Kazunori Okada

University of Southern California

Grants: ARO DAAG55-98-1-0293, NSF EEC-9529152, HFSP 99-44, JSMF No. 96-44

Subramaniam & Biederman Study

- There is a dramatic decline in face matching performance for faces that differ in contrast polarity.
- No such costs are apparent when matching chairs, even when the chairs and faces were scaled to be equally similar (Lades et al., 1993) according to a wavelet model of similarity (Subramaniam & Biederman, 1997).

The face database was provided by the Max-Planck Institute for Biological Cybernetics in Tuebingen, Germany," courtesy of N.F. Troje

Subramaniam & Biederman Study

The face database was provided by the Max-Planck Institute for Biological Cybernetics in Tuebingen, Germany," courtesy of N.F. Troje

Results of Biederman & Subramaniam

Note the enormous cost to FACE, but not OBJECT, matching, when matching images of different polarity vs same polarity.

Why this difference in the costs of contrast inversion for faces and objects?

- Unlike face matching, subordinate level object matching (such as the chairs in Subramaniam's experiment) can generally be accomplished by using parts and discontinuities.
- Parts and discontinuities would be unaffected by changes in contrast polarity.
- Could the presence of this contrastinvariant information account for the difference between faces and objects?

Would object recognition remain invariant to contrast polarity with smoothly curved, novel, non-face 3D objects?

If such stimuli were generated in a restricted space in which only the amplitudes of the 2nd and 3rd harmonics of a sphere varied, it would require discriminating among blobs with the same configuration but different metrics. This type of information, along with pigmentation, may be used to match faces.

Method for Generating 3D "Blobs" by Amplitude Variation of Harmonics

- We investigated a matching task with non-face objects whose surfaces, like those of faces, vary smoothly.
- Each "blob" stimuli space was generated by varying the amplitudes of the 2nd and 3rd harmonics of a sphere.

Amplitude-Varied "Blob" Spaces

- The stimuli produced were smooth, blobby, asymmetric volumes, only varying in their degree of surface curvature.
- This "amplitude-variation" was done for 4 different harmonic configurations producing 4 "blob" stimuli spaces.

Amplitude-Varied Stimuli Space

- These amplitude variations produced smooth, blobby, asymmetric volumes with small metric curvature differences so the effects of a wide range of stimuli similarity could be assessed.
- Nearby stimuli in this space do not differ in parts or nonaccidental properties.

Blob Similarity

- The similarity of pairs of objects was scaled according to a wavelet similarity measure (Lades, et al., 1993).
- These distances are highly correlated, r = .998, with city-block distance in each stimuli space.
- Gabor jet values vary from 65 (= most dissimilar) to 100 (= identical)

Expert Recognition

- It is possible that the sensitivity to direction of contrast in face matching is a consequence of the experience (expertise) we have with face images of positive contrast (Gauthier & Tarr, 1997).
- Would intensive training on matching blobs of positive contrast lead to deficits in matching blobs of different contrast?

- Expertise in these types of tasks has been reported to require about 3,240 trials (or 7-10 hrs. of training) on average (Gauthier & Tarr, 1997; Gauthier et al., 1998). To produce expertise in our subjects, they each performed eight sessions (1 hr) of 1,024 trials for a total of 8,192 trials.
- All of the training sessions were conducted with stimuli of positive contrast.
- They were then tested in a session with images of both positive and negative contrast, identical in procedure to the training trials.

Testing for Expertise

- Four amplitudevaried "blob" spaces
 makes it possible to
 test for a transfer of
 expertise to a blob of
 a different
 configuration of
 harmonics.
- Can compare experts' performance on old & new blobs to novices' performance.

Match-to-sample forced-choice method

- The task does not rely on memory.
- It eliminates criterion and response bias effects for judging same vs. different.

Match the top blob to one of the blobs below.

Experimental Conditions

- Stimuli presented for 1 sec
- Subjects had 4 sec. in which to respond.
- Experts trained for 8-1024 trial sessions in positive contrast.
- Both experts and novices tested for 512 trials in both positive and negative contrast blobs (block 1)
- Both then tested again for 512 trials with a new blob configuration in positive and negative contrast (block 2)

Results for Experts&Novices:Block1

• Experts performing significantly better than novices with respect to both reaction times and error rates.

Results for Experts&Novices:Block1

• Neither experts nor novices show sensitivity to contrast inversion.

Results for Block 2: New Configuration

- Experts show no cost for matching blobs from the new space--transfer of expertise!
- Novices perform slightly better during block 2 (new blob configuration): effect of training.

Results for Block 2: New Configuration

• Neither experts nor novices show an effect of contrast in reaction times or error rates.

Would object recognition remain invariant to contrast polarity with smoothly curved objects with constrained pigmentation ?

In addition to surface curvature, pigmentation, such as high contrast patches including the eyebrows and the shadows of the nostrils, may be used in face recognition (Cavanagh; Bruce & Langton, 1994).

If the matching of these objects were invariant to contrast polarity, it would suggest that faces are special with respect to their sensitivity to contrast inversion.

Method for Generating 3D "Blobs" with Pigmentation Information

- Stimuli were again generated by adding the harmonics of a sphere with a set high contrast patches in a specific configuration.
- The harmonics varied in size, changing the patches with the surface curvature.

Experimental Conditions

- Stimuli presented for 1 sec
- Subjects had 4 sec. in which to respond.
- Experts trained for 8-1024 trial sessions in positive contrast.
- Both experts and novices tested for 512 trials in both positive and negative contrast blobs (block 1)
- Both then tested again for 512 trials with a new blob in positive and negative contrast (block 2)

Results for Experts&Novices:Block1

• Experts performing significantly better than novices with respect to reaction times and error rates.

Results for Experts&Novices:Block1

• Neither experts nor novices show sensitivity to contrast inversion.

Results for Block 2: New Configuration

- Experts show no cost for matching blobs from the new space--transfer of expertise!
- Novices perform slightly better during block 2 (new blobs): effect of training.

Results for Block 2: New Configuration

• Neither experts or novices show an effect of contrast reversal in reaction times or error rates.

Why does face and object matching differ in the effects of contrast polarity?

2. Similarity.....

-Because the matching of blobs that were more similar than highly similar faces was invariant to contrast polarity.

3. Expertise.....

-Because neither expert nor novice subjects showed sensitivity to differences in contrast polarity when matching blobs.

4. Pigmentation.....

-Because the matching of non-face objects with face-like pigmentation is contrast invariant.

The only way we have been able to get an effect of contrast inversion in shape matching is to use...

REFERENCES

•Biederman, I., Subramaniam, S., Bar, M., Kalocsai, P, & Fiser, J. (1999). Subordinate-Level object classification reexamined. *Psychological Research*, 62, 131-153.

•Bruce, V., & Langton, S. (1994). The use of pigmentation and shading information in recognising the sex and identities of faces. *Perception*, 23, 803-822.

•Gauthier, I., & Tarr, M. J. (1997). Becoming a 'Greeble' expert: Exploring the face recognition mechanism. *Vision Research*, 37,1673-1682.

•Gauthier, I., Williams, P., Tarr, M.J., and Tanaka, J. (1998). Training 'Greeble' experts: a framework for studying expert object recognition processes. *Vision Research*, 38, 2401-2428.

•Lades, M., Vortbrüggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C., Würtz, R. P. and Konen, W. (1993). Distortion invariant object recognition in the dynamic link architecture. *IEEE Transactions on Computers*, *42*, 300-311.

•Subramaniam, S. & Biederman, I. (1997). Does contrast reversal affect object identification. *Investigative Ophthalmology & Visual Science*, 38, 998.

•Shepard, R. N., and Cermak, G. W. (1973). Perceptual-cognitive explorations of a toroidal set of free-form stimuli. *Cognitive Psychology*, 4, 351-377.