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Abstract

This paper proposes a stratified regularity measure: a
novel entropic measure to describe data regularity as a
function of data domain stratification. Jensen-Shannon di-
vergence is used to compute a set-similarity of intensity dis-
tributions derived from stratified data. We prove that de-
rived regularity measures form a continuum as a function
of the stratification’s granularity and also upper-bounded
by the Shannon entropy. This enables to interpret it as a
generalized Shannon entropy with an intuitive spatial pa-
rameterization. This measure is applied as a novel feature
extraction method for a real-world medical image analy-
sis problem. The proposed measure is employed to describe
ground-glass lung nodules whose shape and intensity distri-
bution tend to be more irregular than typical lung nodules.
Derived descriptors are then incorporated into a machine
learning-based computer-aided detection system. Our ROC
experiment resulted in 83% success rate with 5 false pos-
itives per patient, demonstrating an advantage of our ap-
proach toward solving this clinically significant problem.

1. Introduction

This paper introduces stratified regularity measure
(SRM): a new entropic measure to describe data regularity
under arbitrary spatial structures. The main concern of this
work is to advocate the importance of choosing the appro-
priate data domain stratification/partitioning for measuring
information from discrete images. Measuring regularity in
images is one of the most fundamental problems in com-
puter vision. The low-level image statistics/features, such
as intensity variance and entropy, offer ubiquitous computa-
tional tools, providing a foundation to more complex vision
algorithms. In their raw form, however, they are naturally
constrained by specific imaging process-dependent factors
of given data, such as pixel discretization and boundaries,
and may not be able to capture some intuitive perceptual
regularities in data.

For example, the top-left image (a) in Figure 1 shows
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Figure 1. Shannon entropy does not reflect the perfect regularity of
the Gaussian patches in image (a) because of the wide spread of its
intensity histogram. When a well-chosen data domain stratifica-
tion is given as shown in image (b), the corresponding histogram
of each patch’s mean intensity value becomes single-peaked, re-
sulting in zero entropy that reflects the regularity. This also holds
true even with scale variations shown in image (c), resulting in the
exactly same histogram as in (b).

a perfect synthetic regularity of homogeneously distributed
Gaussian patches. Both intensity variance and entropy of
the entire image, however, result in non-zero values due to
the significant spread of its intensity distribution shown be-
low in the plot (a). This result fails to capture the perceptual
regularity of the perfectly aligned patterns. Now suppose
we provide an appropriate data domain stratification that re-
flects the spatial structure of the regularity as shown in the
image (b). Then we proceed on computing any low-level
intensity statistics of choice and taking its distribution. The
plot (b) shows such a distribution of mean intensities of each
stratum. Due to the stratification in image (b), it becomes
a single-peak histogram thus the variance and entropy of
this distribution become zero, indicating correctly the per-
fect regularity. Now consider an image with the same num-
ber of Gaussian patches but with different sizes as shown in
the top-right image (c). By finding an appropriate stratifi-
cation again as shown, both variance and entropy become
zero, capturing now a regularity that is invariant against the
histogram-preserving deformation of scaling. Observe that
we made the simple measurement functions behave differ-



ently by choosing appropriate domain stratifications with-
out modifying its functional form.

This paper presents a general framework of this type ap-
plied to the well-known Shannon entropy. By nature, as
shown above, the entropy measure ignores spatial infor-
mation because the intensity histogram does not appreci-
ate spatial geometric structures in the original image. For
this reason, the entropy cannot correctly capture obvious
perceptual homogeneity of images such as texture-like reg-
ularity with a periodic occurrence of local patterns. The
proposed SRM addresses this issue by measuring regu-
larity in the following three successive steps: 1) stratify-
ing/partitioning data domain, 2) deriving an intensity distri-
bution for each stratum, 3) computing set-similarity of the
distributions by using Jensen-Shannon divergence [16].

Set-similarity is a set-wise similarity measure, describ-
ing how set members are similar to one another collectively.
Such a concept is useful in various vision applications (e.g.,
population co-registration [28, 25]) however it has not been
explored fully in literature. Jensen-Shannon divergence
offers an information-theoretic distributional set-similarity
measure that extends naturally from its pair-wise version
which is closely related to the popular Kullback-Leibler di-
vergence.

As one of our main contributions, we prove that the pro-
posed SRM descriptor forms a continuum of information-
theoretic regularity measures as a function of granularity
of the stratification. We show that the proposed measure
is non-negative and upper-bounded by the Shannon en-
tropy. And conditions for equality are given according to
the level of granularity. At the finest level (each stratum
contains only a single pixel), the measure is equivalent to
the entropy, and the measure becomes zero at the coarsest
level (entire image is a single stratum) or when all distri-
butions are equivalent. These results enable an interpre-
tation of the proposed measure as a generalized Shannon
entropy equipped with a spatial parameterization by way of
the data domain stratification. Furthermore, its continuum
and bounds suggest a potential to estimate underlying spa-
tial structure of data (i.e., segmentation) into collectively
most similar/distinctive strata by minimizing/maximizing
the SRM, respectively. As an illustrative example, this pa-
per presents our initial pilot study, using a simple regu-
lar block tessellation of pseudo-regular texture pattern, for
demonstrating the feasibility of this approach. Recent ad-
vancements in texture modeling [17, 9] can handle much
more complex texture patterns however they do not incor-
porate this type of information-theoretic measures.

This paper also presents an application of the proposed
measure as a novel feature extraction method for a challeng-
ing real-world medical image analysis problem: computer-
aided detection of ground-glass nodules (GGN) in 3D CT
scans [14, 26]. Ground-glass nodules are a class of lung

tumors which is characterized by its fuzzy irregular ap-
pearance and its clinical significance with a high malig-
nancy rate [10, 19]. To represent the target pattern more
accurately, we design new SRM descriptors by stratifying
each 3D volume of interest with linear-polar bins, similar
to the shape context [4], and by computing distributions for
both intensity and gradient magnitudes. We then incorpo-
rate these SRM descriptors into a state-of-the-art computer-
aided detection (CAD) system using asymmetric cascade of
sparse hyperplane classifiers [5]. The results of our quan-
titative ROC experiments demonstrate the effectiveness of
the proposed approach with a high detection rate of 83%
with five false positive per patient, which fares among other
state-of-the-art GGN-CAD systems [14, 26].

The rest of this paper is organized as follows. Section 2
provides a brief review of the Shannon entropy and Jensen-
Shannon divergence Section 3 then introduces the proposed
SRM approach and provides its formal and experimental
analyses. Sections 4 describes our experimental study for
ground-glass nodule detection problem. The paper is con-
cluded with discussing our future work in Section 5.

2. Review: Shannon Entropy and Jensen-
Shannon Divergence

Shannon [20] introduced the Shannon entropy as a
generic measure of information, providing a foundation of
the information theory. Let X be a discrete random variable
and p(x) be an arbitrary probability distribution of x ∈ X.
Then the Shannon entropy H(p) is defined as,

H(p) = −
∑

x∈X
p(x) log p(x) (1)

The entropy H(p) is a non-negative continuous concave
function and is maximized when p(x) is equiprobable over
the entire discrete domain of X and minimized at zero when
p(x) becomes a delta function.

The applications of the entropy especially in the informa-
tion theory and communication fields are vast. Beyond this
original scope, the entropy has been used to measure ran-
domness or homogeneity in multi-dimensional image data
by applying it over the image’s intensity histogram. The
randomness is indicated by high values of the entropy that
is maximized when each intensity value is equiprobable. On
the other hand, the homogeneity is indicated by its low val-
ues, minimized at zero when the image is single-colored.
Such entropy-based descriptors and estimations have been
applied to a wide range of vision-related problems including
texture modeling [27], image registration [24, 28], indepen-
dent component analysis [3], scale selection and image de-
scriptor [13], image retrieval [23], object recognition [15],
to name a few.



Jensen-Shannon divergence (JS) was proposed by
Lin [16] as a new distributional similarity function. For a
set of K arbitrary distributions {pk(x)} of X, it provides
an overall set-similarity measure in the following form with
the above entropy function,

JS(p1, ...,pK) = H(
K∑

k=1

π(k)pk)−
K∑

k=1

π(k)H(pk) (2)

where π(k) denotes a normalized positive weight vector
such that

∑K
k=1 π(k) = 1. It is also straightforward to

show that JS divergence can be rewritten as a weighted aver-
age of the Kullback-Leibler (KL) divergence between each
component distribution and an average distribution,

JS(p1, ...,pK) =
K∑

k=1

π(k)KL(pk||q) (3)

q(x) =
K∑

k=1

π(k)pk(x)

where KL divergence is defined as

KL(p||q) =
∑

x∈X
p(x) log

p(x)
q(x)

(4)

JS divergence can also be interpreted as the mutual infor-
mation of two random variables X (observed image feature)
and Y (latent class variable) when we set pk by the likeli-
hood P (X|Y ) and π(k) by the prior P (Y =k) [23].

The following facts described in [16] and elsewhere are
relevant to this study and noteworthy to recall.

1. Set-Similarity: JS in (2) naturally generalizes its cor-
responding pairwise version (K=2) to any finite num-
ber of distributions. It is one of the few distributional
set-similarity measures found in literature.

2. Relation to KL: JS is an extension of KL to a well-
formed one as can be seen in (3). Although its wide
popularity, KL in (4) is undefined, thus uncomputable,
at x where p(x) = 0 or the distribution has zero value.
The pairwise JS (K=2) resolves this problem while
providing other desirable properties. For instance, it
is a non-negative function due to Jensen’s inequality,
it provides both lower- and upper-bounds in terms of
variational distance and Bayes error, its square-root is
a true metric [22].

3. Minimum: JS equals to zero iff p1=p2=..=pK since
H(p) is concave and the Jensen’s inequality in (2).

Recently, JS divergence has been applied in a variety of
vision-related tasks however most of them focused on the

pairwise version while our focus for this study is its appli-
cation in K > 2 settings similar to [6, 25]. They include
object recognition with boosting [11], image segmentation
with edge detection [1], automatic scale/bandwidth selec-
tion [6], active learning of training samples [18], groupwise
point pattern registration [25].

3. Stratified Regularity Measures

The proposed stratified regularity measures (SRM) con-
sist of three successive steps: 1) stratify image/data domain,
2) construct intensity distribution from each partition, 3)
compute a JS divergence with a set of distributions. The
following describes each step.

3.1. Data Domain Partitioning

As a specific stratification we will consider in this pa-
per, this section introduces mutually exclusive and exhaus-
tive (MEE) data domain partitioning of an image. This
domain partitioning yields sets of data points/pixels/voxels
in which all data points appear only once thus no sub-
partitions overlap. Let I(x) denote d-dimensional discrete
image data where values in M discretized intensity levels
I ∈ (1, ..,M) ⊂ Z+ are distributed over a d-dimensional
lattice x = (x1, .., xd) ∈ (1, ..,D1) × (1, ..,D2) × .. ×
(1, ..,Dd) ⊂ Zd

+. The total number of data points in I(x)
is expressed by N =

∏d
n=1 Dn. Let Ω denote the set of all

N distinctive data points from I(x). We define the MEE do-
main partition P of Ω to be a set consisting of K MEE sub-
sets of Ω such that P = {Q1, ..,Qk, ..,QK}, Qi ∩ Qj = ∅
∀(i �= j) ∈ (1, ..,K) × (1, ..,K),

⋃K
k=1 Qk = Ω, and(∑K

k=1 |Qk|
)

= |Ω| = N ≥ K, where ∅ denotes an empty

set and | · | denote the cardinality of a set. We call a MEE
subset Qk a sub-partition, forming a stratum. Note that this
partitioning is a general class of stratification since a sub-
partition is simply a bag of pixels.

3.2. Intensity Histograms and Distributions

Next, a set of intensity distributions pk from all the sub-
partitions are derived. From each sub-partition Qk, we first
construct an intensity histogram hk(i) over a finite discrete
domain i ∈ (1, ...,M). The empirical intensity distribution
is derived by normalizing the histogram,

pk(i) =
hk(i)
Nk

(5)

where the total count of the sub-partition Nk is given by

Nk = |Qk| =
M∑
i=1

hk(i) (6)

Suppose now that we construct an intensity histogram h(i)
over the same domain i from entirety of the original image



I(x). The corresponding distribution is given by,

p(i) =
h(i)
N

(7)

It is straightforward to see that histograms {hk(i)} derived
from the sub-partitions are a linear decomposition of the
histogram h(i) due to the MEE data domain partitioning,

h(i) =
K∑

k=1

hk(i) (8)

where N =
∑K

k=1 Nk. Note also that this linear decom-
position property holds true even when we consider con-
tinuous distributions in a form of standard kernel density
estimator,

N f(i) =
K∑

k=1

Nkfk(i) (9)

where f(x) = 1
n

∑n
j=1 K(x−xj

h ) with a positive constant
bandwidth h.

3.3. Set-Similarity by Jensen-Shannon Divergence

Finally, the set of intensity distributions {pk(i)} are sub-
jected to the JS divergence for deriving the proposed regu-
larity measures. The original JS formulation in (2) contains
arbitrary weights. We set these weights according to the
counts or probability mass of each sub-partition,

π(k) =
Nk

N
(10)

Substituting (5) - (10) to the JS divergence (2) yields the
following form of JS divergence as a new image regularity
measure,

JSp(p1, ...,pK) = H(p) − 1
N

K∑
k=1

NkH(pk) (11)

with (8) for discrete histograms and with (9) for continuous
distributions estimated by the density estimator f(x). We
call this measure partitioned Jensen-Shannon divergence
(JSp),

As demonstrated in Section 3.7, JSp exhibits a strong
dependency to the number of components K; Its magnitude
rapidly decreases by decreasing K. Since K can be treated
as a variable to be estimated as discussed later, it is of bene-
fit that we devise a divergence measure normalized over K.
We define such a normalized JS divergence as follows and
call it normalized Jensen-Shannon divergence (JSn),

JSn(p1, ...,pK) =
N

K
JSp(p1, ...,pK) (12)

This normalization can be related to the well-known power
law of natural scene power spectral statistics [2, 21] in that
K equals the squared spatial frequency f2 when a regular
block partitioning is assumed.

3.4. SRM as Generalized Shannon Entropy

This section proves some formal properties of the new
SRMs JSp and JSn and their relation to the Shannon en-
tropy. As discussed earlier, the entropy H(p) represents
regularity (i.e., homogeneity, randomness and/or informa-
tion) of the image data from which the distribution p(i)
was constructed. On the other hand, given an arbitrary par-
titioning, the proposed measures ask how similar the sub-
partitions are by computing a set-similarity of distributions
using the JS divergence. Intuitively, this approach intro-
duces a spatial parameterization into the entropic regularity
measurement as motivated in the introduction. Due to the
MEE partitioning, both H(p) and JS(p1, ...,pK) utilize
the same amount of data but their formal relationship must
be further studied.

The form of JSp contains the Shannon entropy H(p)
of the original image as one of the pair of additive terms.
Since JSp is a non-negative function, it immediately yields
that JSp is upper-bounded by the Shannon entropy

0 ≤ JSp(p1, ...,pK) ≤ H(p) (13)

Furthermore, conditions for equalities in (13) can be
studied with granularity of the partitioning/stratification.
Finer granularity yields a higher number of sub-partitions
K. When the partitioning is given at the finest granularity or
K=N , Nk=1 ∀k, each data point forms a sub-partition thus
every pk becomes a delta function. This vanishes the sec-
ond term of RHS in (11) thus the partitioned JS divergence
becomes equivalent to the Shannon entropy under this con-
dition. Using the above arguments, we can prove a propo-
sition about the upper-bound equality saying that both JSp

and JSn are equivalent to H only at the finest granularity,

H(p) = JSp(p1, ...,pK) = JSn(p1, ...,pK) iff K = N
(14)

On the other hand, when the partitioning is given at the
coarsest granularity or K=1, the entire image forms a sin-
gle sub-partition. This condition is definable using the form
(2) although it no longer serves as a divergence measure in
any sense. (KL divergence, on the other hand, is not de-
finable in this condition.) Under this condition, the second
term of RHS in JSp becomes H(p) thus it cancels with the
first term, resulting zero. Together with the original condi-
tion for the zero equality described in Section 2, the above
arguments prove another proposition about the lower-bound
equality,

JSp = JSn = 0 iff K = 1 or p1 = p2 =, ..,= pK (15)

These two propositions suggest that the proposed regu-
larity measures using JSp can be interpreted as a general-
ized Shannon entropy. This is in a sense that they provide a
continuum of measures of regularity parameterized flexibly
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Figure 2. Comparison of JSp and JSn.

by arbitrary image partitioning {Qk}. At the finest level of
the partitioning with K = N , they become equivalent to the
Shannon entropy. At the coarsest level with K = 1, they as-
sume zero. For any other partitioning, they are bounded by
the entropy and minimized when the component distribu-
tions are equivalent. Furthermore, they inherit more desir-
able properties of the original divergence function than the
popular KL divergence as discussed in Section 2.

3.5. SRM Descriptor

Using the above results, the following scheme for SRM
descriptor is proposed.

1. partitioning Ω to an arbitrary P as defined in Sec-
tion 3.1,

2. deriving empirical distributions p, {pk} from P by us-
ing (5)-(7),

3. computing JSp and/or JSn with p, {pk} by using
(11)-(12).

Given a specific partition P , this provides a scalar entropic
regularity measure for the specified underlying stratifica-
tion/partitioning. Given a set of pre-determined partitions
{P l}, the above procedure can be applied to each member
of the set, resulting in a vector of such measures. Note that
the image domain Ω can be arbitrary chosen (e.g., a local
image patch) without loss of generality. When computing a
set of SRM descriptors for a single image with various par-
titions, the first entropy term in (11) can be computed once
and stored for subsequent computations.

3.6. Partition Estimation with SRM

The continuum and bounds of the proposed SRM de-
scribed in Section 3.4 allow us to consider a continuous
estimation of data domain partitioning using the proposed
regularity measures. Exploiting the property described in
(15), a generic estimation problem is formulated by mini-
mizing JSn in order to find the MEE partition Pmin of I(x)
which makes intensity distributions of all sub-partitions as
similar as they can be,

Pmin = argminPJSn(I(x),P) (16)

where the argument notation of JSn introduced in (12)
is slightly abused to indicate its dependency to both data
and a partition. On the other hand, exploiting the property
described in (14), another generic problem can be formu-
lated by maximizing JSn in order to find the MEE parti-
tion Pmax of I(x) which makes intensity distributions of
all sub-partitions as dissimilar or distinctive as they can be,

Pmax = argmaxPJSn(I(x),P) (17)

This estimation framework can be understood as a la-
tent classification problem through the mutual informa-
tion interpretation discussed in Section 2. The minimiza-
tion/maximization leads to partition an image into classes
which minimizes/maximizes the information about the la-
tent class variable conveyed by the measurements. Such
minimization/maximization of information is known to
yield classes with most/least similar densities.

3.7. Illustrative Examples: Synthetic Data

For illustration purpose, in the following, we study with
a simplified data partitioning of regular image tessellations
with blocks of various sizes. This simple partitioning is pa-
rameterized by the scalar block size, offering a clear way to
visualize the parameter space. Handling the boundary con-
dition, we allow blocks at the right and bottom borders to
have a different size than others. Given a 2D square im-
age domain x ∈ (1, ..,D)× (1, ..,D), the block size ranges
from (1, 1) to (D,D) with D total choices.

Figure 2 compares the properties of JSp (middle row)
and JSn (bottom) computed for two 64-by-64 synthetic im-
ages (top). The plots show the divergences computed for
incrementally increasing block sizes from 1 to 64. The left
image is the same one used in Figure 1, consisting of six-
teen Gaussian patches of 16-by-16 size. The right one is an
image with random intensity values. The Shannon entropy
H(p) of the left and right images are 2.5380 and 3.4615,
respectively. For both images, plots demonstrate the JSp’s
bounds as in (13)-(15). Also JSn are much more informa-
tive in comparison with JSp. For the Gaussian images, JSn

displays more clearly the recursive regularity of the patterns
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Figure 3. Robustness of the minimum and maximum generalized
entropy estimation against noise. The red dash lines in (b) indicate
the selected block size by (16) and (17).

with JSn = 0 at block sizes of 16, 32, and 48 indicated by
red dash lines. On the other hand, JSn for the random im-
age are less variant over block sizes than the Gaussian one,
indicating the lack of regularity. It is difficult to distinguish
this qualitative difference between the two JSp curves.

Figure 3 illustrates the aforementioned estimation frame-
work and its robustness against data noises. The first row
shows that Pmin and Pmax of the 64-by-64 checker-flag
image corresponds to the intuitive block partitions at 32 and
16, respectively. This property remains true even when we
apply very strong random intensity noise as shown in the
second row. Similar robustness was observed when we vary
the histogram’s bin size.

3.8. Illustrative Examples: Pseudo-Regular Tex-
ture Patterns

To further study the robustness of our approach, we ap-
ply our estimation framework to a simple texture analysis
problem. Figure 4 shows six illustrative examples of the re-
sults Pmin. The minimum entropy principle with (16) was
applied to regularly tessellated texture-like patterns of wood
tile, textile, and basket, as well as people and texts in various
languages. We employed the same regular block partition-
ing except for the fifth row’s example where we consider
partitioning in only vertical direction. The results show suc-
cessful regular partitioning even for cases with some geo-
metrical transformations (1-3 rows) and significant appear-
ance variations across sub-partitions (4,6 rows).

4. Ground-Glass Nodule Detection in CT Scans

This section describes our application of the pro-
posed SRM descriptor to an automatic ground-glass nod-
ule (GGN) detection system using 3D CT scans. Our study
addresses the clinical demand raised by a recent clinical
study [10] has shown that the lung tumors characterized
as GGNs have a higher chance to develop into malignant
cancers. As illustrated in Figure 5, GGNs exhibits fuzzy
and irregular appearances, making it difficult to detect and
characterize as well. We meet this technical challenge by

0 20 40 60 80 100 120
0

20

40

60

80

100

Block Size

JS
n

0 20 40 60 80 100
0

10

20

30

40

50

60

Block Size

JS
n

0 50 100 150 200
0

50

100

150

200

250

Block Size

JS
n

0 20 40 60 80 100 120
0

100

200

300

400

500

600

Block Size

JS
n

0 20 40 60 80 100 120
0

5

10

15

20

25

Block Height

JS
n

0 20 40 60 80 100 120
0

20

40

60

80

100

Block Size

JS
n

(a) Pmin (b) JSn

Figure 4. Examples of block size selection results with 2D tex-
ture images. From top to bottom: (1) wooden tiles with rotations,
(2) patterns in a textile, (3) interwoven patterns of a basket, (4)
picture of four people, (5) English text, (6) Chinese text. For all
images, we used intensity values range within 8-bit grayscale and
histogram of 32 bins. Image sizes varied from 120 to 200 pixels2.
The selected block sizes are displayed by red dash lines in (b).

exploiting the proposed SRM descriptor as a feature ex-
traction method within a machine learning-based computer-
aided diagnosis (CAD) framework. The choice of features
is a key for developing a successful CAD system. Our tar-
get GGNs can appear not only in fuzzy intensity distribution
(non-solid) but also with a number of solid cores among
non-solid background (part-solid). Characterizing intensity
pattern regularity of these targets requires a measure that
can be flexible in terms of underlying spatial structure (i.e.,
solid core distributions) such as our SRM descriptors.



Figure 5. Examples of the ground-glass nodules (first row) and
false-positive cases (second row) in 2D cross sections.

Our solution utilizes JSp with 3D linear-polar parti-
tions to compute candidate features chosen by the fea-
ture selection process described below. Each candidate is
first approximately segmented by robustly fitting an ellip-
soid. Then the local volume around the candidate is affine-
warped so that the fitted ellipsoid is aligned to a sphere
whose radius is 21 voxels. We let the voxels lying within
the sphere form the domain Ω then impose a linear-polar
partition to Ω similar to the 3D shape context [4]. We con-
sidered the SRM descriptors computed for distributions of
the raw intensities and the gradient magnitudes. We also
used two linear-polar partitions: 1) concentric spheres with
various radii (onion) and 2) cones by regularly tessellating
spherical coordinates (cake). The granularity of the parti-
tion is set to 7 onion and 12 cake partitions (i.e., 3 voxel
layers in each onion slice and 30 degrees in each cake slice)
by the same strategy described in Section 3.7. After fix-
ing the partition, the normalization factor in JSn becomes
constant, thus we used JSp in this experiment opting for its
computational simplicity.

Together with four SRM descriptors (i.e., the raw inten-
sity or gradient values versus the cake or onion partitions),
we compute other 55 local intensity and geometric features
such as intensity moments, tumor size, and boundary cur-
vature and isotropy. These features are first subjected to a
data-driven feature selection to identify the most descriptive
features that distinguish GGN patterns from any non-GGN
structures. Selected features are then used to train a detector
with a binary classifier using asymmetric cascade of sparse
hyperplane classifiers as proposed in [5].

For feature selection, the linear discriminant analysis
with a greedy search was employed. Given a subset of fea-
tures S, our greedy approach finds a new single feature f
from the feature pool that improves classification perfor-
mance when considering the expanded subset of features
S

⋃{f}. The search process starts with an empty set of
features S, and stops when no feature in the feature pool im-
proves classification performance significantly when added
to S. The procedure selected nine features including a SRM
descriptor with the gradient input and cake partition, as well
as the original Shannon entropy computed for the gradient
magnitudes in Ω.

Figure 6 display a scatter plot of a pair of the selected

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

JSp−Cake with Gradients

M
ea

n 
In

te
ns

ity

Figure 6. A scatter diagram of the randomness feature JSp with
gradient magnitudes plotted against the mean intensity feature.
The circles show the feature values for the GGN cases while the
red small dots show for all detected candidates.
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Figure 7. A ROC analysis of the ground-glass nodule CAD system
with (blue) and without (red) the proposed SRM descriptors.

descriptors: the gradient-cake SRM descriptor against the
local mean intensities. Circles denote GGNs while dots de-
note all other non-GGN candidates. The plot shows that
the two distributions are fairly separated however there are
some GGNs that may appear similar to other candidates,
demonstrating the difficulty of the problem.

For studying the classification performance, we compare
the detection performance of the CAD systems trained us-
ing the same scheme with and without the proposed SRM
descriptors. CT volumes of 59 patients were used and 23
GGNs were identified and labeled by radiologists. Then
leave-one-patient-out (LOPO) cross validation [8] perfor-
mance was reported on the system’s detection rates and
false positive rates per volume. Figure 7 summarizes our
ROC analysis. Note that the horizontal axis of the figure
denotes the number of expected false positives per patient,
which is a clinically more meaningful parameter than the
standard false positive rate. The detection rate achieved
78% and 83% at false positive rate of 3 and 5 per patient,
respectively. The results clearly show the advantage of our
approach against the system without the SRM descriptors.

5. Discussion and Future Work

This paper introduced new measures to describe regu-
larity of data flexibly in terms of spatial structure. We



prove that the proposed SRM can be interpreted as a
continuum of regularity measures upper-bounded by the
Shannon entropy and parameterized by domain stratifica-
tion/partitioning. Exploiting these properties, we success-
fully applied the measures for computer-aided detection of
ground-glass nodules in CT scans.

Deriving robust solutions for the estimation problems in
(16) and (17) in a full partition space is out of this paper’s
scope but one of the important future works to be addressed.
Such a solution is required to apply the proposed methods to
a wider range of applications. It is obvious that the simplis-
tic exhaustive search for regular tessellation used in this pa-
per does not extend to solve this combinatoric search prob-
lem. We plan to explore sampling-based solutions such as
the MCMC method for this purpose.

Our theoretical contributions are generic and not con-
strained to the specific choice of the vision-based appli-
cations explored in this paper. The entropy is one of the
most ubiquitous tools in the domain of machine learning,
computer vision, and image understanding. The proposed
frameworks can be applied to a vast range of computa-
tional theories and applications using the information theo-
retic measures, some of which are overviewed in Section 2.
Other future work include analyzing the proposed frame-
work formally in the context of other information theoretic
learning [7, 3] and statistical modeling [12, 27] frameworks.
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