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Abstract. We propose a Bayesian framework for classifying types of
3D anatomical/pathological structure (i.e., blob, surface, tube, branch)
in 3D medical scans. Two probabilistic algorithms with a data-driven sta-
tistical modeling scheme are designed to provide accurate classification as
well as its decision confidence. The proposed methods are quantitatively
evaluated with a dataset of various structures extracted from clinical CT
scans. Our experiment with 61 cases resulted in the classification rate of
93.3%, demonstrating the advantage of the proposed methods.

1 Introduction

Classification of local 3D structures is an important problem for medical image
analysis, in which a local 3D anatomical/pathological structure, embedded in a
dense volumetric image, is categorized into a set of archetypes, such as blob (e.g.,
nodule), surface (e.g., polyp), tube (e.g., vessel), and tube-branch (e.g., airway
junction). Such structure type information is crucial for various medical diagnos-
tic and planning procedures. For example, for cancer screening, computer-aided
detection of lung nodules [1] and colon polyps [2] can exploit such information
for differentiating the target structures from common false positives (e.g., blob-
like nodule among vessel branches or wall-attached polyp among colonic folds).
Other examples include tube-branch detection for bronchoscopic surgery plan-
ning [3], for breast cancer screening with ductal tree analysis [4], and for internal
bleeding detection in angiography [5].

Technically, 3D structure classification is challenging because of the high vari-
ability for structure’s topology, size, orientation and co-articulation. There are a
number of related studies which have previously been reported in literature. The
model-based approach fits a set of flexible intensity models of specific structure
type to data directly [6, 7], however it tends to be inefficient in a 3D domain since
the high structural variability makes the model parameter space prohibitively
large. The eigen-analysis approach characterizes the structure type by analyzing
eigenvalues of Hessian matrix, applied successfully to vasculature and bronchial
analysis [8, 9]. Although this approach itself cannot identify a branching point as
a part of vessels, hybrid methods (e.g., [10]) have successfully been applied for
the branch cases as well. Despite these reported efforts and the problem’s clinical
significance, there are no unifying methods that can address all four archetypes
of 3D local structure, to our best knowledge.

Addressing this issue, we propose two novel Bayesian probabilistic algorithms
built on top of our previous work [11]. As illustrated in Fig.1, this approach trans-
forms the 3D structure classification problem into a 2D clustering problem by a)
unwrapping a 3D spherical surface, encompassing a target structure, into a 2D



Fig. 1. Transformation of 3D structure classification to 2D clustering problem. Input
3D structure is a vessel and output is a 2D image with 2 isolated clusters.

manifold and b) counting the number of high-intensity clusters created by the
target’s parts protruding from the surface thus related directly to the structure
type. As advantage, this approach reduces a prohibitively large number of dis-
cretized geometrical and topological variations in 3D into a mere shifts in size
and location of clusters that can be readily handled by standard techniques. In
this paper we propose a Bayesian version of this procedure, as well as a true
Bayesian algorithm that fully exploits all available information via statistical
modeling. The main contributions of the proposed methods are 1) theoretically
sound Bayesian decision making for all four structure types, 2) practically useful
confidence values, and 3) high-accuracy due to the new algorithm. The follow-
ing describes the proposed methods and their experimental evaluation using a
dataset of 61 cases extracted from clinical chest CT scans.

2 Bayesian Framework

Let Y , C, R be discrete random variables representing three key factors to be
examined in our methods. Y : R3 → R+ stands for a volume of interest (VOI)
containing a target structure. This VOI, as a cubic bounding box (s × s × s),
is extracted semi-automatically from an input 3D medical image by adopting a
robust Gaussian fitting method proposed in [12]. C ∈ {Cj |j = 0, .., 3} denotes
class labels for the four 3D structure types. Throughout this paper, we let C0,
C1, C2, and C3 indicate blob (nodule), surface (wall-attached nodule), tube
(vessel) and tube-branch (vessel-branch), respectively. R ∈ {Rk|k = 0, ..,K − 1}
represents the radius of a 3D bounding sphere encompassing the target as shown
in Fig.1. R can take a value from a set of monotonically increasing radii that
is bounded by s

2 . In this study, we set K = 15. The intensity distribution on
a bounding sphere at Rk in 3D domain can be represented in a 2D unwrapped
image by 1) transforming each voxel’s Cartesian coordinate (x, y, z) to a spherical
coordinate (θ, φ, ρ) where θ ∈ [0, π], φ ∈ [0, 2π], and ρ ∈ R+ and 2) creating a
2D image with bicubic interpolation on a regular integer lattice at ρ = Rk.

2.1 Bayesian Classification Framework for the Original Algorithm

The original algorithm of [11] has two successive steps: 1) estimation of the
best radius and 2) structure classification given the best radius. Both steps
can be formulated as maximum-a-posteriori (MAP) estimations with conditional
probability distributions P (R|Y ) and P (C|Y,R), respectively. In order to model
the posterior P (C|Y,R) from data statistics, we derive an equivalent form using



the Bayes rule together with an assumption that the class label C and the radius
R are independent.

k∗ = argmaxkP (Rk | Y ) (1)
j∗ = argmaxjP (Cj | Y,Rbest) (2)

= argmaxjP (Y | Cj , Rbest)P (Cj) (3)

where Rbest = Rk∗ denotes the best radius estimate given the input VOI Y ,
the Bayes optimal classification (under the 0-1 loss) is given by Cbest = Cj∗ ,
and P (Cbest|Y,Rbest) denotes confidence of the decision. A 3D bounding sphere
defined by Rbest is unwrapped then used as an input to the step of (3). We call
this probabilistic classification framework MAP-I.

2.2 True Bayesian Framework

Note that the estimation of the bounding sphere’s radius in (1) is not central to
the goal of our classification problem. Thus another approach is to treat R as a
hidden variable and formulate a single-step estimator that maximizes a marginal
distribution P (C|Y ). Similar to MAP-I, with Bayes and sum rules, we derive an
expression with distributions that can be estimated from data more easily. By
assuming the independence of C and R, we have

j∗ = argmaxjP (Cj | Y ) (4)

= argmaxj

K−1∑
k=0

P (Y | Cj , Rk)P (Rk)P (Cj) (5)

where Cbest = Cj∗ denotes the Bayes optimal classification and P (Cbest|Y ) its
decision confidence. We call this new MAP estimation framework MAP-II.

Intuitively, this framework removes the extra radius estimation step in MAP-
I by considering all possible radii of the bounding sphere. This approach can be
more accurate than MAP-I by avoiding inevitable errors from the extra estima-
tion step, as well as by utilizing the maximum amount of observation, available
within the given input data, directly toward classification decision making.

3 Statistical Modeling

This section describes our statistical modeling methods for estimating, from
image appearance Y , a pair of distributions P (R) and P (Y |C,R) appeared in (3)
and (5). For this study, we model the class label prior unbiasedly by P (C) = 1/4.

3.1 Radius Prior P (R)

The prior distribution of radius P (R) is modeled in a bootstrap fashion from
data Y . Our method first unwraps 3D bounding spheres of various radii with one
degree interval into a set of 15 2D images I = {IR|R = R0, .., RK−1} of size (n =
180) × (m = 360) and then treats each image as a 2D probability distribution
ĨRk

by normalizing the intensity distribution such that
∑

x

∑
y ĨRk

(x, y) = 1.
Shannon entropy E(k) is then computed from each 2D distribution ĨRk

. P (R =
Rk) is finally modeled as an exponential function of E(k) as follows,

P (R = Rk) = e−E(k) (6)



The smaller entropy E(k) indicates clearer appearance of clusters representing
the protruding target parts. Thus P (R = Rk) encodes how it is easy to differ-
entiate high intensity clusters from the background for a given Rk. Solving (1)
with the above-modeled P (R = Rk) yields the optimal 2D unwrapped image
I∗ = MRbest

extracted from Y at the MAP-I radius Rbest.

3.2 Data Likelihood P (Y |C, R)

We model the conditional distribution of image appearance Y over class labels
Cj and radii Rk with three conditionally independent image appearance features
(M , S, F ). The likelihood function is then expressed by a product of following
three distributions,

P (Y |Cj , Rk) = P (M |Cj , Rk)P (S|Cj , Rk)P (F |Cj , Rk) (7)

where M denotes a feature based on residual error of an intensity distribution
model fitted to Y ; S represents another feature representing size estimation
error with respect to pre-learned class-specific structure size; and F indicates a
feature indicating the consistency of classification results over varying internal
parameters of clustering analysis.

Clustering Analysis In order to extract image features described above, the
2D unwrapped image IR is first subjected to a clustering analysis. The shape
of clusters in I can be irregular because our target structures themselves often
have irregular shapes. Addressing this issue, we adopt non-parametric mean shift
(MS) clustering [13]. This method also is appealing to our application since the
number of clusters are estimated from data rather than given a priori.

The image IR is first subjected to thresholding with a value predefined by a
pilot study. We then randomly sample 1000 data points from the regions of high
intensity: S = {x0, · · · ,x999} where x = (x, y) and 0 ≤ x ≤ π and 0 ≤ y ≤ 2π
∀x ∈ S. This clustering analysis yields the following two outcomes: 1) number of
clusters N in IR and 2) cluster membership (X0, ..,Xi, ..,XN−1) denoting a set
of sample points that belong to i-th cluster and representing a partition of S.

This clustering analysis is repeated over varying kernel bandwidth h, yielding
different numbers of clusters for the same input. We use a normal kernel and
a set of ten bandwidths uniformly sampled from a range of [0.3, 0.5] radians,
H = {h0, · · · , h9}. Then we denote the numbers of clusters for the bandwidth-
varying analyses by NH = {Nh0, .., Nh9} and sets of cluster memberships by
YH = {Y0 = {X0,0, ..,X0,Nh1−1}, ..,Y9 = {X9,0, ..,X9,Nh9−1}}.

Residual Error of Intensity Model Fitting (M) A Gaussian mixture model
(GMM) with Nj components is used to model the intensity distribution of each
2D unwrapped image IR. For the four structure types of blob, surface, tube, and
tube-branch, we set N0 = 0, N1 = 1, N2 = 2, N3 = 3, respectively. For blobs,
we use a uniform distribution because no cluster is expected in the image,

gX|j(x) =


1

n×m j = 0

1
Nj

∑Nj−1
i=0 fXi

(x), j = 1, 2, 3
(8)

This GMM model is fitted to IR for each structure type j by estimating each
component Gaussian fXi

from corresponding sample set Xi by fXi
(x) = |2πΣi|−

1
2



exp[− 1
2 (x− µi)

T
Σ−1

i (x−µi)], where Σi is a 2×2 covariance matrix of Xi and µi

is the corresponding mean. For each class assumption j, we choose the median
among all bandwidths that resulted in j clusters. Due to the phase-wraparound
nature of the (θ, φ)-domain., we adopt directional statistics [14] as follows,

x− µi =

{
−π

2
+modulo((xx − µix), π)

−π +modulo((xy − µiy), 2π)
(9)

A residual error errM (j) of fitting this intensity model is defined as,

errM (j) =
n−1∑
x=0

m−1∑
y=0

∣∣∣gX|j(x, y)− Ĩ(x, y)
∣∣∣ (10)

where Ĩ denotes an intensity-normalized image.
Finally a conditional distribution P (M |Cj , Rk) is modeled by the following

exponential function of the derived residual error errM (j),

P (M | Cj , Rk) =
{
e−2 if j /∈ NH
e−errM (j) else (11)

When the MS clustering does not converge to the specific number of clusters for
all evaluated bandwidth H, we set the corresponding probability with the model
fitting error value of 2 that is the error’s upper-bound.

Error of Target Size Estimation (S) The size of a target structure offers
another useful evidence for predicting the structure type. We estimate the target
size by using the one-click Gaussian fitting method described in Sec. 2. This
method fits a 3D ellipsoid to the input VOI’s high intensity region robustly. We
use the minimum radius of the fitted ellipsoid SI as our size estimate. The size
estimation error errS(j) is then defined as the normalized difference between
this estimate and the pre-learned class-specific structure size Sj ,

errS(j) =
|SI − Sj |

Sj
(12)

For each structure type, we pre-learned the class-specific size by averaging the
minimum radii in our pilot experimental data set for the chest CT case, resulting
8.6, 8.4, 3.5, and 4 in pixels for j = 0, 1, 2, 3, respectively. Finally, we model the
data likelihood due to the structure size as follows,

P (S | Cj , Rk) = e−errS(j) (13)

Consistency of Cluster Number Estimation (F) The MS clustering with
varying bandwidth H described in Sec 3.2 results in 10 different results. A his-
togram fj of the estimated cluster numbers NH indicates how consistent the MS
clustering predicts certain structure type. We define the data likelihood due to
this cluster number consistency as follows,

P (F | Cj , Rk) =


1−

∑3
j=1 P (F |Cj ,Rk)·P (S|Cj ,Rk)

P (S|C0,Rk) j = 0
fj

10 j = 1, 2∑
j≥3

fj

10 j = 3

(14)



(a) 3D input (b) MAP-I result (c) MAP-II result

Fig. 2. Illustrative examples of MAP-I and -II. Row 1: nodule; Row 2: wall-attached
nodule; Row 3: vessel; Row 4: vessel branch. Left column: MPR views. N: nodule, A:
wall-attached nodule, V: vessel, B: vessel-branch.

For the branch case (j = 3), the normalized counts for j ≥ 3 are accumulated
because the number of clusters can be larger than or equal to 3 in this case. Note
also the nodule case (j = 0) cannot directly be computed because the histogram
count for this case is always zero (fj=0 = 0) as the MS clustering detects at
least one mode. To address this issue, we introduce a benign constraint that the
total probability of a product of conditional distributions for F and S sums up
to one,

∑3
j=0 P (F |Cj , Rk)P (S|Cj , Rk) = 1. The special case P (F | C0, R) can

then be derived as shown above in (14).

4 Experimental Results

Data used in this study is multi-slice high-resolution 3D CT scans of human
chest diagnosed with lung cancer. The data consists of 512 × 512 axial slices
with 12-bit intensity quantization. A total of 61 distinctive cases were manually
collected using the method described in Sec. 2, which contain 15 nodule, 15
wall-attached nodule, 15 vessel, and 16 vessel-branch cases.



(a) Nodule (b) Attached-nodule

(c) Vessel (d) Vessel-branch

Fig. 3. Quantitative performance comparison of MAP-I and MAP-II.

Fig. 2 compares two proposed algorithms in four illustrative examples where
MAP-II outperforms MAP-I for handling complex data structures with shape
and size variations. In each row, classification results are displayed in confidence
level plots over the four lung structure types for both frameworks. In row 1,
MAP-II succeeds in classifying a nodule while MAP-I falsely classifies it as a
branch. In row 2, MAP-I mistakenly classified the target as a vessel due to the
highly irregular shape of the wall-attached nodule. In row 3, MAP-I failed due
to the inclusion of non-target structures located nearby, while MAP-II showed
its robustness against such non-targets. In row 4, MAP-I failed to capture small
branches thus misclassified the target as a vessel, however, MAP-II avoids this
misclassification by considering more observation available.

Fig. 3 summarizes our quantitative performance evaluation with confusion
matrices. For each type, the results are categorized into true positive (TP),
false positive (FP), true negative (TN) and false negative (FN) cases. We then
compute the standard performance measures of accuracy, recall and precision.
These results indicate that MAP-II framework outperforms the MAP-I in all the
statistics described above. On average, the success rate of MAP-I is 79.0% and
that of MAP-II is 93.3%, resulting in 14% of increase in accuracy.

5 Conclusion

This paper proposed two novel Bayesian algorithms for classifying local 3D struc-
tures in medical scans. Our Bayesian approach unifies the classification task of
various structure types into a theoretically sound framework with high accu-
racy and useful confidence information. Our experimental results demonstrated
high accuracy (93.3%) and suggests a potential improvement for general chest
CAD applications by using our method as a post-filter to remove false positive
cases. Note that the overall design is not restricted to this chest CAD appli-
cation and would be useful in various 3D medical images in general. As future
work, we plan to extend our experimental study to much larger dataset includ-
ing other applications and modalities such as internal bleeding detection with



various angiographic data. Furthermore, our study suggests that an inclusion of
more evidence, shown in (7) in our Bayesian decision making, leads to better
overall accuracy. To this end, we may consider introducing more measurements
such as structural orientation, cluster size and structure density.
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