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Abstract. Currently, multi-organ segmentation (MOS) in abdominal
CT can fail to handle clinical patient population with missing organs
due to surgical resection. In order to enable the state-of-the-art MOS for
these clinically important cases, we propose 1) automatic missing organ
detection (MOD) by testing abnormality of post-surgical organ motion
and organ-specific intensity homogeneity, and 2) atlas-based MOS of
10 abdominal organs that handles missing organs automatically. The
proposed methods are validated with 44 abdominal CT scans including 9
diseased cases with surgical organ resections, resulting in 93.3% accuracy
for MOD and improved overall segmentation accuracy by the proposed
MOS method when tested on difficult diseased cases.

1 Introduction

Multi-organ segmentation (MOS) has recently become popular toward improving
overall segmentation accuracy when segmenting a set of organs located nearby,
enabling comprehensive computer-aided diagnosis (CAD) of various multi-focal
abdominal diseases [1–10]. In this paper, we investigate how such MOS can be
extended to a patient population with missing organs due to surgical resections.
Without considering this population, MOS cannot be applied to a number of
important clinical applications such as follow-up studies of surgical treatment
and cancer recurrence in abdomen. Despite this clinical importance, however,
current MOS solutions are not designed to handle such cases with irregular
anatomy. A common process in various MOS methods is to fit an atlas of normal
organ anatomy to an image to be analyzed. When analyzing a case with missing
organs, regardless of atlas formats (i.e., static [3], probabilistic [2, 4, 5, 8, 9], or
geometric [4, 6–8, 10]), MOS can fail to segment other intact organs because of
1) mis-match of the atlas’ part corresponding to the missing organs to nearby
non-targets and 2) post-surgical organ shifts. Fig.1(a) illustrates such a failure
case with a missing right kidney where the liver (red) shifted downward into
the cavity caused by the removed kidney and a part of the liver was incorrectly
identified as kidney (cyan).

Addressing the above issue, this paper presents two novel contributions to im-
prove the current atlas-guided MOS solutions. First, we propose an automatic
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(a) (b) (c)

Fig. 1. Illustrative examples of a) segmentation failures (part of the liver is incorrectly
labeled as kidney) and b,c) ten modeled organs. Red: liver, blue: spleen, cyan: r-kidney,
magenta: l-kidney, yellow: pancreas, orange: aorta, dark green: gall bladder, purple: l-
adrenal, lavender: r-adrenal, green: stomach.

missing organ detection (MOD) solution based on testing abnormality of data-
driven features computed from the 4D spatio-intensity Gaussian mixture model
(GMM) fitted to data. Three probabilistic features, capturing post-surgical or-
gan motions, organ-specific intensity homogeneity, and their linear combinations,
are proposed and compared. Such automatic MOD allows us to handle clinical
scan data more robustly even when previous medical history information is miss-
ing or corrupted in patient record or DICOM tag [11]. Second, we present an
atlas-guided MOS solution for 10 abdominal organs that automatically handles
missing organs by incorporating the MOD solution to an atlas-guided maximum-
a-posteriori (MAP) algorithm proposed in [4]. These proposed methods are vali-
dated with 44 abdominal CT scans, including 9 diseased cases with two common
surgical resection procedures of splenectomy (spleen removal) and nephrectomy
(kidney removal). Our experimental results demonstrate advantages of the pro-
posed MOS method such that a correct MOD improves overall segmentation
accuracy on average when dealing with the difficult diseased cases. The issue of
handling missing organs in abdominal MOS is scarcely addressed in the litera-
ture. To the best of our knowledge, there is no previous studies that proposed an
abdominal multi-organ segmentation with automatic missing organ handling.

2 Method

2.1 Atlas-Guided MAP Multi-Organ Segmentation

An atlas-guided MOS method proposed by Shimizu et al. [4] is adopted in
this study as our base MOS method. This method employs the MAP estima-
tion of organ label l ∈ {1, .., L} over 4D spatio-intensity feature vector v =

(x, y, z, I(x, y, z)): l̂ = argmaxlp(v|l)p(l). The prior p(l) is modeled by a standard
probabilistic atlas [2, 9]. The atlas Al(x) ∈ [0, 1], x = (x, y, z), is built by regis-
tering K training images of normal anatomy to a fixed reference image IR with a
size-preserving affine registration then computing a probability map for each of
L modeled organs by counting manually segmented organs. The likelihood p(v|l)
is modeled by an extended GMM p(v) =

∑L
l=1

∑N
n=1 αl(n)N (v;ul,Σl) where N
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denotes the number of voxels and the mixing weights αl(n) are defined over each
voxel n. To segment organs in a new image, the image is first registered to IR
using affine transformation followed by B-spline non-rigid registration [12]. From
the K training images, a normal spatio-intensity model (uvl,Σvl) for each organ
l is also computed where uvl and Σvl are the mean and covariance of feature
vectors of the organ l. Initialized by this normal spatio-intensity model, p(v) is
fit to the new image using the EM-algorithm [13], yielding the patient-specific
likelihood estimate {p̂(v|l)}. Additionally, the fitted GMM yields data-driven

estimate of organ center and associated covariance (ûxl, Σ̂xl) for each organ l.

2.2 Automatic Missing Organ Detection (MOD)

When fitting the GMM p(v) to an image Imo with missing organs, normal
components in p(v) corresponding to missing organs will be fitted to arbitrary
non-target structures located nearby. Exploiting this observation, we propose a
data-driven MOD by analyzing this EM model fitting error. Three probabilistic
measures of missing organs, Fl, Gl, and Hl, are derived by testing abnormality of
organ features estimated from the GMM fitting result with respect to respective
normal models, as described below.

The first measure Fl indicates the probability of organ l to be missing by
quantifying how abnormal the estimated organ center x is spatially. Geometry of
abdominal organs varies due to a) inter-subject variation, b) post-surgical organ
shifts, c) postures and d) pathology. To account for the first two factors, the
normal spatial models of organ centers are constructed separately for cases with
normal anatomy and with different patterns of missing organs due to varying
surgical resection procedures. Let MO and NA denote sets of training samples
with and without missing organs, respectively. And MOt=1,..,T , denotes training
samples for the t-th surgical organ resection procedure where T indicates the
total number of resection procedures considered and MO =

⋃
t MOt. Then

normal anatomy model Mna and missing organ model Mmoare defined by the
following sets of normal distributions,

Mna = {Mna
l } = {N (x;una

l ,Σna
l )|l = 1, .., L} (1)

Mmo = {Mmo
tl } = {N (x;umot

l ,Σmot
l )|t = 1, .., T, l = 1, .., L} (2)

where (una
l ,Σna

l ) denote the mean and covariance of the center location for organ
l averaged over NA, while (umot

l ,Σmot
l ) denote those averaged over MOt for the

t-th resection procedure.
We define Fl given Mna and Mmo as follows,

Fl = 1− p(x|θl)
= min(1−N (x;una

l ,Σna
l ), {1−N (x;umot

l ,Σmot
l )}t=1,..,T )

= 1−max(N (x;una
l ,Σna

l ), {N (x;umot
l ,Σmot

l )}t=1,..,T ) (3)

where θl = ((una
l ,Σna

l ), {(umot
l ,Σmot

l )}). This measure yields high value when
the estimated organ center does not follow trends captured in none of the known
normal anatomy or surgical procedure-specific models.
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The second measure Gl examines the abnormality in texture pattern homo-
geneity. For each organ l, a binary mask Bl(x) representing an average shape
of the organ is derived from the probabilistic atlas by setting Bl(x) = 1, ∀x
Al(x) = 1 and zero otherwise. Using these binary masks, intensity entropy Elm

= −∑B
i=1 plm(i) log plm(i) are computed for each organ l in all training samples

of NA, where plm(i) is a B-bin normalized histogram of intensity values sampled
under Bl(x) in the m-th sample. For each organ l, the mean and standard devi-
ation of the entropy distribution (Ena

l , σna
l ) are computed over {Elm}, forming

a normal model of organ-specific texture homogeneities. To evaluate an organ
l, the entropy El of the organ is computed by overlaying Bl(x) by aligning its
gravity center to the estimated organ center in the new image and sampling
intensity values within the mask. Then Gl is defined as an abnormality measure
of El with respect to the normal model,

Gl = 1− p(El|φl) = 1−N (El;E
na
l , σna

l ) (4)

where φl = (Ena
l , σna

l ).
The third measure Hl is defined as a linear combination of Fl and Gl,

Hl = βFl + (1− β)Gl (5)

where β ∈ [0, 1]. Finally, missing organs are detected by applying a threshold
function to these measures derived for each organ in a new image for arbitrary
number of missing organs per case.

2.3 Multi-Organ Segmentation (MOS) with Missing Organs

As a final step, the base MOS method described in Sec 2.1 can be adopted to
missing organ cases by discarding the atlas Al and the spatio-intensity model
N (x;uvl,Σvl) corresponding to missing organs during the model fitting and
inference procedures. The entire MOS procedure thus consists of three successive
steps: 1) the base MOS, 2) MOD with Fl, Gl, or Hl, and 3) the modified MOS
without Al, uvl, and Σvl for the detected missing organs.

3 Experiments

3.1 Data

A total of 44 abdominal CT scans are used in this study. Ten non-contrast thin-
slice (1mm) abdominal CT scans of healthy volunteers (K = 10) are manually
segmented by expert radiologists and used to construct the probability atlas
by . The NA set contains 25 contrast-enhanced abdominal CT scans with nor-
mal anatomy, while the MO set consists of 9 diseased scans with three types
(t = 1, 2, 3) of surgical organ removal: i) 5 splenectomy cases (spleen removed),
ii) 3 nephrectomy cases (right kidney removed), and iii) 1 splenectomy and
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Fig. 2. Quantitative validation of the proposed MOD. (a) Maximum accuracy and AUC
values with various mixing rate β for computing the Hl measure. Green and magenta
dotted-lines denote β values that yield the maximum accuracy and the maximum AUC,
respectively. (b) ROC analysis of MOD with four different measures: red, Fl, blue, Gl,
green, H1 with β = 0.789, and pink, H2 with β = 0.923.

nephrectomy case (spleen and left kidney removed). Each scan consists of 512×
512 × 50 voxel slices with 5mm slice thickness stored in Mayo analyze format.
CT scanners from various manufacturers are used to acquire this dataset with
the ISOVUE 300 contrast agent. Ten abdominal organs (L = 10) are considered
in this study: aorta (AO), gallbladder (GB), left/right adrenal glands (LA,RA),
liver (LV), left/right kidney (LK,RK), pancreas (PN), spleen (SP), and stomach
(ST). For validation, segmentation ground-truth is generated for 9 NA and 9
MO cases by expert researchers with ITK-Snap tool. Fig.1(b,c) illustrate some
examples.

3.2 Results

Leave-one-out cross validation is performed to validate the performance of the
proposed MOD method on the MO set. For each of the three measures, we
evaluated 50, 000 different detection thresholds with a fixed interval between 0
and 1 and derived the receiver operating characteristic (ROC) curves. Maximum
accuracies (TP+TN/TP+ TN+FP+FN) with minimum false positive rate was
0.867 and 0.933 for Fl and Gl, respectively. The number of 80 bins (B=80) was
used to derive Gl. For Hl, we evaluated 50, 000 different mixing rate β values
with a fixed interval between 0 and 1. Fig. 2(a) shows the maximum accuracy and
the area under the ROC curve (AUC) computed for various β values. The linear
combination did not increase the accuracy measure; the maximum accuracy of
0.933 with highest AUC of 0.911 was found at β = 0.789 (referred as H1). On
the other hands, the overall maximum of AUC with 0.922 was found at β = 0.923
with slightly decreased accuracy of 0.922 (referred as H2). Fig. 2(b) shows the
ROC curves for Fl, Gl, H1, and H2, clearly demonstrating the advantage of the
proposed linear combination measure. AUC values for Fl and Gl were 0.795 and
0.834, respectively.
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Fig. 3. Average Jaccard index computed for 10 abdominal organs, comparing different
MOS methods and datasets. (a) Performance by the base MOS method (Base) for
normal anatomy (NA) and missing organs (MO) cases. (b) Comparison of the base
and the proposed methods with automatic (Auto) and manual (Manu) MOD with
β = 0.923 (H2) on MO. (c) With β = 0.789 (H1).

We next evaluate the proposed MOS method with the missing organ cases.
Fig. 3(a) shows organ-wise segmentation accuracy of the base MOS method [4] in
Jaccard index (JI) on the nine normal anatomy NA and the nine diseased MO
cases as baseline. Liver, left kidney, and spleen have relatively high accuracy.
Segmentation of adrenal glands and gall bladder is challenging because they are
very small and their shape varies widely. Stomach also yields very low JI because
its shape and intensity is extremely variant. For most organs, the accuracy for
MO cases is lower than that for NA. The accuracy for spleen and left kidney
in MO is largely lowered due to missing them in some cases of MO. Not only
missing organ itself but even neighboring organ, liver, is influenced by right
kidney missing such that the bottom of liver is segmented as right kidney that
causes the lower accuracy of MO liver.

Fig. 3(b) and (c) compare the accuracy in JI for the base and the proposed
MOS methods with automatic and manual MOD on MO cases with the two
versions of Hl measures with β = 0.789 (H1) and β = 0.923 (H2), respectively.
The manual MOD specifies which organs are missing according to the ground-
truth labels. In both versions, the MOS with manual MOD (Manu) performed
better than the base method (Base), demonstrating the proof-of-concept of our
approach in improving segmentation accuracy by explicitly considering missing
organs. Our proposed fully-automatic method (Auto) outperformed Base on
average for both versions, although accuracy was lowered from that of Manu
due to the MOD errors. For spleen, the proposed Auto method largely improved
Base in both versions. The accuracy for the left kidney was slightly improved
with β = 0.789, and that for liver and right kidney was also slightly improved
by the both versions of Auto.

Fig. 4 shows four illustrative examples for segmenting splenectomy cases
(missing spleen). In these examples, spleen (blue), as well as other organs such
as gallbladder (dark green) and pancreas (yellow), are fully or partially resected
surgically. The examples show that the missing organs are correctly detected by
our method and existing neighboring organs, such as left kidney (magenta), is
also correctly segmented despite its post-surgical organ shifts. Fig. 5 compares
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(a) Missing SP (b) Missing SP & GB

(c) Missing SP & Partial PN (d) Missing SP & Partial PN

Fig. 4. Four illustrative splenectomy examples of MOS by the proposed Auto method.
Spleen (blue) is missing in these examples.

(a) Base (b) Proposed (Auto)

Fig. 5. Segmentation comparison for neighboring organ; (a) the missing spleen (blue)
is incorrectly placed inside the left kidney; (b) the improved segmentation

the segmentation results by the base and proposed methods in the splenectomy
example in Fig. 4(b). The base method without MOD falsely segments a large
part of left kidney (magenta) as (missing) spleen (blue) as shown in Fig. 5(a).
Fig. 5(b) clearly shows that the correct MOD of spleen leads to much better
segmentation of the neighboring kidney.

4 Conclusions and Discussion

This paper presented novel methods for automatic MOD and atlas-guided MOS
that handle missing organs. Our experimental results are promising in that 1)
high accuracy of MOD was observed even with the limited number of missing
organ cases used in training and 2) the proposed MOS improved the average
JI accuracy, demonstrating the advantage of our MOD-MOS approach. As our
future work, more missing organ cases and surgical resection procedures must be
included to further our study in 1) post-surgical organ shifts in finer details and
2) MOD and MOS of partially resected organs that were not addressed in this
paper. Finally, we plan to improve the accuracy of our MOS solution, especially
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for those difficult organs, by improving our atlas and GMM models, as well as by
refining the discontinuous segmentation results by using our results to initialize
other graph-based/contour-based segmentation solutions.
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