
Robust Click-Point Linking for Longitudinal
Follow-Up Studies

Kazunori Okada1 Xiaolei Huang2 Xiang Zhou2 Arun Krishnan2

1 Department of Computer Science, San Francisco State University
2 Computer-Aided Diagnosis and Therapy Solutions, Siemens Medical Solutions

contact: kazokada@sfsu.edu

Abstract. This paper proposes a novel framework for robust click-point
linking: efficient localized registration that allows users to interactively
prescribe where the accuracy has to be high. Given a user-specified point
in one domain, it estimates a single point-wise correspondence between
a data domain pair. In order to link visually dissimilar local regions, we
propose a new strategy that robustly establishes such a correspondence
using only geometrical relations without comparing the local appear-
ances. The solution is formulated as a maximum likelihood (ML) estima-
tion of a spatial likelihood model without an explicit parameter estima-
tion. The likelihood is modeled by a Gaussian mixture whose component
describes geometric context of the click-point relative to pre-computed
scale-invariant salient-region features. The local ML estimation was effi-
ciently achieved by using variable-bandwidth mean shift. Two transfor-
mation classes of pure translation and scaling/translation are considered
in this paper. The feasibility of the proposed approach is evaluated with
16 pairs of whole-body CT data, demonstrating the effectiveness.

1 Introduction

This paper presents robust click-point linking: a localized registration framework
that allows users to interactively prescribe a location where the accuracy has to
be high. We assume that a user specifies a point location which is placed near
a region of interest in one of the data pair. We call such a user-provided point
point of interest or POI. The task of the interactive localized registration is then
to find a single point-wise correspondence: the point in the other data which
corresponds to the given POI in the original data. In this study, we consider an
application scenario of the longitudinal 3D data studies where a set of follow-up
studies of the same patient are subjected for analysis. In this scenario, users may
specify a POI by a mouse-click in an arbitrary time-point and mouse cursors for
the other time-points are automatically determined as the result of the linking.

One of the main advantages of this approach is that it is faithful to how
the registration results are used in practice. In many clinical settings, medical
images are only assessed locally. When evaluating a specific lesion or anatomy,
the registration accuracy at the location must be high. However often practi-
tioners are not concerned if other non-target regions are also correctly registered
when they are not looking at them. In comparison to common global registration
frameworks, such a local focus of interest also facilitates better accuracy and effi-
ciency by ignoring influences from, and avoiding computations of, the non-target
regions away from a POI. For a standard registration set-up, algorithms are of-
ten designed to minimize overall average error. However, such errors, averaged
over entire domain, are often hard to interpret by the practitioners in the above
clinical context.

On the other hand, the main challenge of this framework is how to link
corresponding regions that are changing or intrinsically different. Suppose we are
to study a follow-up data pair, containing liver tumors imaged before and after
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a therapy. For quantifying the therapy’s effectiveness, a registration of the data
pair would be required, followed by a change analysis. This is a classical circular
problem. The registration is required for analyzing interesting temporal changes
but the very changes make the registration difficult. The localized registration
makes the problem even worse because it demands a harder task of finding a
correspondence between visually very dissimilar local regions.

To address the above challenge, we propose a novel linking solution which
exploits geometrical contexts of a given POI with respect to pre-computed stable
anchor features. The solution also avoids using local appearance-based informa-
tion that is potentially unreliable. As such anchors, we employ scale-invariant
salient-region feature [1–3]. Our approach provides an intuitive geometric formu-
lation of spatial likelihood in a Gaussian mixture form whose maximum likeli-
hood (ML) estimate corresponds to the desired linking solution. We demonstrate
that such local ML estimation can be robustly and efficiently solved by using the
variable bandwidth mean shift method [4]. This paper presents two instances of
the proposed framework for 1) pure translation and 2) scaling and translation.
The effectiveness is evaluated by using sixteen whole-body CT follow-up data
that are manually annotated.

Our work is related to a number of previous studies. The recent develop-
ment in the part-based object recognition research [5, 6] has inspired our work.
Epshtein and Ullman [6] recently proposed an automatic algorithm for detecting
semantically equivalent but visually dissimilar object parts. Our proposed solu-
tion can be interpreted as a flexible online version of their batch learning-based
framework. Our work is built on recently proposed salient-region feature-based
registration [2, 3]. To our best knowledge, however, this is the first attempt to
apply the mean shift on these features for solving a registration task. The click-
point linking concept has been previously explored in some domain-specific cases
e.g., lung nodule detection [7]. Our aim is however to solve this problem in a
general setting with an emphasis of handling visually dissimilar regions. Finally
landmark-based registration [8] is also related to the proposed framework in the
sense that both assume user-provided landmarks specifying where the registra-
tion must be accurate. However they aim at completely different technical and
application goals. The former finds a smooth domain map from given correspon-
dences while the latter estimates a single correspondence given a POI.
2 Robust Click-Point Linking
First we formally define the robust click-point linking problem. Suppose that
a pair of image functions are given to be registered and called reference image
Ir(xr) and floating image If (xf ) where xr ∈ R3 and xf ∈ R3 represent coordi-
nate variables in their respective continuous domains. The pair of the domains
are assumed to be implicitly related by an unknown transformation Tθ : R3 7→ R3

parameterized by θ so that xr
Tθ7−→ xf .

Now we suppose that an arbitrary click point cr is given as a POI in the
reference domain xr. Then the task of click-point linking is defined as the esti-
mation of the point cf in the floating domain xf which corresponds to the POI
cr in the reference domain. The true solution cf can be defined if we know the
true domain transformation Tθ such that cf = Tθ(cr).

Next we introduce salient-region features whose 3D center coordinate is de-
noted by p. Suppose we compute Nr features for the reference image forming
a set Cr = {pr1, ..,prNr

} and Nf features for the floating image forming a set
Cf = {pf1, ..,pfNf

}. Then we let Q = {q1, ..,qM} denote a set of M correspond-
ing feature pairs constructed from Cr and Cf where qi = (qri,qfi), qri ∈ Cr,
qfi ∈ Cf , and M < min(Nr, Nf ).
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The standard registration solutions aim to estimate the domain transfor-
mation T̂θ̂ by solving an energy minimization problem θ̂ = argminθE(θ, Ir, If ).
Once the domain transformation is estimated correctly, the click-point linking
becomes trivial as ĉf = T̂θ̂(cr). However, estimating the transformation from
noisy data is far from trivial. The estimation accuracy is very sensitive to the er-
rors in correspondences. The iterative solutions also tend to be computationally
expensive.

In our approach, the linking problem is solved by directly optimizing a spatial
likelihood function over the location variable xf without explicitly estimating
the domain transformation,

ĉf = argmaxxf
L(xf |cr, Q) (1)

where L(xf |cr, Q) denotes a spatial likelihood function in the domain of the
floating image that is conditional to the POI cr in the reference image and a set
of corresponding features Q. This generic maximum likelihood formulation allows
us to exploit the mean shift algorithm which allows computational efficiency and
desired robustness against false correspondences. The following describes details
of the solution in steps.

2.1 Salient-Region Feature Extraction and Matching
We use the salient-region features [1–3] as anchor points for constructing geo-
metric contexts in 3D CT volumes. Our implementation follows work by [1–3].
The following briefly describes the main concept.

Given a data point x and a spherical region R(s,x) of certain scale described
by a radius s and centered at x, the feature extraction provides the best scale Sx
and its corresponding saliency value A(R(Sx,x)). Such saliency is defined by the

following function A(R(Sx,x)) = H(R(Sx,x)) · Sx ·
∫

i(s,x)

∥∥∥ ∂
∂sp(i|R(s,x))

∣∣
Sx

∥∥∥di

where p(i|R(s,x)) denotes the intensity likelihood estimated by Parzen win-
dows with Gaussian kernels, i(s,x) represents the intensity range within R(s,x),
H(R(s,x)) is entropy of the intensity distribution, and Sx is the best scale given
by maximum entropy such that Sx = argmaxsH(R(s,x)). A set of N (N < 100)
globally most salient features (each defined by its center and the best scale) are
extracted by using the following procedure.
Feature Extraction:
A1 For each voxel location x, compute the best scale Sx of the region centered

at it, and its saliency value A(R(Sx,x)).
A2 Identify the voxels with local maxima in saliency values. Then the salient

regions of interest are those that are centered at these voxels and have the
best scales.

A3 Among the local maxima salient regions, pick the N most salient ones {pi}
(with highest saliency values) as region features for the CT volume.

The raw 12-bit CT data can be converted to Hounsfield unit (HU) with the
offset of −1024 and the slope of 1. In this study, we use an intensity windowing
between 30 and 285 HU for suppressing certain types of non-rigid tissues such
as fat (−100 to −50 HU) and water (0 HU) in order to stabilize the feature
extraction process.

For both Ir(xr) and If (xf ), we independently perform the above feature ex-
traction, resulting in a pair of sets Cr and Cf of Nr and Nf features, respectively.
Given a POI cr in the reference domain xr, we find a set Q of M corresponding
features, by using the following exhaustive search strategy.
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Feature Matching:
B1 Select M < Nr features {qr1, ..,qrM} from Cr which are closest to cr in

terms of Euclidean distance.
B2 For each reference feature qri,

B2a Exhaustively compute similarities against the Nf floating domain fea-
tures {pfj}.

B2b Select the most similar pfj and set it as qfi.

Similarity functions used in B2a can be either geometry or appearance based
and/or a combination of both. For instance, the appearance similarity can be
measured by χ2 distance between a pair of intensity histograms derived from cir-
cular regions R(Sqri

,qri)
and R(Spfj

,pfj)
. This very simple matching algorithm

is meant to provide only rough results. It is thus likely that Q contains non-
negligible number of false correspondences. However its computational complex-
ity is expected to be significantly lower than other complex approaches, allowing
us to realize more efficient solution.

2.2 Spatial Likelihood by Modeling Geometric Contexts
We model the target spatial likelihood function L(xf |cr, Q) of the link estimate
cf in the floating domain xf as a L-component Gaussian mixture. We consider
a generalized form with a set of all K-subsets of Q. Such a set is denoted by
P = {Pl|l = 1, .., L} where L =

(
M
K

)
is cardinality of P , Pl = {qk|k = 1, .., K} is

a K-subset of Q, and qk = (qrk,qfk) ∈ Q is the k-th correspondence in Pl.

L(xf |cr, P ) =
L∑

l=1

p(xf |cr, Pl) (2)

p(xf |cr, Pl) = N (xf ;ml, σ
2
l I) (3)

ml = ft(cr, Pl) (4)
σl = gt(cr, Pl) (5)

where ft and gt determine the mean and the width of the i-th Gaussian com-
ponent as a function of the POI and the l-th K-subset Pl of the neighboring
correspondence set Q. The form of ft and gt depends on the type of transforma-
tion Tθ, mapping the reference domain to the floating domain. This paper derives
their closed-form formulae in R3 for two transformation classes of i) pure trans-
lation and ii) scaling and translation, although their extension to more complex
projective transformation is also possible using the same strategy. The following
describes the basic concept and derivations.

Let us first assume that true domain transformation Tθ is modeled by a
certain parameterized transformation class. We choose the value of K such that
the correspondences in Pl can sufficiently constrain the full degrees of freedom
in the transformation system, similar to the well-known RANSAC setup [9].
Unlike the RANSAC that explicitly and iteratively estimates the parameters, the
following simple geometrical interpretation allows us to derive the desired closed-
form formulae. Suppose that cr, Pl and unknown cf form a pair of polyhedra
with K + 1 corresponding vertices (cr,qr1, ..,qrK) and (cf ,qf1, ..,qfK). By
construction, the polyhedra must satisfy certain geometric invariances under the
assumed class of transformation, resulting in equations with the unknown cf .
A closed-form solution of such equations about cf provides a form of ft for the
given transformation class. Intuitively this general procedure can be understood
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as to i) define the known geometric configuration of cr relative to the context
{qrk}, ii) transfer such context under the assumed transformation to the floating
domain with {qfk}, and iii) determine cf analytically given {qfk}.

First we introduce a pair of local coordinate frames for describing the poly-
hedra. Let crl and cfl denote position vectors of cr and cf in the l-th local
reference and floating frames whose origin are set at an arbitrary chosen feature
ql = (qrl,qfl) from Pl such that cr = crl + qrl and cf = cfl + qfl. Then cfl is
the unknown that must be estimated given cr and Pl.

When K = 1, we have P = Q and L = M . This sufficiently constrains
only pure translation case. The derivation of ft is straightforward. Vectors are
invariant under the assumed pure translation, resulting in an equation cfl = crl.
The solution immediately gives

ml,K=1 = ft,K=1(cr, Pl) = ĉf = cr − qrl + qfl (6)

When K = 2, each Pl yields two correspondences providing 6 constraints in
R3. These constraints are sufficient to determine scaling and translation (4 DOF)
and pure translation (3 DOF). Let qla = (qrla,qfla) denote a single remainder
after choosing ql from Pl. This results in a pair of similar triangles (0,qrla −
qrl, crl) and (0,qfla − qfl, cfl) without rotation. Between the pair, therefore,
corresponding normalized vectors and ratio of corresponding vector norms are
invariant, resulting in cfl

‖cfl‖ = crl

‖crl‖ and ‖cfl‖
‖qfla−qfl‖ = ‖crl‖

‖qrla−qrl‖ where ‖ · ‖
denote a vector norm. After some algebra, the desired function estimating the
l-th Gaussian component mean with K = 2 is derived as follows.

ml,K=2 = ft,K=2(cr, Pl) = ĉf =
‖qfla − qfl‖
‖qrla − qrl‖

(cr − qrl) + qfl (7)

For modeling the Gaussian width, we can interpret scales Sqrk
and Sqfk

of the salient-region features in Pl as statistical uncertainty for localizing the
feature points. In this paper we assume that deformation due to the domain
transformation is not too large, allowing us to ignore the uncertainty propaga-
tion factor. Therefore the uncertainties at the features can also be treated as
uncertainties at the estimated component mean.

σl = gt(cr, Pl) =

∑K
k=1 Sqrk

+
∑K

k=1 Sqfk

2K
(8)

2.3 Mean Shift-based Robust Maximum Likelihood Estimation
This section describes our robust and efficient solution for the maximum like-
lihood estimation problem in (1) with the likelihood model (2-5). Due to the
feature matching errors discussed in Sec. 2.1, the likelihood function becomes
multi-modal with the false correspondences creating outlier (largely deviated)
modes. Our task becomes estimating the mixture mode due only to the correctly
found correspondences. We solve this task by using the variable-bandwidth mean
shift (VBMS) proposed in [4]. VBMS is extension of the original mean shift to
spatially variant bandwidth case where different data points may have different
significance. This extension allows its application to solve an information fusion
problem where the task is to estimate the most plausible solution given a set of
hypotheses described in a Gaussian mixture model.
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Let xi ∈ R3, i = 1, .., M denote a set of 3D data points, and Hi is a 3D
matrix indicating uncertainty or significance associated with the point xi. The
point density estimator with 3D normal kernel at the point x is given by f̂v(x) =∑M

i=1N (x;xi,Hi) = (2π)−3/2

M

∑M
i=1 |Hi|−1/2 exp(− 1

2 (x−xi)T H−1
i (x−xi)). The

VBMS vector mv(x) is then defined by

mv(x) = Hh(x)
M∑

i=1

wi(x)H−1
i xi − x (9)

where Hh(x) denotes the data-weighted harmonic mean of the bandwidth ma-
trices at x such that H−1

h (x) =
∑M

i=1 wi(x)H−1
i . The weight wi(x) represents

the influence from i-th component at x normalized over all the components
wi(x) = |Hi|−1/2 exp(− 1

2 (x−xi)
T H−1

i (x−xi))PM
i=1 |Hi|−1/2 exp(− 1

2 (x−xi)T H−1
i (x−xi))

. It can be shown that the VBMS
vector is an adaptive estimator of normalized gradient of the underlying den-
sity such that mv(x) = Hh(x)

b∇fv(x)bfv(x)
. The following iterative algorithm with

the VBMS vector is provably convergent to a mode of the density estimate in
the vicinity of the initialization xinit in the gradient-ascent sense but without
nuisance parameter tuning

y0 = xinit

yn+1 = mv(yn) + yn (10)

We denote the convergence of the iterator by y∗.
We apply VBMS to our problem by simply setting xi = ml and Hi = σ2

l I
as defined in (4) and (5), respectively. Our solution performs a single VBMS
iteration from an initialization xinit estimated from Cr and Cf .

Local ML Estimation by VBMS:
C1 Compute the means zr and zf of salient-region feature points in Cr and Cf ,

respectively.
C2 Compute the mean bias z = zf − zr between Cr and Cf .
C3 Set the initialization of a VBMS iterator by the mean bias-corrected POI in

the floating domain: xinit = cr + z
C4 Perform the VBMS algorithm in (10), resulting in the convergence y∗.
C5 Results in the linking estimate ĉf = y∗.

3 Experimental Studies

The feasibility of the proposed framework is evaluated by testing the 3D imple-
mentation of the above algorithm with a set of 16 whole-body CT volume pairs.
Two volumes in each pair are scans taken at different time-points of the same
patient. The same scanner protocols were used between each pair. The original
volume with a stack of 512-by-512 axial slices are down-sampled to 128-by-128
slices. One of each pair is arbitrary picked to be a reference image, leaving the
other to be a floating image.

The following setting of the proposed algorithm was used. For each volume, a
number of 50 salient-region features are pre-computed: Nr = Nf = 50. For each
click-point cr, the feature matching algorithm is then performed with 10 nearest
reference features: M = 10. Two similarity functions are considered in this study:
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Fig. 1. Experimental results. Top: average errors as a function of 16 different patients.
Bottom: average errors as a function of 14 different landmarks. For feature match-
ing, we consider two versions of similarity function. S1: geometric Euclidean distance.
S2: unbiased linear combination of the geometric and appearance similarity (χ2 inten-
sity histogram distance). Left: S1 without template-based correction. Middle: S1 with
template-based correction. Right: S2 with template-based correction. All the errors are
calculated with the unit of voxels.

geometric Euclidean distances and the χ2 distance of intensity histograms. Two
solutions for 1) pure translation with K = 1 and 2) scaling and translation
with K = 2 are considered. For testing, we used pre-recorded 3D landmarks
that are manually labeled by experts. There were 14 landmarks for each person
distributed at significant anatomical landmarks, including pelvis, lung, kidneys,
and collar bones. For each pair, these 14 points in the reference image are used
as POIs and Euclidean errors are computed between the estimated links cf

and the ground-truth landmarks in the floating domain of R3. The total of 224
test cases (16 patients over 14 landmarks) were evaluated. We also consider a
post-process for refining the estimated click-point by using a template matching-
based refinement. The size of the spherical template around each landmark was
automatically estimated by using the maximum entropy criterion [2].

Fig. 1 shows the result of our experiments. The top row shows the average
errors plotted over different patients. On the other hand, the bottom row shows
those plotted over different landmarks. For feature correspondence matching, we
consider two versions of similarity function. One was the geometric Euclidean
distance with the mean bias adjustment and the other was a linear combination
of the geometric distance and an appearance-based distance using χ2 distance
of intensity histograms. The left column shows the results with the geometric
Euclidean distance. The total average and median errors were 4.23 and 3.50
voxels, respectively. The middle column shows the results with the geometric
distance and the refinement. The average and median errors were 4.39 and 3.24,
respectively. Finally, the results with the appearance-based similarity as well
as the post-refinement are shown in the right column. The average and median
errors were 4.68 and 3.10, respectively. For extracting 50 features in a 3D volume
with 128 by 128 slices, it took roughly 2.5 minutes while it took only a fraction
of second for the rest of processing.

Overall, the average errors were in the range of 3 to 5 voxels, demonstrating
the feasibility of the proposed methods. The results also show that the accuracy
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depends strongly on patients but not as strongly on landmarks. Visual inspection
revealed that higher errors (e.g, patient 7 and 14) were caused mainly by the
outlier failures due to lack of corresponding features between pairs. The usage of
the appearance-based similarity and post-refinement slightly improved accuracy.
However the improvement was small and made outlier errors actually worse.
For the inliers, the average errors were smaller than 3 voxels with the post-
refinement.

4 Conclusion and Future Work

This article proposed a novel framework for robust click-point linking. In order
to derive a robust solution for linking visually dissimilar local regions, such as
changing tumors, we proposed a framework for a mean shift-based ML estima-
tion over a Gaussian mixture likelihood that models geometric context of arbi-
trary click-points with respect to salient-region features. Our experimental study
demonstrated the robustness of the proposed approach using hand-labeled whole-
body CT data set. We are currently working on extending our current solutions
to account for uncertainty propagation and similarity and affine transformation.
We also plan to further improve robustness and efficiency of the salient-region
feature extraction and matching parts.
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