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Purpose: Ensemble segmentation methods combine the segmentation results of individual methods
into a final one, with the goal of achieving greater robustness and accuracy. The goal of this study
was to develop an ensemble segmentation framework for glioblastoma multiforme tumors on single-
channel T1w postcontrast magnetic resonance images.
Methods: Three base methods were evaluated in the framework: fuzzy connectedness, GrowCut, and
voxel classification using support vector machine. A confidence map averaging (CMA) method was
used as the ensemble rule.
Results: The performance is evaluated on a comprehensive dataset of 46 cases including different
tumor appearances. The accuracy of the segmentation result was evaluated using the F1-measure
between the semiautomated segmentation result and the ground truth.
Conclusions: The results showed that the CMA ensemble result statistically approximates the best
segmentation result of all the base methods for each case. © 2013 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
[http://dx.doi.org/10.1118/1.4817475]
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1. INTRODUCTION

Glioblastoma multiforme (GBM), a World Health Organi-
zation (WHO) grade IV astrocytoma, is the most common
human brain tumor comprising about 12%–15% of all pri-
mary central nervous system (CNS) tumors and account-
ing for about 50%–60% of all astrocytomas.1 Survival for
patients with glioblastoma, although individually variable,
averages 14 months after diagnosis.2 Clinical trials are in-
vestigating effective treatments for GBM brain tumors, and
imaging is playing an important role. Contrast-enhanced tu-
mor size change on serial imaging studies is used as a sur-
rogate endpoint using 1D and 2D diameters. Computer-aided
volumetric methods are also under investigation, which can
be more effective than diameters when the tumor contains
a nonenhanced core or has an irregular shape. In clinical
studies, manual contouring has been used to segment tu-
mors on MR images. For example, in a recent clinical study
of correlating methylated-DNA-protein-cysteine methyltrans-
ferase (MGMT) promoter methylation and imaging features
of GBM tumors, Drabycz et al.3 used manual contouring for
GBM brain tumor segmentation. An accurate and robust auto-
mated segmentation system would facilitate quantitative anal-

ysis in clinical studies. In Fig. 1, we show a 2D slice of a T1
weighted postcontrast magnetic resonance (MR) image pre-
senting an enhancing GBM brain tumor with the outline of
the active tumor region.

Automatic GBM brain tumor segmentation is a challeng-
ing task, since brain tumors are heterogenous, and highly vari-
able in size, location, shape, and appearance. They also of-
ten deform adjacent structures in the brain. Some artifacts of
MR imaging also increase the difficulty of tumor segmenta-
tion. Imperfection of the RF pulses and the location of RF
coils may introduce nonuniformity in MR images. This study
focuses on recurrent GBM brain tumors that develop after
surgery, many of which contain a cavity, and the enhancing
portions can vary in shape, for example, ring-shape, blob-
like shape, or multiple components attached to the cavity
or dispersed into the brain tissue (see Fig. 2). Furthermore,
when patients are scanned at multiple centers, with differ-
ent scanners and contrast agent injection protocols, the im-
age intensity contrast can vary greatly. These factors make
GBM brain tumor segmentation a very challenging problem
in a clinical setting, and there is a lack of studies evaluating
GBM brain tumor segmentation methods in a large clinical
dataset.
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FIG. 1. Example of a GBM brain tumor on a T1w postcontrast MR image
slice with the active part contoured.

Computer-based brain tumor segmentation has remained
largely experimental work. Many efforts have exploited
MRI’s multidimensional data capability through multispec-
tral analysis.4–9 There are generally several categories of tech-
niques: knowledge-based, clustering, voxel-based classifica-
tion, level set method, and graph-based techniques.

Knowledge-based segmentation systems typically use a
brain atlas to provide prior information. Fletcher-Heath
et al.10 applied a knowledge-based system to segment nonen-
hancing tumors. Prastawa et al.11 applied outlier detection to
find abnormal regions, applied k-means clustering (k = 2)
to separate tumor and edema, and then a region competition
method using level-sets to add a smoothness constraint. In the
study, they used T1-weighted precontrast and T2-weighted
images, without contrast injection. However, in clinical tri-
als, tumor definition is based on T1-weighted postcontrast im-
ages. They reported that the intrareader variability could be as
low as 59.4%.

Among the clustering techniques, fuzzy clustering meth-
ods are the approach most widely employed across all tumor

types. Fuzzy C-means (FCM) clustering is used frequently,
since it does not require training data. Phillip et al.4 was the
first to apply FCM clustering to GBM brain tumor segmen-
tation, and correlated the segmentation with tumor histology.
The limitation of the study is that it did not include a quanti-
tative validation of the method. Beevi and Sathik12 applied
an efficient denoising algorithm before FCM and incorpo-
rated spatial probability to deal with the sensitivity to noise.
The limitation of the study is that the method was validated
on one clinical brain MR scan with unknown tumor type.
Khotanlou et al.13 performed symmetry analysis and fuzzy
clustering to initialize the segmentation, and combined de-
formable model and spatial relations to refine it. It was not
clear whether the method was evaluated on GBM tumors,
and it would be interesting to evaluate the method on im-
ages from GBM clinical trials. Aside from FCM, Ahmed and
Mohamad14 performed k-means clustering combined with the
anisotropic diffusion denoising and evaluated on one MR
scan. Liu et al.9 developed a semiautomated system using the
fuzzy-connectedness method and evaluated the overall vol-
ume accuracies for 20 patients. The method requires addi-
tional steps to remove attached brain structures. Clark et al.5

use a knowledge-based system including five stages, using
T1-weighted, T2-weighted, and PD-weighted image intensity.
In each stage, various heuristic parameters are applied. The
performance is reported as a correspondence ratio that ranges
from 0.43 to 0.85 in 16 scans from seven patients. They used
17 slices from three patients to set up the heuristic parame-
ters. It is not clear how difficult and practical it would be to
set universal parameter values in the setting of a large clinical
trial, considering the variability of GBM tumors.

Voxel-based supervised classification methods have been
investigated by a number of researchers.15 Vinitski et al.16 de-
veloped a system using a k-nearest neighbor classifier (kNN)
to segment multiple sclerosis (MS) lesions and brain tumors
from a limited number of patients. Validation with more tu-
mor cases is needed to apply the method in clinical trials.
Jolesz and co-workers17 developed an adaptive template-
moderated (ATM) classification algorithm (ATS) which
incorporated a brain atlas to include spatial anatomical

FIG. 2. Examples of recurrent GBM tumors on MR images. The contours show the doctor’s reading.

Medical Physics, Vol. 40, No. 9, September 2013



093502-3 Huo et al.: Ensemble segmentation for GBM 093502-3

information into the kNN classification system to segment the
MR image into five different tissue classes: background, skin,
brain, ventricles, and tumor. Kaus et al.18 applied the algo-
rithm to low-grade glioma and meningioma; however, it is not
clear how the ATM algorithm will perform for GBM tumors.
Prastawa et al.19 applied a system derived by Van Leemput
et al.20 to GBM tumor segmentation. The system used the
difference between T1w pre and postcontrast images to de-
velop tumor and edema priors, and form a Gaussian mixture
model framework solved by expectation-maximization (EM)
technique. The performance is reported as an overlap ratio of
0.49–0.92 from five patients. The system was extended for
GBM tumor segmentation by adding the tumor and edema
classes.21 One limitation of the study is that they did not pro-
vide a prior in the model for necrosis, cyst, or cavity. It is
common for GBM tumors to have necrosis or a surgical cav-
ity, especially in recurrent GBM. Another limitation of the
study is that the simplified geometric model for tumor shape
cannot cope with tumors that have complex appearance and
poorly defined boundaries. Zhang et al.22 used baseline as
training and follow-up as testing images. The method was
tested on five scans on one tumor case. The application is
limited since the GBM tumors on the baseline images still
need to be manually contoured. Schmidt et al.23 developed
alignment-based features including a spatial prior, symmetry,
intensity, and multiscale texture. The dataset included ten pa-
tients with one cavitated tumor from two sites. They reported
average overlap of 0.732. However, performance for the ac-
tive tumor volume is not clear. Lee et al.24 applied discrimi-
native random fields (DRFs) model with a support vector ma-
chine (SVM) and reported performance of 0.53–0.89 overlap
ratio for 12 scans from seven patients. The weakness of the
study is that they used patient-specific training, which means
training and testing voxels are from the same patient, and the
manual contouring is still needed for each patient. Ayachi and
Amor25 applied a support vector machine (SVM), using nine
slices from each tumor as training, and the rest of the slices on
the same patient as testing, and report a 0.82 true positive rate
for four cases. However, with patient-specific training, man-
ual contouring is still needed. Zhang et al.26 applied a multi-
kernel SVM, and again the limitation of the study is the need
for patient-specific training.

Level set and graph-based methods have also been ex-
plored for brain tumor segmentation. Ho et al.6 ran a level
set algorithm on probabilities derived from a T1w pre and
postcontrast difference image. They report an 80%–90% over-
lap ratio on three tumors of blob-like shape. However, it
is not clear how the method performs for irregular tumor
shapes. Popuri et al.27 extracted a clustered feature set, in-
tegrated them into a level set framework and used a Dirich-
let prior to exclude the surrounding tissues. They showed
success in differentiating tumor from normal tissue by in-
corporating shape information; however, it is not clear how
it performs for GBM tumors which usually have irregular
shapes. Taheri et al.28 used a threshold-based speed func-
tion for level-set function evolution. Corso et al.7, 29 devel-
oped a segmentation by weighted aggregation (SWA) algo-
rithm based on graph shift algorithm for GBM brain tumor

segmentation. Dube et al.8 incorporated the texture features
into the SWA framework and applied to the GBM brain
tumor segmentation on one-channel MRI using T1-weight
postcontrast MRI. The study achieved 70% accuracy for the
majority of the cases; however, the failure cases will need
to be addressed before it is ready for the clinic. Recently,
other features other than intensity were studied, including
grayscale concurrence matrix (GLCM) features,30 discrete
cosine transform (DCT) features,31 and the Gabor wavelet
filter.32

In summary, most of the literature reports the use of mul-
tichannel MR to segment GBM tumors, while segmentation
on a single-channel MR has only been reported infrequently.8

Although multichannel MR sequences are useful in differen-
tiating brain tissues and disease, they are usually acquired at
low resolutions, with slice gaps, and images from different
sequences are often not aligned. Images can be realigned to a
reference series but the resliced image series can suffer from
lower resolutions along the slice axis as well as slice gaps. It
is now possible to perform high resolution 3D imaging using
various contrast mechanisms (T1w, T2w, FLAIR) and using
identical image parameters for each image set on modern MR
scanners. However, even with same-resolution T2w or FLAIR
scans, they are not scanned at the same time, and registration
is still needed to align them. That might be a source of er-
rors. Due to the time issue, it is not standard care to acquire
high-resolution for T2w and FLAIR images in the current
clinical practice. Segmentation on a single channel T1 post-
contrast isotropic data is potentially important in determining
tumor volume for therapeutic response assessment in clinical
trials.

Most of the papers reported a small dataset of less than
ten cases to evaluate their methods. It is not clear whether the
techniques can handle the more difficult and irregular GBM
tumors that inevitable arise in larger clinical datasets.

There is also limited investigation of irregular recurrent
GBM tumors. The tumor recurrence could happen around the
surgical cavity or at a distant site, and show diffuse-pattern
with anti-VEGF drugs. These factors increase the difficulty
of recurrent GBM tumor segmentation compared to the newly
diagnosed GBM tumors.

The contribution of this study is to investigate an ensem-
ble approach to GBM tumor segmentation that combines re-
sults from three individual general-purpose segmentation al-
gorithms, aiming to achieve high accuracy in GBM tumor
segmentation.

There has been active research on combining multiple seg-
mentation results. In the field of supervised learning, Kittler
et al.33 summarized the different schemes for combining re-
sults from multiple classifiers. In the field of unsupervised
clustering, Ghaemi et al.34 performed a survey of methods
in clustering ensembles. As far as the applications in med-
ical imaging field, Grady35 and Wattuya et al.36 developed
an algorithm to combine multiple segmentation results us-
ing the random walker method for natural image segmenta-
tions. Rohlfing et al.37 studied atlas-based segmentation of
biomedical images. They proposed to estimate the perfor-
mances of the base classifiers and combine their respective
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outputs by weighting them according to their estimated per-
formance. This method is realized as a multiclass extension
of an EM algorithm for ground truth estimation from a bi-
nary classification based on decisions of multiple experts.38

Aljabar et al.39, 40 applied the majority voting rule33 to com-
bine segmentation results from atlas-based segmentation and
presented a thorough evaluation on brain MR images. En-
semble segmentation showed its potential in these applica-
tions and we will apply it to the application of GBM brain
tumors.

In this study, we propose an ensemble technique, applied
to semiautomated GBM brain tumor segmentation on T1w
postcontrast volumetric MR images, and evaluate the per-
formance on a dataset with 46 tumor cases from a clinical
trial research database. There are two steps involved. The first
step is to generate input segmentation candidates from dif-
ferent algorithms. Three general-purpose segmentation meth-
ods were applied to generate input segmentations: fuzzy
connectedness,9 GrowCut,41 and voxel classification using
support vector machines (SVM).42 The second step is to com-
bine them to generate a final result. The ensemble scheme
was confidence-based averaging (CMA). The CMA method
was adopted based on an assumption that the majority of the
base methods are correct, and errors from each method are in-
dependent so that they will be averaged out in the ensemble
result. To our knowledge, we are the first to investigate en-
semble segmentation for GBM tumor segmentation on single-
channel MR images (T1w postcontrast), and to evaluate base
methods and their ensemble on a relatively large dataset of
46 GBM tumors including different types of GBM tumor ap-
pearance patterns, in comparison to dataset of 5–20 cases in
the prior literature.

2. MATERIALS AND METHODS

2.A. Input segmentations

We explored three algorithms as base methods including
two semiautomated methods and one learning-based tech-
nique: fuzzy connectedness, GrowCut, and voxel classifica-
tion using SVM. The fuzzy connectedness method was se-
lected because it was reported to work well for semiautomated
GBM brain tumor segmentation by Liu et al.9 The GrowCut
(GC) method was chosen due to its simple user interaction
mechanism, straightforward implementation, and promising
performance in our pilot study.43 For these two semiauto-
mated methods, user input seeds are provided in the tumor
and background regions. SVM classification was chosen as a
general-purpose method and adapted to this specific applica-
tion by learning from examples.

2.A.1. Fuzzy connectedness

The fuzzy connectedness (FC) segmentation framework
assigns fuzzy affinities to the target object during classifica-
tion, to capture global “hanging togetherness” of voxels. The
first step of the algorithm involves computing an “affinity”
map, a local fuzzy relation, which quantifies the connected-
ness of any pixel pair in the original image; the second step
calculates the “fuzzy connectedness,” the global fuzzy rela-
tion with one specific (designated) pixel belonging to the ob-
ject of interest.

We implemented the algorithm following Liu et al.’s work9

since it has been previously applied to the GBM brain tumor
segmentation task. The affinity between any two voxels c and
d, denoted by μk(c, d), is given by

μk =

⎧⎪⎨
⎪⎩

1 if c = d,

0 if c and d are not 6-adjacent,

h1(f (c), f (d)) ∗ h2(f (c), f (d)) otherwise,

where f(c) and f(d) denote voxel intensity values at c and d, respectively.
The functional forms for h1 and h2 are chosen as follows:

h1(f (c), f (d)) = exp

(
(−1/2)

[(∣∣∣∣f (c) − f (d)

f (c) + f (d)

∣∣∣∣ − m1

) /
s1

])
,

h2(f (c), f (d)) =

⎧⎪⎨
⎪⎩

0 if f (c) + f (d) < a1,

f (c)+f (d)−a1
a2−a1 if a1 < f (c) + f (d) < a2,

1 if f (c) + f (d) > a2,
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m1 is set to the mean of the relative intensity differences |f(c)
− f(d)/(f(c) + f(d)| computed for all six-adjacent voxel pairs
(c, d) within the region. s1 is set to twice the standard devi-
ation of this relative difference among the user input seeds.
a1 is set to [mean − twice the standard deviation of intensity
sums f(c) + f(d) of all six-adjacent voxel pairs (c, d) within
the region]. a2 is set to [mean + (twice the standard deviation
of intensity sums f(c) + f(d) of all six-adjacent voxel pairs (c,
d) within the region]. The strength of the fuzzy connectedness
is calculated by dynamic programming. There are numerous
paths between any two given voxels c and d. In each possible
path, the “strength of connectedness” is simply the smallest
pairwise neighboring fuzzy affinity along this path. Among
all possible paths, the one with the largest strength is the fuzzy
connectedness of the two voxels c and d. The pool O of voxels
with nonzero membership value in the fuzzy subset satisfies
all of the following conditions: (1) all seed voxels are in O;
(2) for any two voxels c and d in O, their strength of connect-
edness S(c, d) > θ ; and (3) for any voxels c in O and d not in
O, S(c, d) < θ .

2.A.2. GrowCut

The GC method41 is based on cellular automata theory.
Formally, a cellular automaton (CA) is a triple (S, N, δ), where
S is the state set, N is the neighborhood, and δ: SN − > S is
the local transition function, where SN indicates the states of
the neighborhood cells at a given time, while S is the state
of the central cell at the next time step. In the GC method, the
cells correspond to image voxels, and the cell state S = (C, l,
θ ) for each voxel consists of the image feature vector C which
is intensity in this study, the label l indicating the category
to which the voxel belongs, and the strength θ in the con-
tinuous range [0, 1] indicating the confidence in the current
labeling.

The GC method uses CA theory to interactively label the
image volume using user supplied seeds. The user starts the
segmentation by supplying seed points comprising both tu-
mor and background voxels, the seeds’ labels are set to the
respective category labels, while their strength is set to 1.
This sets the initial state of the cellular automaton. Strengths
for unlabeled cells are set to 0. In each iteration t, each cell
tries to “attack” the neighboring voxels by calculating the lo-
cal intensity similarity; accordingly, the label map and the
strength map are updated until convergence. The algorithm
converges to a stable configuration, where cell states no longer
change. The pseudo code for the GC algorithm is shown in
Fig. 3, where N(p) is the 26-neighbor system of a voxel p in
3D, and g is a monotonically decreasing function bounded
within [0, 1]:

g(x) = 1 − x

max‖C‖2
.

2.A.3. Voxel classification using SVM

The support vector machine (SVM)42 is a supervised learn-
ing algorithm. It constructs a separating hyperplane in a

multidimensional feature space that maximizes the margin
between two classes. To calculate the margin, two parallel hy-
perplanes are constructed, one on each side of the separating
hyperplane, which are “pushed up against” the samples from
the two classes. Intuitively, a good separation is achieved by
the hyperplane that has the largest distance to the neighbor-
ing data points of both classes, since in general the larger
the margin the lower the generalization error of the classifier.
Given a set of n labeled data points (x1, y1), (x2, y2), . . ., xn,
yn where yi = ±1, SVM searches for an optimal separating
hyperplane 〈w, x〉 + b = 0, where where w ∈ Rn, x ∈ Rn,
and b ∈ R.

During the classifier training, voxels from manually con-
toured tumors are used as positive (tumor) examples, and an
equal number of voxels sampled outside the tumor are used
as negative (background) examples. For each training sam-
ple, a set of imaging features are calculated: intensity, gra-
dient magnitude, first-order Gaussian derivatives (in three di-
rections), second-order Gaussian derivatives (six in total), and
the three eigenvalues of the Hessian matrix. These features are
calculated at three different scales: 1, 2, and 4 pixels. In total,
we have 42 features derived from images as the sum feature
vector.

To apply the voxel classification to the test scan, the set of
42 features is calculated for each voxel and input to the trained
classifier, and for each voxel a score that it belongs to a tumor
is computed ranging from 0 to 1.

2.B. Combining input segmentations by confidence
map averaging

A voxelized confidence map (CM) is generated for each
base segmentation method. For the SVM method, the out-
put score map was used as the CM. For the GC method, a
strength map is generated by the algorithm, and we transform
the strength map into a confidence map by linearly rescal-
ing the foreground strength to [0.5, 1] and the background
strength into [0, 0.5]. For the fuzzy connectedness method,
the membership value is linearly rescaled to [0, 1] as the CM.

FIG. 3. Pseudo code of the cellular automata evolution rule. Adapted from
Ref. 41.
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FIG. 4. Examples of confidence maps: the first row shows confidence maps
of GC, FC, and SVM; the second row shows the original intensity image
overlaid with the ground truth tumor contour and the averaged confidence
map.

The three base methods (N = 3) are combined by con-
fidence map averaging (CMA); the output of the ensemble
is the average of the three confidence maps generated by
the three base methods, weighting each of the three meth-
ods equally. Figure 4 shows the confidence maps from the
three individual methods for one tumor. In order to obtain the
binary segmentation, the CMA result is later thresholded to
obtain a binary segmentation:

CMA(i, j, k) = 1

N

N∑
n=1

CMn(i, j, k).

3. EXPERIMENTS

We used 46 GBM tumor cases from 45 patients in this
study from a 60-subject multisite research database. The 15
patients were excluded due to either lack of available man-
ual gold standard tumor contours, anisotropy of voxel size, or
variation in image resolution.

The imaging protocol for the T1w sequences was 3D
volumetric acquisition in the axial plane using the flip
angle-spoiled gradient echo sequence (FSPGR) or the
magnetization-prepared rapid gradient-echo (MP-RAGE) se-

quence with 1 mm slice thickness, 0.9 mm by 0.9 mm pixel
size, and 256*256 in-plane resolution.

The ground truth for the segmentation was manually con-
toured by a board-certified neuroradiologist with ten years of
experience, with the facilitation of a semiautomated segmen-
tation tool44 from an in-house software system QIWS (quan-
titative imaging work station).

The brain volume was preprocessed to remove nonbrain
matter and obtain consistent image intensities across all sub-
jects for the given MR channel by the following steps:
(1) skull-stripping — using FSL;45 (2) B1 field correction and
intensity normalization — using Freesurfer46 to standardize
the intensity of MR images acquired from different medical
centers.

In order to reduce the processing time, we applied the algo-
rithms in a predefined volume of interest (VOI). For each 3D
MR volume, the user visually identified the start and end slice
of the tumor, and provided manual seeds on the center slice of
the tumor to initialize the GC method. With this information,
the VOI can then be generated. First, the bounding box of the
input seeds on the tumor center slice is extended 25 mm along
each in-plane direction to enclose the whole tumor; then, the
bounding box is extended in the z-direction to the start and
end slice to obtain the VOI. Calculation time is thereby re-
duced by applying the segmentation framework only within
the VOI instead of the whole brain volume.

We applied the proposed framework with the following
parameter setup. For GC, users provided 3–5 seed points in
the foreground and background structures respectively on the
center slice of the tumor. The FC algorithm used the same
foreground seeds, and the s1, m1, a1, and a2 were chosen
as described in Sec. 2. The SVM voxel classification did not
utilize the seeds. The SVM was trained for each leave-one-
tumor-out iteration, resulting in 45 runs.

To obtain the binary segmentation results, the outputs of
the SVM, fuzzy connectedness, and the CMA ensemble were
thresholded adaptively using the Otsu method.44 The binary
segmentation from SVM and CMA were further processed
by a connected component analysis to remove speckle noise
involving: (1) removal of components smaller than 27 voxels

FIG. 5. F1-measure of three base methods and the ensemble method for all 46 cases.
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FIG. 6. Box plot of F1-measure for three base methods (FC, GC, and SVM),
the best individual result and the ensemble (CMA).

and (2) removal of components including background seeds
but no foreground seeds.

The accuracy of the segmentation result was evaluated us-
ing the F1-measure (ranging from 0 to 1)47 between the semi-
automated segmentation result and the ground truth.

F1-measure = 2 ∗ precision ∗ recall

precision + recall
,

with precision = tp

tp + fp
, recall = tp

tp + f n
.

4. RESULTS

We calculated the F1-measure for all 46 GBM tumors to
evaluate the accuracy of the segmentation results against the
ground truth, and to compare the three base methods and our
ensemble method. We present the F1-measure plot for all 46
cases in Fig. 5.

First, to compare the three base methods, Fig. 5 shows that
not a single base algorithm performs better than the other two
algorithms in all the 46 cases. GC performed best for 34 cases
out of 46, while FC and SVM performed best for seven and
sic cases out of 46, respectively. The box plots and statistics of
the the F1-measures are shown in Fig. 6 and summary statis-
tics are provided in Table I. A paired t-test was run to compare
the three base methods the results are shown in Table II, in-
dicating that GC and SVM are significantly better than FC
method.

Second, to compare the ensemble with the three base meth-
ods, the ensemble method was close to the best base result for

TABLE I. Statistics of F1-measure over 46 cases for different methods.

Different methods Mean Median STD IQR

FC 0.51 0.59 0.22 0.35
GrowCut 0.64 0.65 0.16 0.18
SVM 0.50 0.51 0.17 0.22
Best individual 0.66 0.68 0.15 0.17
CMA 0.63 0.7 0.18 0.27

TABLE II. Comparing different methods using paired t-test.

FC GrowCut SVM CMA

FC N/A p < 0.05 p < 0.05 p < 0.05
GrowCut p < 0.05 N/A p < 0.05 p > 0.05
SVM p < 0.05 p < 0.05 N/A p < 0.05
CMA p < 0.05 p > 0.05 p < 0.05 N/A

the majority of cases, although the best base method varied
for each case. We obtained the best segmentation result for
each case, and call it best individual result, and compared it
with all other methods.The paired t-test shows that there is
no significant difference between the best individual result
and the ensemble result, while the best individual result is
significantly better than all three base methods, as shown in
Table III. The box plots and summary statistics of the best
individual F1-measures are shown in Fig. 6 and Table I.

The ensemble method improved the F1-measure by ap-
proximately 0.04 (0.04 ± 0.02) compared to the best indi-
vidual accuracy for 11 cases (no. 4, 8, 11, 12, 13, 14, 18, 36,
41, 43, 45), shown in Fig. 5. Two main reasons for the im-
provement are observed. One is that when the tumor is inho-
mogeneously enhanced, the ensemble method detected more
tumor components than each base method. The other is that
the necrosis was often falsely included as a part of a tumor by
the GC and FC methods but correctly removed by the ensem-
ble method. Figure 9 shows one example (index no. 12).

The ensemble method performs similar (0.0006 ± 0.01) to
the best individual result for 21 cases (no. 1, 2, 3, 5, 6, 7, 15,
16, 17, 19, 21, 27, 29, 30, 31, 32, 34, 35, 39, 42, 46). Two main
observations may contribute to this result. One observation
is that one method (GC) performs relatively well when the
tumor appears as a well-enhanced and single component, as
shown in Fig. 10 with index no. 31, while the other two meth-
ods do not provide much additional value to the CMA method.
The other observation is that in some cases the CMA not only
includes more true positive voxels than the base methods, but
also includes more false positive voxels, resulting in no over-
all improvement.

The ensemble method did not reach the performance of the
best individual result (−0.13 ± 0.14) in 14 cases (no. 9, 10,
20, 22, 23, 24, 25, 26, 28, 33, 37, 38, 40, 44). Case no. 8 is an
example shown in Fig. 11. In this case, the performance was
reduced because of partial volumed voxels are missed by the
ensemble method.

The ensemble method exhibited promising results in a sub-
group of multifocal tumors. Multifocal tumors are those with
more than one lesion site, as defined by intervening areas of
normal brain signal, including or excluding the primary site,

TABLE III. Comparing the best individual segmentation result with others
using paired t-test.

FC GrowCut SVM CMA

Best individual p < 0.05 p < 0.05 p < 0.05 p > 0.05
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all with a well-defined or mostly well-defined border. Figure 8
shows one example.48 Cases 43–46 in Fig. 5 belong to this
subgroup, and the zoom-in version is shown in Fig. 7 . For
multifocal tumors, GC missed unconnected tumor pieces and
SVM included all tumor pieces, and our ensemble method im-
proved the performance over the GC method by 0.08 ± 0.01,
improved over the SVM method by 0.04 ± 0.04, and im-
proved over the FC method by 0.26 ± 0.25.

In general, the F1-measure for all 46 cases is lower than
0.9 for all methods, because partial volumed voxels tended to
be missed by the automated methods. Thus, the F1-measure is
reduced even when the segmentation result appears accurate
by visual inspection.

5. DISCUSSION

In this study, we proposed an ensemble framework for
the application of GBM brain tumor segmentation on high-
resolution T1w postcontrast MR images. Rather than a highly
customized method for this specific application, the proposed
ensemble method can combine existing general-purpose
segmentation algorithms to achieve greater consistency in
performance.

Our study shows that ensemble segmentation has the po-
tential to approximate the best result of the base method
for each case. In spite of the power of the existing general-
purpose segmentation methods, unfortunately not a single
segmentation method could beat all the others in solving the
challenging problem of GBM tumor segmentation with large
variation of tumor appearance. We tested that ensemble seg-
mentation has the potential to approximate the best individual
result (p > 0.05), even though the best individual result is sig-
nificantly better than all the base methods. In the future, with
properly selected base methods which are good at segment-
ing different types of tumor appearances, an appropriate en-
semble method may sustain the accuracy from the best “per-
former” for different tumor appearance and achieve an overall
improvement over the base methods.

To our knowledge, we are the first to investigate and eval-
uate ensemble segmentation for GBM tumors on a relatively
large dataset of 46 GBM tumors, in comparison to datasets
of 5–20 cases in the literature. In the challenge of brain tu-
mor segmentation (BRATS) at MICCAI2013, a training set
of 30 patients were provided including both GBM and low
grade gliomas. It is necessary to evaluate the GBM tumor
segmentation over a large dataset including a variety of tu-
mor presentations, because the appearance of GBM tumors on
the images can vary substantially. GBM brain tumor segmen-
tation is a challenging problem due to tumor heterogeneity,
inhomogeneous intensity profiles, variable shapes and sizes,
and recurrence patterns postsurgery. For example, there may
or may not be necrosis/cavity/cyst present in the tumor core;
the tumor recurrence may occur in the primary site or at a dis-
tant site; the tumor may show a vivid enhancement or diffuse
pattern; and the tumor could have a blob shape or an irregular
shape. Thus, it is crucial to evaluate the segmentation method
on a large clinical dataset. Liu et al.9 and Corso et al.7 are until
now the only two studies in the literature that evaluated their

FIG. 7. F1-measure of three base methods and the ensemble method for the
subgroup of multifocal tumors.

systems on a dataset of 20 cases. In our study, we included 46
tumors, including cases with all the clinical variability men-
tioned above. This study is thus significant in elucidating the
range of tumor types to be addressed and thereby suggests
that an ensemble approach may be appropriate.

To our knowledge, we are the first to investigate ensemble
segmentation on single-channel MR images (T1w postcon-
trast) for GBM brain tumor segmentation. Most of previous
studies developed fully automated segmentation using multi-
channel MR images (T1w, T2w, FLAIR, etc.), and we found
only one publication, where Dube et al.8 performed a prelim-
inary study of fully automatic segmentation on this task using
a dataset of seven patients. In the setting of GBM tumor clin-
ical trials, radiologists manually contour contrast-enhanced

FIG. 8. An example of multifocal GBM tumor with arrows pointing to the
contrast enhanced multifocal tumors.
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FIG. 9. Illustrative example of the segmentation results of the tumor with index number 12. Rows show results on different slices; columns show results using
different segmentation methods: Column 1—the ground truth; Column 2—FC; Column 3—GC; Column 4—SVM; and Column 5—CMA ensemble.

tumors on single-channel T1w postcontrast images to mea-
sure tumor size change. Therefore, semiautomated segmenta-
tion on a single-channel T1w MR volume is relevant in a drug
trial that uses radiographic response as a surrogate endpoint.

We compared the performance of different base segmenta-
tion algorithms on the application of GBM brain tumor seg-
mentation. In the literature, many algorithms have been pro-
posed as general-purpose segmentation methods; however, it
is difficult to compare their performance since they were ap-
plied to different datasets. In this study, we evaluated three
base algorithms on the same dataset, which serves as a refer-
ence to compare their performances and makes a useful con-
tribution to the segmentation of GBM brain tumors.

Our study provides a potential general-purpose segmenta-
tion framework, even though our ensemble method was tested

for a specific application of GBM tumor segmentation. In
the context of tumor drug clinical trials where radiographi-
cal response is used as a surrogate endpoint, imaging core
labs need a general-purpose segmentation method for med-
ical image segmentation, and the ensemble framework is a
potential solution. This is because imaging core labs collect
and process data from different trials with different diseases
and image modalities (CT, MRI, PET, etc.). It is tedious work
for radiologists to manually contour the tumors, but it is ex-
pensive and inefficient to design a specific segmentation algo-
rithm for each application. Therefore, a general purpose seg-
mentation framework is attractive. However, medical image
segmentation is not a trivial task due to the nature of medical
image acquisitions and of heterogeneity of human diseases.
An ensemble framework can take advantage of different
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FIG. 10. Illustrative example of the segmentation results of the tumor with index number 31. Rows show results on different slices; columns show results using
different segmentation methods: Column 1—the ground truth; Column 2—FC; Column 3—GC; Column 4—SVM; and Column 5—CMA ensemble.

FIG. 11. Illustrative example of the segmentation results of the tumor with index number 8. Rows show results on different slices; columns show results using
different segmentation methods: Column 1—the ground truth; Column 2—FC; Column 3—GC; Column 4—SVM; and Column 5—CMA ensemble.
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segmentation algorithms. Its potential to serve as a general-
purpose segmentation framework can be further studied and
evaluated in other applications in the future to test the gener-
alizability of the methods.

There are a couple of limitations in the present study de-
sign. One of them is the use of a single expert reading as the
ground truth. Inter-observer variation is a limiting factor in
GBM tumor segmentation due to the infiltrative nature and the
boundary could be controversial sometimes, and it increases
greatly in a post-operative setting, while the whole dataset in
this study are post-operative scans. Meanwhile, segmentation
for GBM tumor is still exploratory and in the current litera-
ture of GBM tumor segmentation, the majority of the stud-
ies are using a single reader for the evaluation. The reason is
that, first, it is not easy to get large dataset with GBM tumors,
and second, it is hard to collect results from multiple read-
ers. Many of the literatures did not specify the ground truth,
while in this paper, the ground truth is made by a neuroradiol-
ogist with ten-year experience in a real phase II drug trial. The
other limitation is that the number of input seeds for FC and
GC methods were not strictly controlled among all cases. As
interactive method, GC is sensitive to user interactions. The
amount of user interaction in this study is 5–9 seeds on the
center slice of the tumor, to get an acceptable segmentation
result. Thus, the segmentation result from GC is not the opti-
mum from GC. The ensemble results might be even better if
we get enough seeds to refine the GC results.

Future work could involve improvement of the CMA en-
semble method. One possibility is to assign different weights
to each base segmentation algorithm. Currently, we weighted
all algorithms equally. Another possibility is to include addi-
tional base methods to explore whether more base methods
can improve the segmentation performance.

In summary, we compared three base segmentation meth-
ods and evaluated the ensemble method on a clinical dataset
of 46 GBM cases, and found that ensemble segmentation sta-
tistically approximates the best individual result (p > 0.05),
and this provides motivation to investigate base methods that
are good at segmenting tumors with different appearances.
An ensemble method may then sustain the accuracy from the
“best performer” for the various tumor appearances and ob-
tain an overall improvement over the base methods.
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