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ABSTRACT
This paper describes a novel classification method for com-
puter aided detection (CAD) that identifies structures of in-
terest from medical images. CAD problems are challenging
largely due to the following three characteristics. A CAD
system has to satisfy a real-time requirement. Typical CAD
training data sets are large and extremely unbalanced be-
tween positive and negative classes. When searching for
descriptive features, researchers often deploy a large set of
experimental features, which consequently introduces irrel-
evant and redundant features.

This work is distinguished by three key contributions. The
first is a cascade classification approach which is able to
tackle all the above difficulties in a unified framework by
employing an asymmetric cascade of sparse classifiers each
trained to achieve high detection sensitivity and satisfac-
tory false positive rates. The second is the incorporation
of feature computational costs in a linear program formu-
lation that allows the feature selection process to take into
account different evaluation costs of various features. The
third is a boosting algorithm derived from column genera-
tion optimization to effectively solve the proposed cascade
linear programs.

We apply the proposed approach to the problem of detect-
ing lung nodules from helical multi-slice CT images. Our
approach demonstrates superior performance in comparison
against support vector machines, linear discriminant analy-
sis and cascade AdaBoost. Especially, the resulting detec-
tion system is significantly sped up with our approach.
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1. PROBLEM SPECIFICATION
Over the last decade, Computer-Aided Detection (CAD)
systems have moved from the sole realm of academic pub-
lications, to robust commercial systems that are used by
physicians in their clinical practice to help detect early can-
cer from medical images. The growth has been fueled by the
Food and Drug Administrations (FDA) decision to grant ap-
proval in 1998 for a CAD system that detected breast can-
cer lesions from mammograms (scanned x-ray images) [19].
Since then a number of CAD systems have received FDA
approval. Virtually all these commercial CAD systems fo-
cus on detection (or more recently diagnosis [7]) of breast
cancer lesions for mammography. The CAD concept can
be generalized to many other detection tasks in medical im-
age analysis, such as lung nodule detection and colon polyp
detection.

The typical workflow for a CAD system when used to iden-
tify structures in a new patient image is:

1. Identify candidate structures in the image: Most medi-
cal images, particularly image volumes generated by high-
resolution computed tomography (CT), are very large. Typ-
ically, an efficient image processing algorithm considers each
pixel (or voxel) in the image as a potential candidate “seed”,
and selects a fraction of the seeds as candidates.

2. Extract features for each candidate: A large number of
image features are usually calculated to describe the target
structure. Some of the features can be irrelevant, or redun-
dant, or computationally expensive. Thus, sparse feature
selection is necessary in order to ensure a relatively small



number of relevant features in the deployed CAD system.

3. Classify candidates as positive or negative: A previously-
trained classifier is used to label each candidate.

4. Display positive candidates: Commonly, the digitized im-
age is displayed with marks for inspection by physicians.

In the candidate identification stage, even a small fraction
of the seeds is necessarily very large in order to maintain
high sensitivity. High sensitivity (ideally close to 100%)
is essential, because any cancers missed at this stage can
never be found by the CAD system, which otherwise may
be detected later in the classification stage by exploring ef-
fective features. Hence, a lot false positives are generated
in this stage (less than 1% of the candidates are positive),
which makes the classification problem highly unbalanced.
Moreover, CAD systems are required to be fast enough for
physicians to use in the middle of their diagnostic analysis.

2. OVERVIEW OF OUR APPROACH
Our major contribution in this paper lies in a new cascaded
classification approach that solves a sequence of linear pro-
grams, each constructing a hyperplane classifier of the form
sign(w′x + b) where x is the feature vector and (w, b) are
model parameters to be determined. The linear programs
are derived through piece-wise linear cost functions and the
`1-norm regularization condition. The resulting linear pro-
gram works in the same principle as for the 1-norm SVM.
The `1-norm regularization inherently performs feature se-
lection since penalizing on the 1-norm regularization of w
drives the resulting optimal w to be sparse, meaning only
a few features receive a non-zero weight w. To incorporate
the feature computational complexity into the selection of
features, a weighted `1-norm is employed where weights are
determined by the computational cost of each feature. Each
linear program employs an asymmetric error measure that
penalizes with different weights on false negatives and false
positives. An extreme case is that the penalty for a false
negative is infinity, which is used in the early stage of the
cascade design to alleviate the skewed class distribution and
preserve high detection rates.

Previous cascade classification approaches are mostly based
on AdaBoost [10, 20, 11]. Cascade AdaBoost serves as a
great tool for building real-time robust applications [22, 24],
especially for object detection systems. However, cascade
AdaBoost works with two implicit assumptions: 1. a signif-
icant amount of representative data is available for training
the cascade classifier; 2. all features can be equally evaluated
with a relatively low computational cost. These assump-
tions, unfortunately, often do not hold in CAD systems. Col-
lecting patient data is very expensive and time-consuming.
Available data can be noisy and hardly represent all aspects
of the target characteristics. One of the major concern about
cascade classification approaches is if a classifier within the
cascade does not generalize well and hence screens out more
true positives than necessary, then these true positives will
never be recovered at later stages. The more stages in the
cascade, the riskier the system becomes unstable. This ob-
servation motivates us to design a cascade that consists of
significantly few stages. Furthermore, simple and low-cost
image features are often not sufficient for detecting target

structures in a CAD system. Advanced features are in-
dispensable for performance enhancement, but they require
great computation time. If these features need to be calcu-
lated for a large portion of the candidates at the early stage
of the cascade, the system may become prohibitively slow.
Cascade AdaBoost treats all features equally when selecting
features for each individual stage classifier, which leads to a
computation inefficiency.

Unlike cascade AdaBoost, the proposed approach incorpo-
rates the computational complexity of features into the cas-
cade design. Our cascading strategy brings advantages of
multiple folds: 1. Easy classification: the detection problem
becomes much more balanced at later stages, facilitating ad-
vanced classification algorithms to be applied and perform
well at these stages when overall accuracy becomes more de-
manding at later stages. 2. High computational efficiency:
early stages weed out many non-target patterns, so most
stages are not evaluated for a typical negative candidate.
Computationally expensive features are only calculated for
a small portion of the candidates at later stages. 3. Robust
system: the linear program with a `1-norm regularization
at each stage is a robust system. Although no theoretical
justification is derived, a cascade of very few stages unlikely
harms the robustness of linear classifiers, opposed to a cas-
cade of over 20 stages as AdaBoost cascade often obtains.

3. AN EXAMPLE OF CAD: AUTOMATIC
NODULE DETECTION

In this article, we particularly discuss an automatic lung
nodule detection system. Lung cancer is the leading cause
of cancer-related death in western countries with a mean
5 year survival rate for all stages of only 14%. The prog-
nosis of stage I cancer is more optimistic with a mean 5
year survival rate of about 49%. Although multi-slice CT
scanners allow acquisition of the entire chest, only 15% of
lung cancers are diagnosed at the early stage. The prob-
lem is that a single CT examination may acquire up to 700
axial images whose interpretation is tedious and perceptu-
ally demanding. CAD is considered to be a helpful diag-
nostic tool to handle this increasing amount of radiological
data. It is well recognized that the use of CAD not only
offers the potential to decrease detection and recognition er-
rors as a second reader, but also to reduce mistakes related
to misinterpretation [16][1]. Recently a variety of research
has been dedicated to improvement of automatic nodule de-
tection performance using state-of-the-art machine learning
techniques, such as convolution neural networks [13], sup-
port vector machines [15] or a combined system which uses
simple rules to reduce the number of nodule candidates fol-
lowed by linear discriminant analysis [2].

Our data was collected from multiple sites. The CT vol-
umes are typically of size 512 × 512 × 350 (approximately),
representing a slice thickness of about 1mm. We conduct
a pre-processing step. The region of interest, which is the
lung in our problem, is first extracted using segmentation
techniques, so that all candidates generated will be guar-
anteed inside the lung. This also facilitates the detection of
wall-attached nodules (an example is shown in Figure 1, top-
left). The candidate generation (CG) algorithm employs a
robust blob detection strategy that identifies all the blob-
like structures. The size of the blob-like structures vary in



Figure 1: Shown in this figure are four sample nod-
ules (top row) and four sample false positives (bot-
tom row) from the CG step.

diameter starting from 3mm, which is the minimum size of
interest for radiologists. The output of the CG step is the
locations of candidates, along with some internal features
that are generated as intermediate results of the candidate
generator. These features include simple gray scale statis-
tics and shape based information of the blob. There are a
total of 10 such features output by the candidate generator.
The CG algorithm identifies most of the nodules from the
CT scans, and some non-obvious nodule examples, that are
successfully detected by our CG, are illustrated in Figure 1
(first row, from left to right, wall-attached, elliptical, vessel-
attached, very small nodules). However, it also generates
a lot false positive candidates as shown in Figure 1 (second
row, these false positives, from left to right, are due to lymph
tissue, tissue scarring, unknown structure and motion).

After the CG step, a large number of image features are
computed for each of the candidates to describe the shape
(both 2D and 3D), size, intensity statistics (that describe
texture), and template matching. The complexity of these
features is around linear with respect to the size of the sub-
volume where the feature computation takes place. This
can be as large as 21 × 21 × 21 voxels, and the amount of
computation may become prohibitively large if we need to
compute them on every candidate.

Another set of more advanced and computationally demand-
ing features are calculated as follows. For each detected can-
didate region, the target is segmented by using a nodule seg-
mentation technique developed in [18]. Twenty seven statis-
tical features, computed in a remapped coordinate system,
are derived from the segmented shape of the candidate. The
feature set includes local intensity statistics and geometrical
features, such as size and anisotropy of the gray values at
multiple scales. Furthermore, the intensity homogeneity is
represented in a set of entropic measures by using the gen-
eralized Jensen-Shannon divergence [14]. Jensen-Shannon
divergence extends the well-known Kullback-Liebler diver-
gence between a pair of probability distributions in order
to describe overall similarity of a set of distributions. In-
tensity homogeneity can be represented with the Jensen-
Shannon divergence by computing overall similarity of a
set of intensity-based histograms derived from different sub-
partitions. This approach allows a flexible extension of the
entropy-based intensity homogeneity index as a function of
arbitrary data partition and/or sampling. The computation

Feature Sets Features Mean STD
Feature set 1

(Simple) CG features 0 0
Feature set 2
(Complex) Shape & size 17.3 1.8

Intensity statistics 26.4 7.2
Template 1.5 0.26

Feature set 3
(Most Complex) Multi-scale statistics 2010 351

Table 1: Statistics of the computation time of vari-
ous features in milliseconds per candidate.

time of different sets of features are summarized in Table 1.

4. CASCADE OF HYPERPLANE CLASSI-
FIERS

Cascade classifiers were previously investigated in such works
as [27, 12, 9]. Especially, in the face detection field, many
classification cascading strategies [25, 21, 23] were discussed
and shown good performance. Among those methods, the
AdaBoost boosting algorithm provides a simple yet effective
stagewise learning approach for the cascade design. How-
ever, as discussed in Section 2, it has some disadvantages.

In this section, we investigate a linear programming frame-
work for constructing a cascade of sparse linear classifiers
w′x + b. Each stage of the cascade solves a linear program
which is formulated through the hinge loss

ξ = max{0, 1 − y(w′x + b)}

and the `1-norm penalty or weighted `1-norm penalty

‖w‖γ
1 =

X

γi|wi|

where γi is a weighting factor related to the computational
cost of the i-th feature assuming the cost information is
available or otherwise it becomes the regular `1-norm by
setting all γ = 1. Although the linear programs at each
stage can be solved using any general-purpose linear pro-
gram solver, we show in the next section that the column
generation technique for linear programs, is equally suitable
for optimizing each linear program in an incremental fash-
ion as AdaBoost does. Moreover, the column generation
boosting derivation can be applied to any linear program
regardless of the choice of the trade-off factor between the
detection rate and the false positive rate whereas AdaBoost
needs to be revised for an asymmetric re-weighting scheme
[25, 23].

The proposed cascade classification strategy provides a gen-
eral framework for building a cascade, but a concrete cas-
cade design is problem-specific. Prior knowledge or domain
insights may help identify good features to be included in
various stages for a specific problem. Users can give high
priority to more meaningful and interpretable features to
use in early stages. If no such priori information exists, one
philosophy is to have a preference for less complex and com-
putationally cheaper features.

The cascade hierarchy for our nodule detection system has
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Figure 2: Cascade of classifiers for nodule detection

3 stages as depicted in Figure 2. The first stage (C1) consid-
ers the internal features of the CG algorithm as discussed in
Section 3 because these features come together with candi-
dates and do not require any extra computational cost. As
observed in our experiments, a significant amount of non-
nodule candidates are eliminated at this stage. This stage
in the classification cascade can also be viewed as an effort
to optimize the CG algorithm itself. After the CG step,
more advanced features are calculated to improve the over-
all accuracy for both false negative and false positive rates.
With these features, the second classifier (C2) in the cas-
cade often achieves an acceptable performance. However,
to further improve from the acceptable performance to an
excellent performance, it requires the third set of features
which are computationally demanding. Our cascade evalu-
ate these features in the last stage (C3) for the candidates
that have survived from the second stage. Bear in mind that
each stage can take a single set of features or treat compu-
tationally expensive features as an addition to the feature
set which is already being used. Our system uses the accu-
mulative set of features.

4.1 Utilizing asymmetric loss function at early
stages

In a cascade, computation time and detection rate of the
early stages are critically important to overall performance
of the final system. As emphasized already in previous sec-
tions, any nodules missed at the first stage can not be re-
covered later by the system. Detection sensitivity needs
to be extremely high, and often requires to be 100%. In
most cascade classification methods, a reasonable classifier
is trained at this stage and then the decision threshold is
adjusted (manually or in a greedy fashion) to minimize the
false negatives. We propose a more principled formulation
that guarantees a 100% detection rate as well as optimizes
the best possible false positive rate at 100% detection rate.

Denote {xi, yi}, i = 1, · · · , ` as our candidate set generated
by the CG algorithm. We use X to denote the feature matrix
where each row represents a candidate feature vector x and
each column specifies a feature, and use i to index the rows
(or candidates) and j to index the various features. Notice
that the feature vector x realizes different image features at
different stages. Without loss of generality, we assume that
the classification stage receives `+ positive candidates and
`− non-nodule candidates, X contains d features, and C+

and C− contain, respectively, the sets of indices of positive
sample and negative sample.

Our linear program formulation at each stage seeks an op-
timal hyperplane classifier by minimizing a weighted sum
of the empirical error measure and the regularization fac-
tor. The classification error measure approximated via the

hinge loss is generally defined by
P

ξi

`
. To deal with the

unbalanced problem, we define the error measure as a con-
vex combination of the false negative rate and false positive
rate, i.e.,

µ

`+

X

i∈C+

ξi +
1 − µ

`−

X

i∈C−

ξi (1)

where 0 ≤ µ ≤ 1 is a tuning parameter. The asymmetric
cascade classifier can be achieved by choosing an appropri-
ate value of µ close enough to 1. However, this does not
guarantee a 100% detection rate at the first stage which is
desired for our design. An extreme case of the asymmet-
ric error measure is to give a penalty of infinity to a false
negative so that the resulting classifier preserves all nodule
candidates detected. This asymmetric error cannot be for-
mulated as a convex combination of false positive and false
negative rates, and it corresponds to imposing the constraint
P

j

Xijwj + b ≥ 0, ∀i ∈ C+.

To form a linear program, we rewrite wj = uj − vj and
require uj , vj ≥ 0. The linear program is written as the
following optimization problem with a regular `1-norm reg-
ularization:

minu,v,ξ λ
d
P

j=1

(uj + vj) + 1

`−

P

i∈C−

ξi

s.t.
P

j

Xij(uj − vj) + b ≥ 0, i ∈ C+

−
P

j

Xij(uj − vj) − b + ξi ≥ 1, i ∈ C−,

ξi ≥ 0, i ∈ C−,

uj , vj ≥ 0, j = 1, · · · , d.

(2)

where λ > 0 is the regularization parameter. Note that
|wj | = uj + vj if either uj or vj has to be 0 so

P

j |wj |

is replaced by
P

j
(uj + vj). Solving the above linear pro-

gram yields optimal solutions to the formulation directly
with

P

j
|wj | since at optimality, at least one of the two

variables uj and vj will be zero for all j = 1, · · · , d.

We now derive the dual problem for the above linear pro-
gram since the dual will play a key role in the column
generation derivation for the boosting algorithm which we
shall discuss in the next section. There are two variables
uj , vj corresponding to a feature X·j in problem (2). Cor-
respondingly the Lagrangian dual problem has two con-
straints for the feature X·j , i.e.,

P`

i=1
βiyiXij ≤ λ and

−
P`

i=1
βiyiXij ≤ λ. Combining both constraints, we have



−λ ≤
P`

i=1
βiyiXij ≤ λ. Hence the dual problem is written

as:

maxβ

P

i∈C−

βi

s.t. −λ ≤
P̀

i=1

βiyiXij ≤ λ, j = 1, · · · , d,

P̀

i=1

βiyi = 0,

0 ≤ βi ≤
1

`−
, i ∈ C−.

(3)

The two linear programs (2) and (3) guarantee that all true
positives remain to the next cascade stage. With all nodule
candidates preserved, they reduce the most possible amount
of false positives by minimizing the error 1

`−

P

i∈C−

ξi.

4.2 Incorporating computational complexity
of features

In later stages of a cascade, 100% detection rate may not
be realistic to maintain in order to attain a reasonably good
false positive rate. The convex combination error measure
(1) is thus used in the linear programs to allow the presence
of false negatives. In later stages, more and more computa-
tionally demanding features are included in the training of
classifiers. One philosophy we hold is to allow cheaper fea-
tures to do their best before resorting to expensive features,
thus leading to a computational efficiency. The weighted
`1-norm regularization is employed to form linear programs
where weighting factors γ are each determined by the com-
putational cost of the corresponding feature. Consequently,
expensive features will be selected with greater penalty in
the objective function of linear programs. The optimization
problem can be formulated as the following linear program
similarly by rewriting each wj = uj − vj :

minu,v,ξ λ
d
P

j=1

γj(uj + vj) + µ

`+

P

i∈C+

ξi + 1−µ

`−

P

i∈C−

ξi

s.t. yi

 

P

j

Xij(uj − vj) + b

!

+ ξi ≥ 1,

ξi ≥ 0, i = 1, · · · , `,

uj , vj ≥ 0, j = 1, · · · , d.

(4)

Analogous to the duality analysis for problem (2), the dual
to problem (4) can be derived and written as follows:

maxβ

P̀

i=1

βi

s.t. −λγj ≤
P̀

i=1

βiyiXij ≤ λγj , j = 1, · · · , d,

P̀

i=1

βiyi = 0,

0 ≤ βi ≤
µ

`+
, i ∈ C+,

0 ≤ βi ≤
1−µ

`−
, i ∈ C−.

(5)

Determining an appropriate weight vector γ based on the
feature computational complexity can be problem specific,
and can be an interesting topic for further research. In
our implementation, we simply normalized the computation
time in milliseconds by the Sigmoid function, so γ ranges
from 0.5 to 1.

5. FEATURE SELECTION VIA COLUMN
GENERATION BOOSTING

We describe a column generation technique in this section.
The column generation techniques have been widely used
for solving large-scale LPs or difficult integer programs since
1950s [17], and have been introduced to the machine learning
community, i.e., the so-called LPBoost [5, 6]. But the LP-
Boost procedure derived in [5, 6] does not directly solve our
formulations. Although our formulations (2) and (4) can be
optimized by any linear program solvers. The to-be-derived
boosting scheme offers an on-line and incremental fashion
solution, and provides as well insights into which features
play roles during the training phase, facilitating feature se-
lection.

In the context of column generation, a feature X·j is viewed
as a column. During the process, features are continuously
selected and classifiers are optimized based on the selected
features corresponding to the columns generated. In the
primal space, the column generation method solves linear
programs on a subset of variables w, which means not all
columns of the matrix X are generated at once and used to
construct the classifier. Columns are generated iteratively
and added to the problem to achieve optimality. In the
dual space, a column in the primal problem corresponds to
a constraint in the dual problem. When a column is not
included in the primal, the corresponding constraint does
not appear in the dual. If a constraint absent from the dual
problem is violated by the solution to the restricted problem,
this constraint (a cutting plane) needs to be included in
the dual problem to further restrict the dual feasible region.
Thus these techniques are also referred to as cutting plane
methods [3].

The variables wj are then partitioned into two sets, the
working set W used to build the model and the remain-
ing set denoted as N that is eliminated from the model as
the corresponding columns are not generated. Each gener-
ation step optimizes a subproblem over the working set W

of variables and then selects a column from N to add to
W . At each iteration, wj (i.e., uj , vj) in N can be inter-
preted as wj = 0, or accordingly, uj , vj = 0. Hence once
a solution αW = uW − vW to the restricted problem is ob-
tained, α̂ = (αW αN = 0) is feasible to the master linear
program (4). The following statement examines when an
optimal solution for the master problem is obtained in the
column generation procedure.

Remark 1 (Optimality of Column Generation).

Let (û, v̂, ξ̂, β̂) be the primal-dual solution to the restricted
version of problem (4) with variable b always included in W .
The solution is optimal to (4) if and only if for all j ∈ N ,
˛

˛

˛

P

i β̂iyiXij

˛

˛

˛ ≤ λγj.

To show the optimality is achieved, we need to confirm pri-
mal feasibility, dual feasibility and the equality of primal
and dual objectives. Recall how we define û = (uW uN = 0)

and v̂ = (vW vN = 0), so (û, v̂, ξ̂) is feasible for LP (4).
Since the solution is optimal to the restricted problems, the
primal objective is equal to the dual objective. Now the



key issue to evaluate is the dual feasibility. Since β̂ is opti-
mal for the restricted problem, it satisfies all constraints of
the restricted dual. Hence the dual feasibility is validated

if
˛

˛

˛

P

i
β̂iyiXij

˛

˛

˛
≤ λγj , j ∈ N . Following the same line of

proof, we can show a similar optimality condition for linear
program (2).

Any column that violates dual feasibility can be added. A
common heuristic is to choose the column X·j that maxi-

mizes 1

γj

˛

˛

˛

P

i
β̂iyiXij

˛

˛

˛
over all j ∈ N . In other words, the

column X·j that solves

τ = max
j∈N

1

γj

˛

˛

˛

˛

˛

X

i

β̂iyiXij

˛

˛

˛

˛

˛

(6)

will be included in the restricted problem. Compared with
original LPBoost in [5], our method encloses negations of
weak models X·j in the hypothesis set. We summarize the
column generation steps in Algorithm 1 where e is a vector
of ones of appropriate dimension corresponding to the bias
term b.

Algorithm 1. Column generation for LP (4)
1. Initialize the first column X0 = e,

specify the tolerance tol

2. For t = 1 to T , do
3. Solve problem (4) with Xt−1,

obtain solution (ut,vt, ξt, βt)
4. Solve problem (6) to obtain τ ,

and let z be the solution
5. If τ ≤ λ + tol, optimal, break from loop,

otherwise, Xt = [Xt−1 z], continue
6. End of loop
7. ŵ = ut − vt.

Similarly, column generation for linear program (2) can be
derived and is depicted in Algorithm 2.

Algorithm 2. Column generation for LP (2)
1. Initialize the first column X0 = e,

specify the tolerance tol

2. For t = 1 to T , do
3. Solve problem (2) with Xt−1,

obtain solution (ut,vt, ξt, βt)
4. Solve problem

τ = max
j∈N

˛

˛

˛

˛

˛

X

i

β̂iyiXij

˛

˛

˛

˛

˛

to obtain τ ,
and let z be the solution

5. If τ ≤ λ + tol, optimal, break from loop,
otherwise, Xt = [Xt−1 z], continue

6. End of loop
7. ŵ = ut − vt.

6. COMPUTATIONAL RESULTS
We validate the cascade linear program (LP) classification
algorithm with respect to its generalization performance and
computational efficiency. We compared our cascade LP strat-
egy to a single stage 1-norm SVM model constructed using

all features, and the commonly-used cascade AdaBoost. We
also compared our approach to a greedy search algorithm
[26] based on linear discriminant analysis (LDA) in the most
recent lung nodule detection system.

6.1 Data and experimental settings
A prototype version of our system (not commercially avail-
able) was applied on a proprietary de-identified patient data
set. The dataset consisted of 176 high-resolution CT images
that were randomly partitioned into two groups: a training
set of 90 volumes and a test set of 86 volumes. In total, 129
nodules were identified and labeled by radiologists, among
which 81 appeared in the training set and 48 in the test set.
The training set was then used to optimize the classification
parameters, and construct the final classifier which was then
tested on the independent test set of 86 volumes.

The candidate generation algorithm was independently ap-
plied to the training and test sets, achieving 98.8% detec-
tion rate on the training set at 121 FPs per volume and
93.6% detection rate on the test set at 161 FPs per vol-
ume, resulting in totally 11056 and 13985 candidates in the
respective training and test sets. There can exist multiple
candidates pointing to one nodule, so 131 and 81 candidates
were labeled as positive in the training set and test set,
respectively. Numerical image features of totally 86 were
designed, 10 of which came from the CG step with no ex-
tra computational burden, and were used to train the first
classifier. The feature set 2 contained size, shape, intensity,
template matching features which required on average 15.6
millisec. cpu time per feature per candidate, and was used
together with the CG features to learn the second classifier.
The multi-scale statistical features depicting sophisticated
higher-order properties of nodules comprised the feature set
3 and were used in the final classifier construction together
with all other features. These features each on average need
2010 millisec. cpu time for a candidate.

6.2 Generalization performance
During the training phase, the tuning parameters in the
greedy LDA approach and the parameters (λ, µ) in our cas-
cade LP approach as well as 1-norm SVM were optimized
according to the leave-one-patient-out (LOPO) cross vali-
dation performance [8]. The LOPO procedure is, in spirit,
similar to leave-one-out. The parameter λ was chosen from
choices of {0.01, 0.1, 1, 10, 100, 1000}, and µ was chosen
from a range [0.6, 0.98] with a stepsize 0.02. Parameters at
each stage of our cascade LP were tuned to achieve the best
LOPO performance. Notice that the first stage of cascade
LP does not require µ. The single 1-norm SVM was tuned
to attain the best overall LOPO performance. The choice
of λ = 1 turned out to be the best option for both cas-
cade LP and 1-norm SVM on the training data, and µ was
selected as 0.96 for 1-norm SVM, and 0.98 for the second
and third stages in our cascade. Figure 3 depicts the 3 Re-
ceiver Operator Characteristic (ROC) curves of the LOPO
performance for classifiers, respectively, obtained by the 3
algorithms. Cascade LP outpermed the single 1-norm SVM,
and dominated greedy LDA at the lower end of false positive
rates.

In the experiments with cascade AdaBoost, we largely fol-
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Figure 3: ROC curves show the leave-one-patient-
out performance for 3 classifiers on the training
data.

lowed the procedure described in [24]1. Each stage classifier
was learned using all available features and after a classifier
was obtained, the decision threshold was adjusted to mini-
mize false negatives since AdaBoost itself aimed to optimize
overall classification accuracy whereas the cascade design
requires high detection rates. Cascade AdaBoost does not
have hyper-parameters to tune. Instead it requires a vali-
dation set. The performance on the validation set is used
to determine when to terminate the boosting steps at each
stage. Hence other than using LOPO process as used by
other approaches, we randomly sampled 30% of the train-
ing patient cases and used them as a validation set. Cas-
cade AdaBoost also requires a pre-specified target accuracy
which we chose as the minimum acceptable detection rate
of 88% at 4 false positives per volume. In our experiment,
it reached the target accuracy on the validation set at the
4th stage, so 4 classifiers were constructed in the cascade.
The overall training and validation performance is reported
in Figure 5. We also tried to only include CG features in
the first stage of AdaBoost cascade, but it failed reducing
a reasonable amount of non-nodule candidates with a full
detection rate (i.e., the CG sensitivity).

The four classifiers obtained respectively by cascade LP, 1-
norm SVM, greedy LDA and cascade AdaBoost were eval-
uated on the unseen test set. The performance is summa-
rized in Figure 4. We see cascade LP and cascade AdaBoost
generalize equally well. Greedy LDA seems to be a bit over-
fiting as LOPO and test ROC curves have a large gap. The
two cascade approaches outpermed the other two methods
significantly with a t-test p-value close to 0.

6.3 Selected features and speed
The numbers of features selected from different feature sets
are listed in Table 2 together with the numbers of candidates

1The AdaBoost approach [11] used in [24] has been imple-
mented by other sources. A MatLab version of the imple-
mentation was downloaded from MatLab Statistics web page
http://www.mathtools.net/MATLAB/Statistics/
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Figure 4: ROC curves of 4 classifiers on the test
data.
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Figure 5: ROC curves of cascade AdaBoost classifier
on the validation set and training set.

remained after corresponding stages or classifiers. Features
listed at the columns corresponding to later classifiers are
the features selected different from those in previous stages.
Notice that the computational cost mainly came from fea-
ture evaluation since all the four algorithms adopted linear
classifiers which cost ignorable time in comparison with the
time for feature calculation.

Clearly, cascade LP demonstrates computational efficiency.
Its 3 stages together selected 18 features, and only 2 of
them were from feature set 3 which were evaluated only for
393 candidates in the last stage. The final system achieved
87.5% versus 0.7 FP rate. The first stage significantly re-
duced the false positive rate from 161 to 34.1. Only 3011
candidates left for further evaluation of image features. The
1-norm SVM single model and greedy LDA approach both
selected more features from set 3 and they computed these
features for all the candidates, resulting in momentously



Cascade Sparse LP `1-norm SVM Greedy LDA Cascade AdaBoost
C1 C2 C3 C1 C2 C3 C4

Feature set 1 2 1 0 7 3 3 0 2 2
Feature set 2 − 8 5 12 7 3 2 3 4
Feature set 3 − − 2 14 6 2 4 1 2
Number of
candidates 3011 393 102 231 298 4384 1452 754 159
Detection
percentage 93.6 89.1 87.5 87.5 83.3 93.6 89.6 88.0 87.5

False positives
per volume 34.1 3.5 0.7 2.2 3.0 50 16 7.9 1

Table 2: Selected features and performance summary of different classifiers

longer running time (14 ∗ 2010 + 12 ∗ 15.6 = 28327 millisec.
per candidate and totally 3.9×105 sec. on all candidates for
“SVM”, and 6 ∗ 2010 + 7 ∗ 15.6 = 12169 millisec. per can-
didate, and totally 1.7× 105 sec. for “LDA”) in comparison
with a total execution time of 3011∗8∗15.6+393∗(5∗15.6+
2 ∗ 2010) millisec., and approximately 1986 sec. that the
cascaded classifier achieved. Although cascade AdaBoost
achieved similar generalization performance, it required a
significant greater execution time of 9.7 × 104 sec.

7. CONCLUSIONS
We have proposed a novel cascade classification approach
based on sparse linear programs for computer aided detec-
tion systems. Our approach can handle very large training
sets and produce an excellent generalization. In addition, it
offers the advantage of producing highly sparse hyperplane
classifiers. The proposed cascade algorithm is relatively easy
to implement since at each stage of the algorithm only a
linear program has to be solved. In general, any linear pro-
gram solver can be used to optimize the related linear pro-
grams. We particularly presented an incremental solver via
column generation optimization. The proposed approach
prioritizes features with low computational cost to be at
the top of the cascade and incorporates the feature compu-
tational complexity into the selection of features, resulting
into fast CAD systems. Comparisons to other existing lung
CAD algorithms on a real dataset consisting of 176 high-
resolution CT images illustrate the superiority of the new
approach.

Our current approach optimizes hyper-parameters (λ, µ) at
each stage to achieve the best performance of that stage. A
possible extension of this work is to develop automatic op-
timization of hyper parameters of individual stages towards
the final system performance. Theoretical examination of
the system robustness is also an important extension for
further research.
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