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ABSTRACT 

Statistical shape models generally characterize shape 

variations linearly by principal component analysis (PCA), 

which assumes that the non-rigid shape parameters are 

drawn from a Gaussian distribution. This practical 

assumption is often not valid. Instead, we propose a 

constrained local model based on independent component 

analysis (ICA) and use kernel density estimation (KDE) for 

non-parametrically modeling the distribution of the shape 

parameters. The model fitting is achieved by maximum a 

posteriori via the expectation-maximization algorithm and 

results in a mean shift-like update optimizer. The proposed 

approach is capable of modeling non-Gaussian shape priors 

and significantly outperformed the PCA-based model 

(p=0.03) and ICA-based model with Gaussian shape prior 

(p=0.01) in experiments to detect facial landmarks. 

Moreover, we applied the model to Down syndrome 

detection from frontal facial photographs and obtained 

higher accuracy than the best results reported in literature. 

Index Terms— Constrained Local Model, Non-

Parametric Shape Prior, Kernel Density Estimation, 

Independent Component Analysis, Down syndrome  

 

1. INTRODUCTION 

 

Statistical shape models (SSM) are popular techniques for 

interpreting shape variations through analysis of training 

samples. Principal component analysis (PCA) is most 

commonly used to describe shape variations in the form of 

point distribution model (PDM) [1]. However, PCA-based 

models assume a Gaussian distribution of shape variations, 

which is often not valid and may lead to inaccurate statistical 

descriptions of shapes and generation of implausible shape 

instances. Moreover, the principal components (PCs) of 

PCA tend to represent global shape variations [2]. 

Independent component analysis (ICA) is another popular 

method to model non-Gaussian and localized statistical 

shape variations, addressing the above issues. To the best of 

our knowledge, the studies of PDM with ICA are scarce. 

Uzümcü et al. compared SSM with ICA vs. PCA, where the 

independent components (ICs) are ordered based on the 

locality of the shape variations [2]; but their SSM fitting 

simply used the ICA’s linear projection and they constrained 

plausible shapes within an empirical shape variation range. 

Zhao et al. investigated constrained local model (CLM) with 

ICA by optimizing the appearance likelihood from local 

patches and shape reconstruction error introduced by ICA 

[3]; they assumed the shape prior to be uniformly 

distributed. ICA-based SSM were also investigated in 3D 

and 4D cardiac MR images [4, 5] using the method in [2].  

Our key claim is that modeling the shape prior in ICA-

based PDM by using a generalized non-Gaussian 

distribution improves the accuracy of shape modeling. This 

claim is theoretically justified by the definition of ICA to 

learn a linear basis that maximizes the non-Gaussianity of 

model parameters [6].  

As our novel methodological contribution, we estimate the 

distribution of shape parameters using non-parametric kernel 

density estimation (KDE) in the ICA-based PDM and embed 

it to a CLM to locate facial landmarks. We propose a new 

updated formula for CLM fitting by optimizing the 

maximum a posteriori (MAP) objective function with the 

expectation-maximization (EM) algorithm. The resulting 

formula takes a form similar to the mean shift optimizer 

when solving the M-step by Gauss-Newton method. The 

previous CLM methods in literature [7-9] employed a 

Gaussian shape prior in their PCA-based PDM, which fall 

short of accurately describing the multi-modal shape 

variations. Other researchers introduced Gaussian mixtures 

to model the multi-modal distribution of shape parameters 

[10, 11], where the number of Gaussians were fixed to a 

value selected empirically. However, choosing an 

appropriate number of Gaussian components is not trivial 

and is data and domain-specific.  

The proposed KDE-based ICA-CLM (ICA-KDE) method 

is validated by applying it to the automatic identification of 

facial landmarks and detection of Down syndrome (DS) 

from facial photography. DS is the most common 

chromosomal condition; one out of 691 infants is born with 

DS every year in the US [12]. DS causes lifelong mental 

retardation, heart defects and respiratory problems and its 

early detection is fundamental for managing DS and 

providing patients with lifelong medical care. ICA-KDE 

significantly improves the automatic identification of facials 



landmarks (p=0.03/0.01, respectively) when compared with 

PCA/ICA-based models with Gaussian priors, and detects 

DS with 97.8% accuracy, which is an improvement of the 

best accuracy reported in [3]. 

 

 
Fig. 1. The first two principal modes obtained by PCA (a, b) and 

independent modes obtained by ICA (c, d) of facial variation, 

where  is the empirical standard variation of training samples and 

 the eigenvalues of PCA. 

 

2. MATERIALS AND METHODS 

 

2.1. Data 

We employed the dataset used in [3] for facilitating simple 

comparison. The dataset contains 100 frontal facial images 

(one image per subject) including 50 DS patients and 50 

healthy individuals, who were acquired with various 

illuminations, resolutions, expressions and poses. The 

subjects are from multiple ethnicities and both genders. The 

age of patients varies from 0 to 36 month. Forty-four 

anatomical landmarks were manually placed on each image 

on the eyes (10), nose (14), mouth (9), and along the contour 

of the face (11). The manual landmarks were used as ground 

truth in the evaluation of landmark detection. 

 

2.2. ICA-based CLM with KDE 

Building ICA-based CLM: A CLM consists of a PDM and 

a local texture model. The PDM describes the shape 

variation of the training samples and the local texture model 

characterizes the region appearance around each landmark. 

We denote a shape with n  landmarks in two dimensions as 

 1 221
, ,, .,

T

n n
x y x y x yx  All shapes  are first aligned 

using Procrustes analysis [13] to remove translation, rotation 

and scaling. Then the non-rigid shape variation is modeled 

using ICA: ,X X A S    where  is the mixing matrix 

and S the independent components (ICs). The ICs, i.e. the 

shape parameters, are computed as   ,S W X X   where 

1
W A


  is the de-mixing matrix. ICA is defined as the 

method that finds a linear transformation  maximizing the 

non-Gaussianity of . In this study, we use a robust 

algorithm to estimate   and  by iterative maximization 

of the kurtosis contrast with algebraic optimal step size [6], 

and select ICs following the method proposed in [3] by 

using entropy and the interquartile range to measure the 

sample variation and locality. The complete PDM consists 

of a global rigid transformation and non-rigid variation: 

  ,sR A  x x q t  where ,s R and t denote the scaling, 

rotation matrix and translation, respectively. We denote the 

shape parameters as  , , ,s Rp t q , including both the rigid 

shape parameters  , , ,
rigid x y

s t tp  and non-rigid shape 

parameters .q The first two principal (PC) and independent 

modes (IC) of facial variation built from DS and healthy 

cases combined are compared in Fig. 1. 

 

 

Fig. 2. The distribution of shape parameters estimated by Gaussian 

and KDE for (a) the first IC and (b) the second IC obtained by 

ICA. See Fig. 1 for modes of variation. 

The local texture model is built with linear support vector 

machines (SVM) as described in [3, 8]. The direct use of 

gray scale intensities as descriptors may include noise and 

we improve the model by using the histogram of oriented 

gradients (HoG) [14] as patch descriptor to remove noise 

and enhance edges. For HoG descriptors, the parameters 

including the number of orientation bins, cell size and block 

size were set to 9, 8 and 2, respectively. Thus 

for m extracted patches in an image, we obtain m training 

vectors  1 2
, , ,

m
g g g with assigned output SVM values 

 1,1 , 1, 2, ,
i

o i m    .The decision function of the linear  

SVM can be represented by the linear combination of the 

input vectors  
T

i i
f  g g , where  is the weight for each 

input vector and used as the local texture model.  

 

Fitting ICA-based CLM with KDE: The CLM fitting 

objective can be interpreted probabilistically as the MAP of 

the shape parameters. The specific form of the objective 

function implicitly assumes conditional independence 

among the detections of each landmark 

 (1) 

where  1,1
i

l   is a discrete variable denoting whether the 

i
th

 landmark  is misaligned or aligned, 

 and  is the 

image. If the shape parameters are assumed to be sampled 

from an underlying distribution, the objective function leads 

to MAP estimation, otherwise it leads to a maximum 

likelihood estimation by assuming a uniform shape prior.  

In this study, we propose to use KDE to approximate the 

probability density function (pdf) of the non-rigid shape 

parameters. Fig. 2 shows the pdf of the first and second IC in 

Fig. 1 estimated by Gaussian and KDE. A uniform prior is 

commonly placed on the rigid transformation, which 

assumes all rigid shape parameters are equally likely. 



Following this convention, the shape prior can be written as 

a KDE given a set of training shape parameters 

: 

(2) 

where  is the dimension of the data (  here), N the 

number of training samples,  the bandwidth (smoothing 

parameter) and  the multivariate Gaussian kernel. 

Estimating the bandwidth of the kernel function is not a 

trivial problem. Here we estimate  as the homoscedastic 

covariance  by using the nearest neighbor distance: 

 [15]. 

Following the method in [8], the data likelihood term in 

(1) is also modeled using Gaussian kernel density estimation 

, where  

denote the i
th

 landmark and its ground truth, respectively, 

and . The true location of the landmark 

 is treated as a hidden variable in a set of candidate 

locations  
1

n

i i 
   and  is a homoscedastic isotropic 

Gaussian covariance. Substituting (2) into (1), the objective 

function becomes 

(3) 

We then derive a maximizer of the above objective function 

by using the EM algorithm. In the E-step, the posterior over 

the candidates is evaluated as 

  (4) 

Then the M-step minimizes the following auxiliary function  

 (5) 

The function in (5) is minimized using the Gauss-Newton 

optimization that yields the following form of the shape 

parameter update  

 (6) 

 (7) 

  (8) 

where  is the Gauss-Newton Hessian, are the mean 

shift vectors for shape prior and likelihood term, 

respectively, and J the Jacobian of the PDM.  

    For comparison, we also built CLM with Gaussian prior 

based on both PCA and ICA following the method in [8]. 

 

2.3. Feature Extraction, Selection and Classification 

Following [3], we extract 27 geometric features including 

normalized Euclidean distance and angles and 132 texture 

features based on local binary patterns [16]. These features 

are combined then undergone feature selection. Finally, the 

DS patients are separated from the healthy groups using 

support vector machines (SVM) [14] with RBF kernel, 

linear SVM, k nearest neighbor (k-NN) [15], random forests 

(RF) [16] and linear discriminant analysis (LDA) [17]. The 

parameters for classifiers are found optimally by grid search. 

Leave-one-subject-out validation was conducted throughout 

the framework, including SVM texture model training, CLM 

building, feature selection and classification, performed for 

each fold separately.  

 

3. EXPERIMENTS AND RESULTS 

 

A CLM-based Down syndrome detection system [3] is used 

as our baseline system. The performance of the proposed 

ICA-KDE method to detect facial landmarks was compared 

with results obtained with PCA-based CLM (PCA) and ICA-

based CLM with Gaussian shape prior (ICA-Gaussian).The 

validation metric was the point-to-point distance between the 

landmarks obtained by the automated method and the 

ground truth normalized by the distance between the pupils.  

The normalized errors were 0.038±0.028, 0.040±0.036 and 

0.036±0.025 for PCA, ICA-Gaussian and ICA-KDE, 

respectively. The comparison of different models is shown 

in Fig. 3. Significance was computed using the Wilcoxon 

rank-sum test [17] based on results obtained on the detection 

of all facial landmarks. A significant improvement was 

recorded by using ICA-KDE vs. PCA (p=0.026) and by 

using ICA-KDE vs. ICA-Gaussian (p=0.010). ICA-KDE 

outperformed the other methods on average and on all 

anatomical areas, except for the nose region. The error on 

the nose was larger by using ICA-based methods than PCA 

due to the lack of non-prominent texture features at the top 

of the nose. The performance of ICA-Gaussian was worse 

than PCA which may be caused by the inappropriate shape 

prior imposed on ICA-based PDM. The average time for 

analyzing one new case with ICA-KDE (30 iterations) was 

39.14s using MATLAB on a Windows 8 core workstation 

with 12GB RAM, shown in Fig. 3 (b).  

Next, we evaluated the proposed ICA-KDE method in 

terms of accuracy, precision and recall for DS detection with 

different model fitting methods. The experimental results are 

shown in Table 1. For DS detection, ICA-KDE 

outperformed PCA and ICA-Gaussian models. The best 

performance of 97.8% accuracy with 97.7% precision and 

97.7% recall was achieved by using linear SVM and 72 

selected combined features. The area under the receiver 

operating characteristic (AUROC) was 0.997. The accuracy, 

precision and recall were improved by 2.2%, 2.4% and 2.4% 

from those reported by Zhao et al. [3] using the same data, 

respectively. This improvement is the equivalent of 50% 

reduction of misclassification rate over the state-of-the-art in 

the tight space left for performance improvement. 

 



     

Fig. 3. Comparison of PCA, ICA- Gaussian and ICA- KDE: (a) the 

normalized landmark detection errors for eyes, nose, mouth and 

inner facial landmarks; * indicates the significantly improved cases 

on eyes and inner face; (b) the cumulative error distribution curves. 

4. CONCLUSION 

 

We proposed an ICA-based CLM with the shape prior 

estimated by KDE instead of a Gaussian. The model fitting 

was achieved by optimizing a maximum a posteriori via EM 

algorithm, where the M-step solved by Gauss-Newton 

yielded a mean shift-like update iterator. The proposed 

method significantly outperformed PCA-based CLM 

(p=0.03) and ICA-based CLM with Gaussian shape prior 

(p=0.01). When applied to DS detection, the ICA-KDE 

achieved 97.8% accuracy that was 2.2% higher than the 

previous state-of-the-art. One of the weaknesses of the 

method is the increased but acceptable computational 

complexity and time (39.1 s per new case based on 30 

iterations). Another question is the automatic estimation of 

KDE’s bandwidth, which strongly influences the 

optimization results. We will investigate other more 

advanced methods to estimate the bandwidth of KDE in the 

future. The promising results of our general methodology 

encourage us to further investigate the detection of other 

types of facial dysmorphology and use in other medical and 

non-medical applications. 
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Table 1. Comparison of different classifiers for DS detection 

 
PCA 

ICA-

Gaussian 
ICA-KDE 

 

SVM-

RBF 

0.934 

0.930 

0.930 

0.934 

0.911 

0.953 

0.967 

0.976 

0.953 

Accuracy 

Precision 

Recall 

Linear 

SVM 

0.956 

0.953 

0.953 

0.901 

0.886 

0.907 

0.978 

0.977 

0.977 

Accuracy 

Precision 

Recall 

k-NN 

0.912 

0.927 

0.884 

0.945 

0.952 

0.930 

0.956 

0.976 

0.930 

Accuracy 

Precision 

Recall 

RF 

0.912 

0.927 

0.884 

0.901 

0.886 

0.907 

0.923 

0.929 

0.907 

Accuracy 

Precision 

Recall 

LDA 

0.956 

0.953 

0.953 

0.967 

0.976 

0.953 

0.945 

0.952 

0.930 

Accuracy 

Precision 

Recall 

 

(a)  

 
(b)  

 


