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ABSTRACT

Novel variable interaction measures with random forest classifiers
are proposed. The proposed methods efficiently measure the change
in classification performance due to non-linear interactions between
variables by exploiting random permutation of out-of-bag samples in
random forests. They can be readily extended to measure n-subset
interactions in multi-class bagging ensembles with any base super-
vised classifiers. This paper experimentally compares pairwise ver-
sions of our measure in binary RF classifiers against Breiman’s Gini-
based measure using three datasets, a toy dataset with known inter-
actions and two biomedical datasets from the UCI ML repository,
demonstrating the effectiveness of the proposed methods.

1. INTRODUCTION

Variable interaction (VI) is a measure of how statistical effects in
data from a set of variables/features/attributes to a single variable
deviate from an additive linear model/explanation [1]. In supervised
classification, VI can be used to measure how a set of variables col-
lectively increase/decrease the class prediction accuracy. In partic-
ular, we aim to measure such performance-influencing interactions
between variables even when each individual feature does not exhibit
a significant performance increase in its marginal effect. There are
numerous examples of this type in data mining (DM) and machine
learning (ML), such as discovering a network of genotype interac-
tions in bioinformatic (e.g., microarray) data for predicting a pheno-
type even when each genotype at a single-locus may not exhibit high
predictive accuracy [2, 3, 1].

VI in general has received very limited attention, unlike the
popular variable importance approaches [4]. The standard treatise
of VI in statistics employs logistic regression modeling [1] and
has been applied to supervised classification [5], however its ap-
plicability to more general non-linear classifiers remains unknown.
To this end, Carrizosa et al. [6] has studied VI for support vector
machine (SVM), however their variable binarization approach is
classifier/SVM-specific and the standard SVM theory is limited
to binary classification. Breiman and Cutler [7] proposed VI for
random forest (RF), another effective and popular multi-class clas-
sification theory [8], and Tuv et al. [9] recently reported a related
method for RF. However their Gini impurity-based VI approach is
also classifier-specific and limited to measuring specific pairwise
interactions known as variable masking effect [7, 9].

We propose novel VI measures inspired by Breiman’s variable
importance measure for RF exploiting random data permutation [7].
An advantage of the proposed methods is that they can measure in-
teractions among arbitrary numbers of variables in multi-class clas-
sification, and are not restricted to RF but applicable to any super-
vised classifier based on bagging [10]. The recent increase in interest

in RF’s variable importance from bioinformatics [4, 11, 12] has not
yet attracted much attention to RF’s VI measures beyond Breiman’s
original formulation, which has received only a cursory description
in [7]. This paper characterizes Breiman’s method rigorously and ex-
perimentally compares two pairwise versions of the proposed meth-
ods against it using three datasets, including the SPECTF and Wis-
consin Breast Cancer datasets from the UCI ML repository [13].

2. METHODS

2.1. Random Forest: Overview

RF [8] is a popular supervised classification and regression method
that combines the concepts of bagging [10] and random feature se-
lection [14]. RF consists of an ensemble of CART-like decision
trees (DTs), each of which is learned from a bootstrapped sample
(i.e., random sampling of the original training set with replacement,
yielding a new set with the same number of cases as the original).
To perform a classification, we put an input down each DT, which
outputs the label of the terminal node. The DTs then vote for the
classification they each produce. The classification with the plural-
ity of votes is output by the forest.

To grow the individual DTs, each non-terminal node is split by
considering a randomly chosen variable subset. A new random sub-
set is generated at each node, with the variable and cutpoint that
produce the greatest average information gain selected to split the
node. Of the cases used to split the node, those with values less/more
than the cutpoint are associated with the left/right child node, re-
spectively. This procedure begins at the root node with the full boot-
strapped training set and continues recursively until every remaining
case has the same label for every node. The consensus label is then
assigned to the leaf node. No pruning is performed on the DTs. To
maximize the trees’ predictive power and minimize their correlation,
the cardinality of the random subset is tuned as a parameter. The
number of trees is also set as a parameter.

As a result of the sampling with replacement, some of the orig-
inal training cases will be represented multiple times in a new boot-
strapped set while others will not be represented at all. On aver-
age, approximately 63.2% of the training cases appear at least once
in a bootstrapped set. The remaining out-of-bag (OOB) cases are
recorded for each tree and serve as a validation set to compute var-
ious measures, such as generalization (test) error estimate and vari-
able importance.

2.2. Breiman’s VI with Gini Impurity Decrease

In [7], Breiman defines interaction as variables m and k interact if
a split on one variable, say m, in a tree makes a split on k either
systematically less possible or more possible. Breiman proposed to
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derive such a VI formulation with statistical Gini impurity decreases.
Given a training data set D = {(xi,yi)} with M -variate features
xi ∈ R

M and K classes yi ∈ C = {ck|k = 1, .., K}, Gini impurity
of D is defined as the probability that two cases selected at random
(with replacement) will have different labels,

Gini(D) =
K∑

k=1

pk(1− pk) = 1−
K∑

k=1

p2k (1)

where K = |C| and pk is the probability that a randomly chosen
case from D will be a member of class ck ∈ C. As the training
set is partitioned to split the nodes of a decision tree, the partition
corresponding to each node will have lower Gini impurity than the
partition corresponding to the node’s parent. Thus the decrease in
Gini impurity at a non-terminal node is given by,

ΔGini(n) = Gini(Pn)−
|Ln|

|Pn|
Gini(Ln)−

|Rn|

|Pn|
Gini(Rn) (2)

where Pn is the partition corresponding to node n and Ln and Rn

are the partitions corresponding to the left and right child nodes of
n, respectively. For each variable v, this Gini impurity reduction is
then aggregated for each tree separately,

aggΔGini(t, v) =
Nt∑

n=1

|Pn|I(vn = v)ΔGini(n) (3)

where vn is the variable on which node n is split and Nt is the num-
ber of nodes in tree t. For each tree t ∈ T where T is the set of all
trees in RF, we rank the variable set {vm|m = 1, ..,M} according to
their aggregated Gini impurity reductions, resulting in rank(t, vm).
A sample estimate of VI denoted by eI is then given by the average
absolute rank difference between a pair of variables (v1, v2) among
all trees T ,

eI(v1, v2) =

∑
t∈T

|rank(t, v1)− rank(t, v2)|

|T |
(4)

Now, with an assumption that two variables are independent of
each other, the expected value tI of the absolute rank difference for
v1 and v2 can be derived by using the Gini mean difference formula
in [15],

tI(v1, v2) = E[|r1 − r2|]

=

∑M

ri=1

∑M

rj=1,ri �=rj
|ri − rj |p(ri, rj |v1, v2)

∑M

ri=1

∑M

rj=1,ri �=rj
p(ri, rj |v1, v2)

=

∑M

ri=1

∑M

rj=1
|ri − rj |p(ri|v1)p(rj|v2)

1−
∑M

r=1
p(r|v1)p(r|v2)

(5)

where rq = rank(t, vq) and p(r|v) indicates a conditional distribu-
tion of ranks for a variable v over trees in T . p(r|v) can be estimated
from {rank(t, vm)|t ∈ T,m = 1, ..,M} by p(r|v) = h(r, v)/|T |,
where h(r, v) is a histogram of ranks associated with v over T . Fi-
nally, Breiman defines the Gini-based VI as the difference between
these two measures multiplied by a positive constant A > 0,

Ibrei(v1, v2) = A ∗ (eI(v1, v2)− tI(v1, v2)) (6)

A large positive value of Ibrei(v1, v2) indicates interaction between
v1 and v2, such that a split on one variable inhibits a split on the
other, thus increasing the rank difference on average.

2.3. Proposed Permutation-Based VI Measures

We propose a novel VI measure, inspired by the permutation-based
variable importance measure originally proposed by Breiman and
Cutler [7]. RF associates each DT with a distinct OOB set Ot. For
each tree t, we randomly permute the values of variable v among the
cases in Ot. The numbers of errors before and after the permutation
are then computed and the difference is recorded for each variable,

ΔErr(t, v) =
∑

d∈Ot

(I(t(dv) �= cd)− I(t(d) �= cd)) (7)

where t(d) is the classification produced by tree t for case d ∈ Ot,
dv is the case d with variable v randomly permuted, and cd is the
true class of case d. Breiman defined a variable importance measure
vImp(v) as the average error-increase due to the data permutation
over T [8],

vImp(v) =

∑
t∈T

ΔErr(t, v)

|T |
(8)

We propose VI measures that assess the relative change in
vImp(v1) when the other variable v2 is present versus when it is
lost. To formulate this measurement, we extend the permutation
of OOB cases to arbitrary pairs of variables (v1, v2) and define the
error-increase due to the permutation as,

ΔErr(t, v1, v2) =
∑

d∈Ot

(I(t(dv1,v2) �= cd)− I(t(d) �= cd)) (9)

where dv1,v2 is the case d with variable v1 and v2 randomly per-
muted over Ot. We model the predictive information of v1 with
v2 being present by ΔErr(t, v1), and that of v1 with v2 being
lost by ΔErr(t, v1, v2) − ΔErr(t, v2). Then the predictive in-
formation gained for v1 due to the presence of v2 is expressed as
ΔErr(t, v1) + ΔErr(t, v2) − ΔErr(t, v1, v2). This gain in-
creases its value when the presence of v2 increases ΔErr(t, v1),
and thus vImp(v1). We define our permutation-based VI measure
Iprm(v1, v2) as the average of this information gain/loss.

Iprm(v1, v2) =
1

|T |

∑

t∈T

(ΔErr(t, v1) + ΔErr(t, v2)

− ΔErr(t, v1, v2)) (10)

The measure is symmetric. Positive/negative values of Iprm indicate
positive/negative interactions, respectively. When Iprm(v1, v2) = 0,
v1 and v2 are considered uninteracting or independent.

Two versions of Iprm measures are defined based on the differ-
ence in the way the permutation dv1,v2 is performed. Ilprm(v1, v2)
denotes VI with linked permutation, where the variable pairs are per-
muted together so that if case d1 receives the value of variable v1
from case d2, then it must also receive the value of variable v2 from
d2. On the other hand, Iuprm(v1, v2) denotes VI with unlinked
permutation, where the variable pairs are permuted independently.
Eq(10) with either linked or unlinked permutation can be readily ex-
tended to measure arbitrary variable n(<M )-subsets, unlike Eq(6),
and can be applied without modification to bagged ensembles with
any base supervised classifiers.

3. EXPERIMENTS

The VI measures described above are tested on three datasets. To
build RF classifiers for each dataset, we set the parameter of the
random subset cardinality s by choosing the value that maximizes
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0 0 0 0 0 a 0 0 0 0 1 b
0 0 0 1 0 a 0 0 0 1 1 b
0 0 1 0 0 a 0 0 1 0 1 b
0 0 1 1 0 a 0 0 1 1 1 b
0 1 0 0 0 a 0 1 0 0 1 b
0 1 0 1 0 a 0 1 0 1 1 b
0 1 1 0 0 a 0 1 1 0 1 b
0 1 1 1 0 a 0 1 1 1 1 b
1 0 0 0 1 a 1 0 0 0 0 b
1 0 0 1 1 a 1 0 0 1 0 b
1 0 1 0 1 a 1 0 1 0 0 b
1 0 1 1 1 a 1 0 1 1 0 b
1 1 0 0 1 a 1 1 0 0 0 b
1 1 0 1 1 a 1 1 0 1 0 b
1 1 1 0 1 a 1 1 1 0 0 b
1 1 1 1 1 a 1 1 1 1 0 b

Table 1. Toy Dataset with Known Interactions

the OOB estimate of RF’s generalization accuracy [7]. We set A
in Eq(6) to 100. For reference, the Pearson correlation coefficients
Icorr(v1, v2) for all variable pairs and the variable importance mea-
sure in Eq(8) are also computed.

3.1. Toy Dataset

To facilitate the evaluation, a toy dataset with known interaction lev-
els between each pair of variables is created with 32 cases of five
binary-valued variables (M = 5) and two classes (C = {a, b}). Ta-
ble 1 shows this dataset. The first four variables resemble the 4-bit
binary numbers from 0 to 15, each one repeated twice with alter-
nating class labels. The 5th variable has the same value as the 1st
variable for the 16 ”a” cases and the opposite value for the 16 ”b”
cases. By design, any individual variables, as well as any combi-
nations of variables except for those including both the 1st and 5th
variables provide maximally ambiguous predictive information be-
cause there are always an equal number of cases with the same fea-
ture values labeled differently. Only when the 1st and 5th variables
are considered together does the necessary information to classify
cases become available (i.e., class ”a” for matching bits and ”b” oth-
erwise), providing the ground-truth sole positive interaction among
all variable pairs. Each variable includes the same numbers of 0’s
and 1’s. Icorr(v1, v2) equals zero for every pair. We evaluate ten
random instances of RFs, each of which consists of 1000 trees, with
s = 3. Each instance results in 100% OOB-based test accuracy [7].
The following presents further analysis on one of the instances, not-
ing that we observe similar results in the others.

The results clearly indicate that the proposed Iprm measures
outperform Ibrei. Ibrei(v1, v5) fails to identify the (v1, v5) in-
teraction, yielding a non-maximal value of −34 in [−54,−24]
with 6 pairs having higher values. Conversely, Ilprm(v1, v5) and
Iuprm(v1, v5) clearly identify the (v1, v5) interaction. Ilprm(v1, v5)
is 3.52with values for all other variable pairs ranging in [−0.48,−0.26].
Similarly, Iuprm(v1, v5) is 3.53 with values for all other variable
pairs ranging in [−0.48,−0.25]. We also evaluate correlation co-
efficients between VI measures for comparison. Ilprm and Iuprm
exhibit extremely high positive correlation at 0.999, while there is
almost no correlation between Ibrei and Iprms, yielding 0.09 and
0.08 for Ilprm and Iuprm respectively. vImp(v1) and vImp(v5)
are 3.15 and 3.03, respectively, while vImp for the other variables
ranges from −0.90 to −0.87.

3.2. SPECTF Heart Dataset

Next, we use the SPECTF Heart Dataset from the UCI Machine
Learning Repository [13]. Derived from [16], the SPECTF dataset

rank Ibrei Ilprm Iuprm Icorr vImp
1 24, 25 12, 41 29, 40 24, 25 39
2 29, 39 29, 41 8, 41 42, 43 25
3 26, 29 20, 33 0, 9 41, 43 41
4 17, 33 1, 41 29, 34 28, 29 29
5 25, 41 21, 41 9, 41 40, 42 33
6 41, 42 1, 3 12, 43 34, 35 15
7 29, 35 0, 21 9, 31 29, 39 42
8 9, 15 9, 28 41, 43 40, 41 31
9 13, 23 24, 43 3, 40 16, 17 9
10 14, 29 20, 41 27, 32 38, 39 40
...

937 (35) 4, 39 14, 25 25, 36 26, 33 30
938 (36) 10, 40 39, 42 23, 39 19, 32 2
939 (37) 5, 18 15, 39 13, 39 25, 36 20
940 (38) 24, 26 16, 25 30, 39 23, 36 37
941 (39) 29, 31 14, 39 14, 39 4, 37 19
942 (40) 1, 43 25, 36 8, 39 17, 33 26
943 (41) 25, 34 13, 25 5, 25 17, 32 13
944 (42) 11, 25 39, 41 36, 39 26, 32 16
945 (43) 14, 21 25, 39 25, 39 27, 33 23
946 (44) 8, 9 39, 43 5, 39 27, 32 36

Table 2. Interaction and Importance Ranks - SPECTF

consists of 267 cases of SPECT images showing the left ventricle
(LV). Each image is represented by M = 44 continuous variables
derived from the myocardial perfusion within 22 regions of interest
in the LV, in both stressed and resting states. There are 212 nor-
mal and 55 abnormal diagnosis cases (K = 2). We evaluate ten
random instances of RFs, each of which consists of 1000 trees with
s = 9. On average, the OOB test accuracy is 80.26 ± 0.50%. This
result is beyond the original accuracy reported in [16]. The following
presents further analysis on one of the instances with OOB accuracy
of 79.78%. We observe similar results in the other instaces.

Table 2 shows the highest and lowest ranked variable pairs
for each measure, as well as the top and bottom variables for
vImp(v) by Eq(8). Values of VI measures range in [−0.36, 0.18]
and [−0.38, 0.21] for Ilprm and Iuprm, respectively. The VI mea-
sures agree much less for this dataset than they do for the toy data.
Ilprm and Iuprm have a correlation coefficient of 0.52, while the
correlations between other pairs of measures range in [−0.11, 0.17].
However, we note that the same variable pair (v24, v25) is ranked
first for both Ibrei and Icorr, and the 2nd-ranked (v29, v39) for Ibrei
is ranked 7th for Icorr. Highly correlated variables yield redundant
information toward prediction thus this agreement between Ibrei
and Icorr may explain the negative results of Ibrei for the toy data.

The ranges of Ilprm and Iuprm show that variables in this
dataset are mostly uninteracting, having near-zero values. This indi-
cates that the predictive power of the 22 different regions of LVs are
mostly independent. Some pairs exhibiting relatively higher positive
interactions include variables with low vImp. For example, v20 is
in the 3rd and 10th ranked pairs for Ilprm and is among the 10 least
important variables, demonstrating a positive interaction involving
low marginal importance. Conversely, some pairs with relatively
negative interactions include variables of higher importance. For
example, (v25, v39) gives the 2nd lowest scores for both Ilprm and
Iuprm, while including the two most important variables.

3.3. Wisconsin Breast Cancer Dataset

The Wisconsin Breast Cancer Dataset is also from the UCI Machine
Learning Repository [13]. This dataset contains 569 cases with M =
30 variables representing characteristics of cell nuclei from a breast
mass obtained by fine needle aspiration. These characteristics in-
clude the radius, texture, perimeter, area, smoothness, compactness,
concavity, number of concave points, symmetry, and fractal dimen-

156



rank Ibrei Ilprm Iuprm Icorr vImp
1 22, 23 7, 15 7, 15 0, 2 22
2 20, 23 7, 16 7, 9 20, 22 23
3 0, 22 7, 19 7, 17 0, 3 7
4 6, 7 7, 11 7, 16 2, 3 27
5 3, 26 7, 17 7, 29 20, 23 20
6 3, 6 14, 22 15, 22 22, 23 21
7 0, 26 7, 8 7, 8 10, 12 1
8 3, 17 15, 27 12, 22 2, 22 26
9 6, 26 7, 18 13, 26 0, 20 24
10 0, 2 15, 26 7, 11 2, 20 6
...

456 (21) 21, 26 20, 22 20, 23 2, 14 12
457 (22) 1, 20 23, 26 22, 23 9, 22 25
458 (23) 20, 21 20, 27 7, 27 14, 22 14
459 (24) 24, 26 22, 23 23, 26 0, 14 29
460 (25) 7, 20 7, 20 20, 27 14, 20 16
461 (26) 23, 26 7, 27 7, 20 9, 23 19
462 (27) 7, 22 22, 27 22, 27 9, 20 9
463 (28) 7, 21 23, 27 23, 27 2, 9 5
464 (29) 1, 27 7, 23 7, 22 3, 9 8
465 (30) 22, 24 7, 22 7, 23 0, 9 11

Table 3. Interaction and Importance Ranks - Wisconsin

sion. For each of these 10 characteristics, the mean, standard error
and worst value are given, yielding the 30 total variables. There are
357 benign and 212 malignant cases (K = 2). We evaluate ten ran-
dom instances of RFs, each of which consists of 1000 trees, with s
= 15. On average, the OOB-based test accuracy is 97.17 ± 0.27%.
The following presents further analysis on one of the forests, with
OOB accuracy of 97.36%.

Table 3 shows the ranks of the VI measures for this dataset.
Generally the measurements showed a stronger relationship for this
dataset than they did for the SPECTF. Ilprm and Iuprm measures
have a correlation of 0.97 with each other and of −0.31 and −0.27
respectively with Icorr. Both Ilprm and Iuprm have the same corre-
lation of −0.28 with Ibrei. The correlation with the lowest magni-
tude was between Ibrei and Icorr, at 0.02. Similar to SPECTF, Ibrei
correlates with Icorr at top pairs. For Ibrei and Icorr, (v22, v23) rep-
resenting the worst area and the worst perimeter is the top- and the
6th-ranked, and (v0, v2) representing the mean radius and the mean
perimeter is the 10th- and the top-ranked, respectively.

Ilprm and Iuprm range respectively in [−5.73, 0.81] and
[−3.02, 0.65], which are much larger than those for SPECTF
dataset. Ilprm results in a larger range than Iuprm. The top
variables for vImp are the worst perimeter (22), worst area (23),
mean concave points (7), worst concave points (27), and worst
radius (20). Similar to SPECTF, these variables of high impor-
tance appear in both top- (e.g., (v7, v15)) and bottom-ranked (e.g.,
(v7, v22),(v7, v23)) pairs for the proposed VI measures, and less
important variables (e.g., v15: the standard error of compactness)
also appear in the top-ranked pairs.

Strong negative interactions are discovered among variables of
high importance in this dataset. All 60 variables in the bottom 10
pairs for the three measures are from the 10 most important vari-
ables, while only 32 out of 60 variables in the 10 top pairs are from
the top 10 variables. To test these interactions, we rebuilt a RF with
the same data but with the two most important variables v22 and v23
removed, and compared the results. Despite removing these vari-
ables of the strongest predictive power, the resulting RF yields the
OOB test accuracy of 97.36% which is exactly the same as the orig-
inal accuracy. Importance values of the other top variables v7, v27,
and v20 are 9.0, 5.4, and 5.2 with the original dataset, respectively.
After removing v22 and v23, importance of these variables are signif-
icantly increased to 14.9, 9.5, and 15.1. This proves the negative in-
teractions in pairs from {v22, v23} to {v7, v27, v20}, indicated by the

low negative values of the proposed linked (e.g., Ilprm(v7, v22) =
−5.73, Ilprm(v7, v23) = −5.37) and unlinked (e.g., Iuprm(v7, v23)
= −3.02, Iuprm(v7, v22) = −2.72) permutation-based VI measures
in Table 3.

4. CONCLUSIONS

This paper presented novel VI methods to measure the amount of a
variable’s information that is gained due to the presence of another
variable by analyzing errors in permuted OOB cases within RF. Our
experimental results demonstrated the correctness of the measures
and revealed insights into popular public datasets such as SPECTF
and Wisconsin. The results of the toy data analysis indicated that
our measures outperform Breiman’s VI measure, which is one of
only a few VI methods currently available. Our future work includes
extending the proposed measures to n-subsets and other bagged clas-
sifiers. We are currently conducting more systematic stability anal-
ysis. We are also interested in testing the measures on multi-class
data with known ground-truth.
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