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Abstract

This article proposes a robust statistical estimation and verification framework for characterizing the ellipsoidal
(anisotropic) geometrical structure of pulmonary nodules in the Multislice X-ray CT images. Given a marker indi-
cating a rough location of a target, the proposed solution estimates the target’s center location, ellipsoidal boundary
approximation, volume, maximum/average diameters, and isotropy by robustly and efficiently fitting an anisotropic
Gaussian intensity model. We propose a novel multi-scale joint segmentation and model fitting solution which ex-
tends the robust mean shift-based analysis to the linear scale-space theory. The design is motivated for enhancing
the robustness against margin-truncation induced by neighboring structures, data with large deviations from the
chosen model, and marker location variability. A chi-square-based statistical verification and analytical volumetric
measurement solutions are also proposed to complement this estimation framework. Experiments with synthetic
1D and 2D data clearly demonstrate the advantage of our solution in comparison with theγ-normalized Laplacian
approach [1] and the standard sample estimation approach [2, p.179]. A quasi real-time 3D nodule characterization
system is developed using this framework and validated with two clinical data sets of thin-section chest CT im-
ages. Our experiments with 1310 nodules resulted in i) robustness against intra- and inter-operator variability due to
varying marker locations, ii) 81% correct estimation rate, iii) 3% false acceptance and 5% false rejection rates, and
iv) correct characterization of clinically significant non-solid (GGO) opacity nodules. This system processes each
33-voxel volume-of-interest by an average of two seconds with a 2.4GHz Intel CPU. Our solution is generic and can
be applied for the analysis of blob-like structures in various other applications.

Keywords: Pulmonary nodule characterization and segmentation; Multislice X-ray CT image analysis; Part-

and non-solid nodules; Anisotropic scale-space; Mean shift; Gaussian model fitting; Multi-scale analysis;

Robust estimation; Covariance estimation; Chi-square verification;

1 Introduction

Lung cancer is the most common cause of cancer death in the U.S. for both sexes [3]. This makes the analysis

of pulmonary nodules as one of the major issues in the computer-aided diagnosis (CAD) studies. In general,

such CAD systems aim to realize i) cancer therapy monitoring and surgical follow-up examination by quan-

tifying the volumetric change of the pathological lesions between the pre- and post-operative scans and ii)

classification of malignancy/benignity of the detected pulmonary nodules. The advent of these technologies

are sought for reducing the mortality rate and improving the quality of the cancer care management.

X-ray computed tomography (CT) is the most sensitive imaging domain for the pulmonary nodule

analysis among others [4]. The multislice and helical CT scanners, the recent technological advances, also
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greatly improved image resolution and scanning time, making the analysis of small nodules (< 10 mm in

diameter) feasible. Study of such small nodules is clinically important because the small tumors can still be

malignant and early detection of such malignancy can drastically increase the chance of patient survival [5].

The improved image resolution indeed helps radiologists to detect nodules more accurately [6], however it

also costs them more burden increasing the amount of data they need to interpret. Thus, automation of the

analysis with computer-assisted systems is much needed for reducing this burden and also improving the

diagnostic accuracy especially for the small nodules.

The main goal of our investigation is to solve the problem of how to best represent the nodules

numerically for various analysis tasks. We refer to this problem bynodule characterization problem. In past

decades, the technical advances in the field of computer-assisted analysis of pulmonary nodules [7, 8] have

facilitated the emergence of a number of research sub-domains, such as automatic nodule detection [9, 10,

11, 12], nodule segmentation [13, 14], volume quantification [15, 16], and malignancy classification [17, 18].

The above fundamental problem cannot be avoided for realizing a solution for any of the above topics. And

the solution to this problem should serve as one of the important building blocks for developing the general

CAD solutions.

Within this context, this article focuses on geometrical and volumetric characterization of pulmonary

nodules. We propose a comprehensive and generic computational framework based on robust multi-scale

Gaussian intensity model fitting. Exploiting the model’s analytical advantages, our solution provides nodule

characterizations in terms of i) nodule center, ii) ellipsoidal boundary (3D segmentation approximation),

iii) nodule volume, iv) maximum diameter, v) average diameter, vi) isotropy. Throughout this study, it is

assumed that an observer provides a marker indicating rough location of a target lesion. This allows us to

focus on the semi-automatic characterization rather than the automatic detection problem. The extension of

the proposed framework to the automatic nodule detection problem is out of this article’s scope but will be

briefly discussed in Section 7.

1.1 Previous Work on Nodule Analysis

Automatic nodule detection is by far the most studied topic within the field of computer-assisted nodule

analysis [9, 10, 11, 12, 19]. In these studies, the nodules were often characterized as spherical shapes of

various size [10, 11]. However, this spherical assumption is not adequate for describing general geometry

of the lesions. This is because their shape can be irregular and non-spherical due to the spiculation or the
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attachments to the pleural surface (i.e., juxtapleural and peripheral) and to the vessels (i.e.,vascularized) [14].

For characterizing nodules in 3D CT data, thetumor size or volumeis most intuitive and the well-

established method [4, 7]. Such underlining scales of lesions provide important clinical information, en-

abling to measure thetumor growththat correlates highly with probability of malignancy. The recent ap-

proaches for the tumor size estimation can be roughly categorized into segmentation- and model-based

methods. The segmentation-based methods are based on delineation of the voxels belonging to the nodules

by using voxel intensity thresholding. For instance, in their study for quantifying growth-rate of nodules,

Kostis et al. [14] characterized different types of nodules by segmenting them based on the intensity thresh-

olding followed by the morphological operations. On the other hand, the model-based methods describes

nodules by fitting geometrical or intensity models to the data. For the pulmonary nodules, the model de-

scribing voxel intensity distribution in the 3D data space is preferred to the one representing geometry of

3D tumor boundary (e.g., deformable contour model [20]), because the intensity distribution conveys more

information than the tumor boundary which may be ill-defined for a certain type of nodules [21]. The most

common approach for the model-based methods is the template matching of isotropic Gaussian intensity

templates [10, 11]. For instance, Lee et al. [10] developed a system for automatic nodule detection by us-

ing four different sizes of spherical nodule templates in their genetic algorithm-based template matching

technique.

For volume quantification, the segmentation-based approaches have often been employed due to their

capability to handle irregular geometry. In practice, however, it is difficult to achieve high volume estimation

accuracy due to the intrinsic uncertainty of the voxel values caused by different scanner settings as well as

the non-solid opacities of the tumor boundary. On the other hand, the model-based approaches may be more

rigid but they can also incorporate a variety of statistical methods for improving the estimation accuracy

(e.g., Markov random field [11], non-parametric density analysis [12]).

1.2 Our Approach

Robustness is one of the key issues addressed in this article. We seek a nodule characterization solution

that is robust against the characteristics of the real CT data with noise which is intrinsic to the measurement

process and also the pathology and anatomy of our interest. For example, a recent clinical study suggested

that the part- and non-solid or ground-glass opacity nodules, whose intensity distribution is largely irregular,

are more likely to be malignant than solid ones [21]. Despite this clinical demand, to our best knowledge,
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Figure 1: An illustration of pulmonary nodule examples with typical data noises captured in 3D CT images.
From left to right, (a): nodule attached to pleural surface in 2D dissection, (b): 1D horizontal profile of
(a) through the nodule center, (c): non-solid vascularized nodule, and (d): 1D vertical profile of (c). The
voxel-intensities in (b,d) indicate the Hounsfield unit with an offset 1024. “+” denotes markers used as
initialization points provided by expert radiologists. The estimated nodule center and anisotropic spread are
shown by “x” and 35% confidence ellipses, respectively.

no comprehensive solutions for detecting, segmenting, and/or characterizing these difficult cases have been

proposed. Fig.1 illustrates examples of such difficult cases. The figure shows 2D dissections and 1D profiles

of the two lesions for the juxtapleural [14] and non-solid nodules. In developing an algorithm to describe

them, our solution must be robust against:

1. influences from surrounding structures such as the pleural surface and vessels (i.e., margin-truncation:

Fig.1a,b),

2. deviation of the signal from a Gaussian intensity model of our choice (i.e., non-Gaussianity: Fig.1c,d),

and

3. uncertainty in the marker location+ given by system users (i.e., initialization: Fig.1a,c).

In another words, we seek a method that estimates the nodule boundary (shown by the solid-line ellipses

around the centerx in the figure) and its volumetric measurements even with the presence of these problems.

The proposed framework consists of three successive stages: i) model estimation, ii) model verifica-

tion, iii) volumetric measurements. As our solution to the model estimation problem, this article presents

a novel statistical framework for robust multi-scale joint segmentation and model fitting. Addressing the

issues discussed in the previous section, our solution utilizes the model-based approach. The anisotropic

(non-spherical) Gaussian function is chosen as our intensity model. Such anisotropic Gaussian captures

the 3D nodule center by its mean location and the 3D anisotropic spread (i.e., shape and orientation of an

ellipsoid) by its fully-parameterized covariance matrix, making our model more flexible than the spherical

one.
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Our multi-scale analysis is driven by Gaussian scale-space [22, 23] over a set of discrete analysis

scales givena priori. For each scale, we estimate the Gaussian mean and covariance that fits best to the

corresponding scale-space image, resulting in a set of the mean and covariance estimates. In order to choose

the best fit among this set, a stability test is performed by evaluating Jensen-Shannon divergence over the

analysis scales. The estimate with the minimum divergence corresponds to the most stable estimate and

serves as the best fit.

At a specific scale, the mean and covariance are estimated by using a novel mean shift-based analysis.

This article presents a formal extension of the mean shift analysis to the Gaussian scale-space by unifying

the robust statistical methods for density gradient estimation [24] and continuous linear scale-space the-

ory [22, 23, 1]. By likening the arbitrary positive function describing an image signal to the probability

density function, the density mean shift-based analysis is extended towards the Gaussian model fitting in the

continuous function domain. The resulting scale-space mean shift defines a convergent gradient-ascent in

the Gaussian scale-space image, as well as the basin of attraction of a target tumor. Using this scale-space

mean shift, the mean is estimated by the convergence of majority of initial points sampled around the marker

location. The covariance is estimated by solving a set of linear equations constructed with mean shift vectors

convergent to the estimated mean. We present a closed-form analytical solution to this least-squares problem

with the symmetric positive definite constraint. The joint segmentation and model fitting is achieved for the

mean and covariance estimations by using only convergent mean shift vectors, ignoring the non-convergent

mean shifts as outliers and exploiting inlier statistics only from the basin of attraction of the target tumor.

The robustness of this framework is facilitated by a number of factors. The stability criterion used

for scale (bandwidth) selection facilitates the robustness against the non-Gaussianity because it does not

depend on specific error measures of ill-fitting. This should enable our solution to handle part- and non-solid

nodule cases with high non-Gaussianity. The joint segmentation and model fitting approach facilitates the

robustness against the margin-truncation because information from the non-target neighboring structures

can be ignored by treating them as outliers. This should help to fit the model correctly with the cases

surrounded by vessels or pleural surfaces. The scale-space mean shift-based covariance estimation also

mitigates the initialization variation because a set of inliers used for the least-squares do not depend on

specific initializations, leading to low intra- and inter-operator variability with varying marker locations.

For the model verification problem, a statistical verification method based on chi-square analysis is

also proposed to complement the robust estimation framework. One of the advantages of our statistical ap-

5



proach is the availability of such goodness-of-fit measures that provide information of how well the resulting

statistical estimates and the specific model function fit to the data. In practice, such measures are of extreme

importance, enabling to reject accidental ill-estimates.

Once the model estimation and verification stages are performed, the approximation of the 3D nodule

boundary segmentation is provided as the confidence ellipsoid of the fitted Gaussian with a specific limit

of probability mass, forming a 3D equal-probability contour. Such an ellipsoid can be used an intuitive

visualization of the 3D nodule shapes. Consequently, the volumetric measurements of the target nodule

are derived from the volumetry of the confidence ellipsoid. We propose closed-form analytical solutions

for measuring the volume, maximum and average diameter, and isotropy in a physical unit as a function

of eigenvalues and eigenvectors of the estimated covariance matrix. The proposed solutions inherit the

robustness of the Gaussian fitting process, facilitating low intra- and inter-operator variability. On the other

hand, we have recently developed a non-parametric 3D tumor segmentation solution which employs the

Gaussian model fitted by the proposed method as a prior [25]. Such a solution enables more accurate volume

measurement than the proposed ellipsoidal approach, however, the analytical nature of the presented solution

provides the type of measurement, such as average diameter and isotropy, that are difficult to obtain by using

the conventional segmentation or manual methods.

1.3 Related Work

There are a number of techniques in the literature that are related to our proposed method. In general,

Gaussian model fitting is a well-studied standard technique [26, ch.2]. It is, however, not trivial to fit

such a model to data with outliers and margin-truncation induced by neighboring structures. For example,

minimum volume ellipsoid covariance estimator [27] addresses the robustness to the outliers however its

effectiveness is limited regarding the truncation issue.

Bahalerao and Wilson [28] proposed an intensity model fitting method applied for visualizing 3D

vascular structures in MR images. They utilized anisotropic model similar to ours, however their method

does not exploit the robust statistics and involves an expensive EM algorithm-based iterative solution for the

model fitting. Our proposed method exploits a closed form algebraic solution, making it more efficient.

Despite the seminal work by Perona and Malik [29], the extension of the Gaussian scale-scale the-

ory to the anisotropic analysis kernel has not been thoroughly studied for its application towards non-edge

feature extraction. Manmatha and Srimal [30] developed a hand writing segmentation system utilizing an
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anisotropic scale-space-based blob detection technique. However, they considered anisotropy only up to

a diagonal covariance matrix. The extension to the full anisotropy along arbitrary axis is provided by our

solution. Robust anisotropic diffusion proposed by Black et al. [31] addresses the exploitation of the ro-

bust statistics within the anisotropic diffusion paradigm. Although we share the same motivation towards

the robust estimation, the resulting method is not directly related to ours and not applicable to our prob-

lem. Finally, to our knowledge, there are no pulmonary tumor analysis systems reported in the literature,

which employ the robust estimation methods for describing the ellipsoidal tumor structure and for deriving

volumetric measurements from the fitted ellipsoid.

1.4 Organization

This article is organized as follows. The proposed methods are described in the next three sections. Sec-

tions 2 3 and 4 formally describe the proposed model fitting, model verification, and volumetric measure-

ment methods, respectively. An overview of the proposed algorithm is given in Section 5. Section 6 provides

the results of our experiments. The robustness of the proposed methods is empirically studied with synthetic

data and the results are described in Section 6.1. The nodule analysis system based on the proposed frame-

work is evaluated in Section 6.2. This article is concluded by discussing our findings and future work in

Section 7.

2 Robust Multi-Scale Gaussian Model Fitting

This section presents the robust parameter estimation for the multi-scale Gaussian-based model fitting as a

solution for characterizing 3D nodule boundary. In the following, the termsmeanandcovarianceare used

interchangeably withspatial local maximumandspread, respectively.

2.1 Gaussian-based Intensity Model

The pulmonary nodule in a chest CT image typically appears as a local concentration of high CT values

surrounded by very low CT values of lung parenchyma as background. One of the most common model

functions for describing the characteristics of such bounded signals is the Gaussian function.

We treat the volumetric CT image as the discretization of ad(=3)-dimensional continuous non-

negative signalf(x) over a 3D regular lattice. The non-positiveness is assured by using the offset with
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1024 to the CT values in Hounsfield unit. The symbolu is used for describing the location of a spatial local

maximum off (or a mode in the sense of density estimation). Suppose that the local region off aroundu

can be approximated by a product of ad-variate Gaussian function and a positive multiplicative parameter,

f(x) ' α× [Φ(x;u,Σ)]x∈S (1)

Φ(x;u,Σ) = (2π)−d/2|Σ|−1/2 exp(−1
2
(x− u)tΣ−1(x− u)) (2)

whereS is a set of data points in the neighborhood ofu, belonging to the basin of attraction ofu. An

alternative is to consider a model with a DC componentβ ≥ 0 so thatf ' α × Φ + β. It is, however,

straightforward to locally offset the DC component. Thus we will not consider it within our estimation

framework favoring a simpler form. Later, we will revisit this extended model for the statistical verification

of the resulting estimates. The problem of our interest can now be understood as the parametric model

fitting and the estimation of the model parameters: meanu, covarianceΣ, and amplitudeα. Themeanand

covarianceof Φ describe thespatial local maximumandspreadof the local structure, respectively. The

anisotropy of such structure can be specified only by a fully-parameterized covariance.

2.2 Anisotropic Scale-Space Representation

The scale-space theory [22, 23, 1] states that, given anyd-dimensional continuous signalf : Rd → R, the

scale-space representationF : Rd ×R+ → R of f is defined to be the solution of the diffusion equation,

∂hF = 1/2∇2F , or equivalently the convolution of the signal with Gaussian kernelsΦ(x;0,H) of various

bandwidths (or scales)H ∈ Rd×d,

F (x;H) = f(x) ∗ Φ(x;0,H). (3)

When H = hI (h > 0), F represents the solution of the isotropic diffusion process [1] and also the

Tikhonov regularized solution of a functional minimization problem, assuming that scale invariance and

semi-group constraints are satisfied [32]. WhenH is allowed to be a fully-parameterized symmetric positive

definite matrix,F representsanisotropic scale-space∗ that is the solution to a partial differential equation:

∂HF = 1/2∇∇tF .

∗This is different from the well-known anisotropic diffusion [29] that is with the inhomogeneous, thus spatially dependent,
bandwidthH(x).
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2.3 Mean Shift Procedure for Continuous Scale-Space Signal

In this section, we extend the fixed-bandwidth mean shift [33], introduced previously for the non-parametric

point density estimation, towards the analysis of continuous signal evaluated in the linear scale-space.

The gradient of the scale-space representationF (x;H) can be written as convolution off with the

Gaussian derivative kernel∇Φ, since the gradient operator commutes across the convolution operation.

Some algebra reveals that∇F can be expressed as a function of a vector whose form resembles the density

mean shift,

∇F (x;H) = f(x) ∗ ∇Φ(x;H)

=
∫

f(x′)Φ(x− x′;H)H−1(x′ − x)dx′

= H−1

∫
x′Φ(x− x′;H)f(x′)dx′ −H−1x

∫
Φ(x− x′;H)f(x′)dx′

= H−1F (x;H)m(x;H) (4)

m(x;H) ≡
∫

x′Φ(x− x′;H)f(x′)dx′∫
Φ(x− x′;H)f(x′)dx′

− x. (5)

Eq.(5) defines the extended fixed-bandwidth mean shift vector forf . Settingf(x′) = 1 in Eq.(5)

results in the same form as the density mean shift vector. Note however thatx in Eq.(5) is an ordinal

variable while a random variable was considered in [33]. Eq.(5) can be seen as introducing a weight variable

w ≡ f(x′) to the kernelK(x′) ≡ Φ(x−x′). Therefore, an arithmetic mean ofx′ in our formulation of mean

shift is not weighted by the Gaussian kernel but by its product with the signalK ′(x′) ≡ Φ(x− x′)f(x′).

The mean shift procedure [24] is defined as iterative updates of a data pointxi until its convergence

atym
i ,

yj+1 = m(yj ;H) + yj ; y0 = xi. (6)

Such iteration gives a robust and efficient algorithm of gradient-ascent, sincem(x;H) can be interpreted as

a normalized gradient by rewriting Eq.(4);m(x;H) = H∇F (x;H)/F (x;H). F is strictly non-negative

valued sincef is assumed to be non-negative. Therefore, the direction of the mean shift vector aligns with

the exact gradient direction whenH is isotropic with a positive scale.

2.4 Robust Spatial Local Maxima Estimation

We assume that the data is given with information of where the target structure is roughly located but we

do not have explicit knowledge of its spread. The marker pointxp indicates such location information. We
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allow xp to be placed anywhere within the basin of attractionS of the target structure. To increase the

robustness of this approach, we runN1 mean shift procedures initialized by sampling the neighborhood of

xp uniformly. The majority of the procedure’s convergence at the same location indicates the location of

the maximum. The point proximity is defined by using the Mahalanobis distance withH. This approach is

efficient because it does not require the time-consuming explicit construction ofF (x;H) from f(x).

2.5 Robust Anisotropic Covariance Estimation by Constrained Least-Squares in the Basin
of Attraction

In the sequel we estimate the fully-parameterized covariance matrixΣ in Eq.(1), characterizing thed-

dimensional anisotropic spread and orientation of the signalf around the local maximumu. Classical

scale-space approaches relying on theγ-normalized Laplacian [1] are limited to the isotropic case thus not

applicable to this problem. Another approach is the standard sample estimation ofΣ by treatingf as a

density function [2, p.179]. However, this approach becomes suboptimal in the presence of the margin-

truncations. Addressing this issue, we present a constrained least-squares framework for the estimation of

the anisotropic fully-parameterized covariance of interest based on the mean shift vectors collected within

the basin of attraction ofu.

With the signal model of Eq.(1), the definition of the mean shift vector of Eq.(5) can be rewritten as

a function ofΣ,

m(yj ;H) = H
∇F (yj ;H)
F (yj ;H)

' H
αΦ(yj ;u,Σ + H)(Σ + H)−1(u− yj)

αΦ(yj ;u,Σ + H)

= H(Σ + H)−1(u− yj). (7)

Further rewriting Eq.(7) results in a linear matrix equation of unknownΣ,

ΣH−1mj = bj (8)

wheremj ≡ m(yj ;H) andbj ≡ u− yj −mj .

An over-complete set of the linear equations can be formed by using all the trajectory points{yj |j =

1, .., tu} located within the basin of attractionS. For efficiently collecting a sufficient number of samples

{(yj ,mj)}, we runN2 mean shift procedures initialized by sampling the neighborhood ofu uniformly. This

results intu samples (tu =
∑N2

i=1 ti), whereti denotes the number of points on the convergent trajectory
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starting fromxi. The system described in Eq.(8) is solved by considering the following constrained least-

squares problem [34, 35],
AΣ = B

Σ ∈ SPD
A = (m1, ..,mtu)tH−t

B = (b1, ..,btu)t

(9)

whereSPD denotes a set of symmetric positive definite matrices inRd×d.

Following [36], the unique solutionΣ∗∗ of Eq.(9) is expressed by,

Σ∗∗ = UPΣ−1
P UQ̃ΣQ̃Ut

Q̃
Σ−1

P Ut
P (10)

which involves symmetric Schur decompositions [35, p.393] of the matricesP ≡ AtA andQ̃ ≡ ΣPUt
PQUPΣP

givenQ ≡ BtB, i.e.,

P = UPΣ2
PUt

P

Q̃ = UQ̃Σ2
Q̃
Ut

Q̃
.

The solutionΣ∗∗ is derived from findingY∗∗ in the Cholesky factorization ofΣ = YYt. It can be shown

thatΣ∗∗ uniquely minimizes an area criterion‖AY − BY−t‖2
F where‖.‖F denotes the Frobenius norm.

This area criterion is related to the total least-squares [37] since errors in bothA andB are considered for

the minimization.

2.6 Scale Selection Criterion

The multi-scale analysis treatsH as a variable parameter. It is supposed that a set of analysis bandwidths

{Hk|k = 1, ..,K} is givena priori. Our scale selection criterion is based on the stability test [33]. Given a

set of estimates{(uk,Σk)} for a series of the successive analysis bandwidths, a form of the Jensen-Shannon

divergence is defined by,

JS(k) =
1
2

log
| 1
2a+1

∑k+a
i=k−a Σi|

2a+1

√∏k+a
i=k−a |Σi|

+
1
2

k+a∑

i=k−a

(ui − u)t(
k+a∑

i=k−a

Σi)−1(ui − u) (11)

whereu = 1
2a+1

∑k+a
k−a ui anda define the neighborhood width of the divergence computation. The most

stable estimate across the analysis bandwidths provides a local minimum of the divergence profile. We treat

this result as the final estimation of our multi-scale analysis(u∗,Σ∗).
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3 Statistical Verification

In this section, we present a goodness-of-fit measure for validating the resulting estimates. Such statistical

verification gives a principled means for rejecting accidental ill-estimates. We treat this problem as anal-

ysis of chi-square fitting residual errors. We employ a linear model with an additive parameter of the DC

component;f ' α × Φ + β. Recall that our estimation model in Eq.(1) is without the DC. The additional

degree of freedom introduced serves as another goodness-of-fit indicator. Given the estimate pair (u∗,Σ∗),

the following defines the signal response estimatef̂ with two unknowns,

f̂(x,u∗,Σ∗;α, β) = α× [Φ(x;u∗,Σ∗)]x∈S + β. (12)

whereS is a set of data points in the neighborhood ofu, belonging to the basin of attraction ofu, as

introduced in Eq.(1). The chi-square statistic indicates the residual error of the fitted modelf̂(x) [38,

p.660],

χ2 ≡
∑

xi∈S ′
(
f(xi)− f̂(xi)

σi
)2 =

∑

xi∈S ′
(
f(xi)− αΦ(xi)− β

σi
)2 (13)

whereσi is local uncertainty of normally distributed error(f(xi) − f̂(xi))2 andS ′ denotes an appropriate

support of the data space, within which the verification process performs sampling. Note that this verification

supportS ′ may be different from the model supportS, which will be discussed in Section 6.2 [p.19].

Parametersα andβ are estimated by chi-square fitting. Since both are non-negative, we introduce

parametersa andb such thatα = a2 andβ = b2. The estimatesα∗ andβ∗ are given by solving∂χ2/∂a = 0

and∂χ2/∂b = 0,

(α∗, β∗) =





(p, q) if p > 0 and q> 0

(
P

f(xi)Φ(xi)P
Φ(xi)2

, 0) if p > 0 and q≤ 0

(0,
P

f(xi)
Ns

) if p ≤ 0 and q> 0
(0, 0) if p ≤ 0 and q≤ 0

(14)

whereσ = σi for all i,

p =
Ns

∑
f(xi)Φ(xi)−

∑
f(xi)

∑
Φ(xi)

Ns
∑

Φ(xi)2 − (
∑

Φ(xi))2
(15)

q =
∑

f(xi)
∑

Φ(xi)2 −
∑

Φ(xi)
∑

f(xi)Φ(xi)
Ns

∑
Φ(xi)2 − (

∑
Φ(xi))2

(16)

andNs is the number of samples inS ′ and all the summations are overxi ∈ S ′.
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Given the above parameter estimates,χ2 is computed by using Eq.(13). Chi-square probability func-

tion Q [38, p.221] is employed to indicate an ill-fit of our model to the given signal,

Q(χ2|ν) = Q(
Ns −M

2
,
χ2

2
) = g(

Ns −M

2
,
χ2

2
). (17)

In Eq.(17),g is the incomplete gamma function [38, ch.6.2] with the number of degrees of freedomν =

(N −M)/2, andM is the number of parameters.

Finally, we obtain the following rejection criterion,

Reject(u∗,Σ∗) if Q < th1 or β∗ > th2. (18)

The threshold forQ is set conservatively to the common confidence levelth1 = 0.001 [38, p.664]. Having

a large estimate forβ also indicates an ill-fit with our estimation model without the DC. The thresholdth2

for β can be learned from training samples for specific applications.

4 Volumetric Measurements

This section presents our solutions for deriving volumetric measurements of the target tumor from the Gaus-

sian model fitted to the data. First, tumor boundary segmentation is approximated by a 3D ellipsoid defined

from the fitted model. We propose solutions for analytically deriving target tumor’s i) volume, ii) maximum

diameter, and iii) average diameter, and iv) isotropy, directly from the ellipsoidal segmentation result. An

extension of these solutions towards arbitrary voxel dimensions will also be provided.

The multi-scale Gaussian-based model fitting, described in Section 2, results in the mean and covari-

ance estimates(u∗,Σ∗) of a Gaussian function that fits the given data best. Treating the fitted model as a

normal probability distributionN (x;u∗,Σ∗), the tumor boundary segmentation can be approximated by a

confidence ellipsoid forming a 3D equal-probability contour. Such a confidence ellipsoid is defined by the

following generic quadratic equation,

(x− u∗)tΣ∗−1(x− u∗) = σ2 (19)

whereσ2 is a squared Mahalanobis distance, defining the confidence limit. A specific value of the confidence

limit σ2 has to be chosen so that the equal-probability contour coincides well with the tumor boundary.

Throughout this paper, we use an empirically determined valueσ2 = 1.6416, corresponding to the 35%

confidence limit. Fig.3 and Fig.4 illustrate the segmentation results with this confidence limit.
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Given σ2, the volumetry of an ellipsoid can be determined as a function of three radii along its

major and two minor orthogonal axes. The radii are denoted byri > 0 (r1 ≥ r2 ≥ r3). The following

derivesri from the eigen decomposition of the covarianceΣ∗. Such eigen decomposition can be expressed

in a matrix equation:Σ∗V = VΛ. V is a column matrix of the eigenvectorsvi andΛ is a diagonal

matrix of the corresponding eigenvaluesλ2
i (λ1 ≥ λ2 ≥ λ3). Right-multiply the matrix equation with

Vt yields the symmetric Schur decomposition ofΣ∗: Σ∗ = VΛVt. SinceΣ∗−1 = VΛ−1Vt, with

a coordinate transformy ≡ Vt(x − u∗), Eq.(19) can be simplified to:ytΛ−1y = σ2. Substituting three

points,y = (r1, 0, 0)t, (0, r2, 0)t, (0, 0, r3)t, which are known to lie on the ellipsoid surface, to the quadratic

equation results in,

ri = σλi (20)

As a result, the following volumetric measurement formulae can immediately be derived for the volume

V = 4
3πσ3

∏
i λi, the maximum diameterL = 2σλ1, the average diameterA = 2

3σ
∑

i λi, and the isotropy

R = λ2+λ3
2λ1

, whereV , L, andA are in the voxel unit and the isotropyR ranges in[0, 1], taking the value 1

when it becomes a sphere. The bias of these volumetric measurements are caused solely by the segmentation

error. Therefore, these formulae are exact thus free from the partial volume effect when the tumor boundary

is well-characterized by the ellipsoidal segmentation.

Given a voxel dimension in a physical unit, the volumetric measurement formulae above can be

revised to produce the measurements in the unit. This is a crucial step for any comparative and differential

studies because the voxel dimension can vary across different scans. Suppose that a voxel dimension is

given as(∆x,∆y, ∆z) in millimeter or any other unit. After a coordinate transform, eigenvalues in the unit

of millimeter,λ′i, can be expressed as a function of the voxel dimensions and eigenvectors,

λ′i = βiλi (21)

βi =
√

(vxi∆x)2 + (vyi∆y)2 + (vzi∆z)2 (22)

where the eigenvector is denoted byvi = (vxi, vyi, vzi)t. This leads us to the following formulae which
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takes the voxel dimension into account,

V ′ =
4
3
πσ3

∏

i

βiλi (23)

L′ = 2σλ′1 = 2σ max
i

βiλi (24)

A′ =
2
3
σ

∑

i

βiλi (25)

R′ =
λ′2 + λ′3

2λ′1
(26)

whereλ′1 ≥ λ′2 ≥ λ′3. Note thatλ′i must be re-sorted from the original order given by the eigen decomposi-

tion because the coordinate transform may change such an order.

5 Algorithm Overview

The proposed algorithm consists of three stages: i) the anisotropic structure estimation ii) the verification of

the estimates, and iii) volumetric measurements. The first stage assumes that a marker indicating the rough

location of the target nodule is givena priori. Such information can be provided by a user of a GUI-based

system (see Section 6.3 for example). The estimation algorithm is presented below.

Problem Given the 3D input dataf(x), a marker pointxp, a set of analysis scales{Hk|k = 1, ...,K},
estimate the 3D anisotropic structure of a nodule (u∗, Σ∗).

Scale-specific estimationFor eachk,

1. Perform uniform sampling centered atxp, resulting in a set ofN1 starting points.

2. Perform the mean shift procedure in Eq.(6) from each starting point.

3. Take the convergence point of the majority of the points as the location estimateuk.

4. Perform uniform sampling centered atuk, resulting in a set ofN2 starting points.

5. Perform the mean shift procedure from each starting point.

6. Construct the system in Eq.(9) with the mean shift vectors{m(yj)} along the converging tra-

jectories.

7. Solve the system by Eq.(10), resulting in the covariance estimateΣk.

Scale selectionWith K estimates{(uk,Σk)},
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1. Compute the divergence{JS(uk,Σk)} using Eq.(11) fork = 1 + a, ..., K − a.

2. Find the most stable solution(u∗,Σ∗) by finding a local minimum of{JSk}: argminkJS(uk,Σk).

The second stage provides the binary decision of acceptance or rejection of the estimates in the following

algorithm.

Problem Given the 3D input dataf(x) and thresholdsth1 andth2, verify the estimate (u∗, Σ∗) for the

acceptance or rejection decision.

Statistical verification With (u∗, Σ∗),

1. Computeα∗ andβ∗ by the chi-square fitting of Eq.(14).

2. Computeχ2 by Eq.(13).

3. Compute the Chi-square probabilityQ(χ2) by Eq.(17).

4. Apply Eq.(18) toQ andβ∗. Reject (u∗, Σ∗) if Eq.(18) holds otherwise accept it.

The ellipsoidal segmentation of the accepted nodule estimate is given by the 35% confidence ellipsoid of the

normal distributionN(u∗,Σ∗) in the form of Eq.(19) withσ2 = 1.6416. The third stage provides a number

of volumetric measurements of the accepted estimate,

Problem Given the accepted estimate (u∗, Σ∗) and the voxel dimension(∆x,∆y, ∆z), provide the volu-

metric measurements of the target nodule.

Volumetric Measurements With (u∗, Σ∗), σ2, andi ∈ (1, 2, 3),

1. Compute the eigen decomposition (vi, λi) of Σ∗.

2. Computeβi by Eq.(22).

3. Sort the transformed eigenvaluesλ′i in Eq.(21).

4. Derive the tumor volumeV ′ by Eq.(23).

5. Derive the maximum diameterL′ of the tumor by Eq.(24).

6. Derive the average diameterA′ of the tumor by Eq.(25).

7. Derive the tumor isotropyR′ by Eq.(26).
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Figure 2: Comparison of our method (solid-line) withγ-normalized Laplacian (dashed-line) and standard
sample estimate (dot-dashed-line) using 1D synthetic data. The ground-truthu = D/2 andΣ = σ = 1
are denoted by dotted-line. Test data is generated by superimposing two Gaussians with a varying distance
D for evaluating robustness of estimates against biases caused by neighboring structures. (a): local max-
ima estimates, (b): scale estimates, (c): our method’s break-pointD = 0.8, below which estimations are
subjected to the bias. (c):γ-normalized Laplacian’s break-pointD = 6.2.

6 Experimental Results

6.1 Synthetic Data

The proposed framework is examined with 1D and 2D synthetic data with the presence of noise. Fig.2

compares local maximum and scale estimates by a 1D implementation of our algorithm with those by the

γ-normalized Laplacian [1] and the standard sample estimation [2, p.179]. The test data is generated at each

location by taking the maximum of two superimposed 1D Gaussians offset by a varying distanceD between

the two peaks. The one in right is treated as the target while the left one acts as a non-target neighboring

structure. Each Gaussian has the same varianceΣ = 1 and hightα = 1. Fig.2(a,b) show the estimated mean

and variance of the target as a function of the varying distanceD. The ground-truth mean and variance are

(u = D/2,Σ = σ = 1). Fig.2(c,d) show the break-points by our andγ-normalized Laplacian methods,

17



2 4 6 8 10 12

2

4

6

8

10

12
2 4 6 8 10 12

2

4

6

8

10

12
2 4 6 8 10 12

2

4

6

8

10

12
2 4 6 8 10 12

2

4

6

8

10

12

(a) (b) (c) (d)

Figure 3: Examples with 2D synthetic data. (a) and (b) illustrate the ground-truth and our method’s estimate
for an anisotropic GaussianΣ=[2 -2;-2 5] with random additive noise. (c) and (d) show those for two
Gaussians with the noise. The center of the smaller Gaussian is deviated by 2 Mahalanobis distance away
from the target Gaussian. “+” and dashed-ellipses indicate ground-truth local maximum and spread. “x”
and solid-ellipses display those estimated by our 2D algorithm.

respectively. The break-point is defined as the distance of the two peaks, below which estimations are

subjected to the bias due to the margin-truncation effect described in the introduction. The 1D system

employs all the available data points (N1 = N2 = NS) and 40 analysis scales with 0.05 interval (h =

(0.12, 0.152, .., 22) for H = hI). For the sample variance estimation, the densitiesp(xi) are approximated

by f(xi) normalized by the probability mass within±1σ around the true maximum. The results indicate

much lower break-point of our method than of others. This suggests that our method can achieve robust and

accurate estimations even with the presence of the severe margin-truncations, demonstrating the advantage

of our framework. Fig.3 shows examples with 2D synthetic data. A 2D implementation of our method

are applied for two test data: i) the 2D target Gaussian with random noise (3(a)) and ii) the same target

with the same noise and a non-target Gaussian (3(c)). The ground-truth and their corresponding estimates

by our method are shown as 35% confidence ellipses in Fig.3(a,c) and Fig.3(b,d), respectively. This 2D

implementation utilizes all available data points and 12 analysis scales (h = (0.52, 0.752, .., 3.252)). The

results are almost identical to the ground-truth despite the presence of the random noise and the neighboring

structure, confirming the results of our 1D experiment.

6.2 Lung HRCT Data

A 3D implementation of the proposed algorithm is evaluated with two clinical data sets of the thin-section

(1.25 mm slice thickness) chest high-resolution computed tomography (HRCT) images including patho-

logical lesions. The data is recorded by Multislice CT scanners (Somatom Volume Zoom and Somatom

Sensation 16; Siemens) and anonymatized. Each volumetric image consists of 12-bit positive values over an
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array of 512x512 lattices. The number of slices in a CT volume and the dimensions of a voxel vary across

volumes in our data set. The number of slices ranges between 217 and 616. The voxel dimensions range

within [0.4609− 0.8281, 0.4609− 0.8281, 0.5− 1] in millimeter.

A straightforward implementation of our algorithm without any 3D specific adaptation provides the

3D nodule analysis system. The marker locations are provided by trained radiologists. Our visual inspection

with a 3D renderer revealed however that most of the markers are noticeably off-centered, deviating from

the (unknown) true nodule centers with a certain degree. A 33-voxel cubic volume-of-interest (VOI) is

extracted for processing each nodule. The analysis bandwidths are given by 18 scales with 0.25 interval

h = (0.502, 0.752, .., 4.752). Uniform sampling in the 3-voxel neighborhood of the marker (i.e.,N1 = 7)

is used for estimating local maximum. The 3-voxel size is determined empirically. The same strategy

is employed for initializing the mean shift trajectories around the local maximum (i.e.,N2 = 7). The

neighborhood width of the divergence computation is set toa = 1 (considering only three adjacent scales).

For the verification, all data points that lie within the 90% confidence ellipsoid of(u∗,Σ∗) are used as the

supportS ′. This includes data points that may not converge to the estimated nodule center. For parameter

estimation, it is natural to exclude such samples in order to realize a robust algorithm. For verification,

however, such non-convergence of samples also provide valid information of the model being ill-fit thus

should be kept for improving the rejection-acceptance margin. The rest of parameters are set as follows.

The degrees of freedom in Eq.(17) are given byM = 3 + 6 + 2 = 11. Theβ threshold in Criterion(18) is

set toth2 = 400. The global uncertaintyσ in Eq.(13) is estimated from the sample variance of 77 lesions,

resulting inσ = 356.

The first data set consists of HRCT images of 14 patients including the total of 77 pulmonary nodules.

All of the nodules are small (<10mm). The data is recorded by a Siemens Somatom volume zoom scanner.

Due to the lack of ground-truth for nodule center and segmentation, the classification of the correct or failure

estimation is given manually by eye-appraisal of experts using a 3D render view and its corresponding 3

orthogonal slice views (Fig.6 shows an example of such views). The results of performance evaluations

with this data set are given as follows. 63 cases (81.8%), including all the solitarty nodules, resulted in

correct estimation. All the 14 failures were successfully rejected by the verification process without false

rejection and false acceptance. Most of the failures were due to very small nodules (<5mm) that are heavily

embedded into pleural surface. Given an off-centered marker, this can cause a nearby rib to be falsely

estimated as nodule center (e.g., Fig.5). The data includes six cases of the part- and non-solid or ground-

glass opacity nodules classified by the radiologists (GGO nodules, see Fig.1c,d and Fig.4a,b). All the GGO
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Figure 4: Examples of the estimation results with 3D HRCT data. The marker locations are indicated by
“+”. The estimated local maxima are indicated by “x”. The estimated spread of the nodules are shown as
2D intersections of 35% confidence ellipsoids. Cases (a) and (b) are non-solid (GGO) nodules identified
by experts. Cases (c) to (f) are vascularized nodules with irregular non-spherical shapes. Cases (g) and (h)
illustrate nodules attached to pleural surface.
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Figure 5: Experimental results for the verification process. The top plot illustrates theQ probability (solid-
line) andβ estimate (dashed-line) for each test case. The symbols “+” and “x” indicate correct and failure
cases, respectively. The correct symbol “+” placed above zero also indicate non-solid (GGO) nodule cases.
β values are normalized to fit within the range of this plot. A horizontal dashed-line indicates theβ-threshold
th2 = 400. The bottom images show examples of correctly rejected failures. Legend of these images are
the same as Fig.4. Cases (a) and (c) satisfied the rejection conditions of bothQ andβ while Case (b) met
only theQ condition and Cases (d) and (e) met only theβ condition.

nodules were successfully estimated and accepted.

Fig.4 shows examples of the resulting center and spread estimates. It illustrates cases with the irregu-

lar, non-solid (GGO), and juxtapleural nodules whose geometrical shapes and/or intensity distributions are

largely deviated from the Gaussian structure. The correct estimations for these difficult cases demonstrate

the robustness and effectiveness of our framework. Fig.5 shows the results of the statistical verification and

examples of the rejected cases. For evaluating the generalization capability, we apply the same verification

process to the data of 3 patients who are different from the ones used for deriving the parametersσ andth2.

This experiment resulted in 96% correct verification rate (4 false acceptances among 100 trials), similar to

the results shown in Fig.5.

The second data set is much larger than the first set, consisting of HRCT images of 39 patients with

the total of 1310 pulmonary nodules. Moreover, the data is recorded by multiple scanners (Somatom volume

zoom and Somatom Sensation 16; Siemens), and the data includes much wider range of nodule sizes (3-30
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Estimation # Cases (%) Verification # Cases (%)

Correct 1064 (81.2) TP 995 (76.0)
FN 69 (5.2)

Failure 246 (18.8) TN 205 (15.7)
FP 41 (3.1)

Table 1: Results of performance evaluation of our method with the large data set. The data set consists of
39 patients with 1310 nodules whose size ranges from 3 mm to 30 mm. Multiple scanners are used for data
collection. TP: true positive, accepted correct estimates. FN: false negative, rejected correct estimates. TN:
true negative, rejected false estimates. FP: false positive, accepted false estimates.

mm). Thus evaluation with this data set provides more realistic performance benchmark of our method in

the clinical settings. The same system, including the parameter values for both estimation and verification,

is used for this evaluation.

Table 1 summarized the results. 1064 cases (81.2%) resulted in successful estimation confirmed by

the same visual inspection used for the small data set. This correct estimation rate was almost identical

to the one for the first smaller data set, confirming the scalability of our algorithm. Similar to the first

data set, most failures were caused by small juxtapleural nodules. Note that our method resulted in correct

estimation for many juxtapleural cases as shown in Fig.4g-h. When a juxtapleural nodule is very small

and deeply embedded into the surface, however, our method tends to provide biased estimates since the

tumor center may not correspond to spatial maximum for such cases. For verification, small percentage of

cases resulted in false acceptance (false positive (FP): 3%) and false rejection (false negative (FN): 5%),

similar to the results of the generalization experiment with 100 trials. The most false positive cases occurred

when a marker was placed outside of the attraction basin of the target nodule, causing the characterization

of a nearby non-pathological structure (e.g., rib bones and vessels) which was accidentally Gaussian-like.

On the other hand, the false negative cases were mostly caused by heavily vascularized or wall-embedded

nodules that were correctly characterized by our robust algorithm but classified as non-nodule due to large

chi-square fitting error. Except for these special cases, the majority of both correct and incorrect estimates

are successfully accepted and rejected, respectively.

Another important question is thestability or robustnessof our system against the initial localization

of the markers. Such stability is a key factor for realizing low intra- and inter-operator variability and high

reproducibility. First, we study the characterization performance with additional duplicate markers. The

second data set contained 150 additional duplicate markers provided by the radiologists, which are deviated

from the other indicating the same nodule within 6 Euclidean voxel distance. Including these markers, the
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Range σMean σCov σVol σMaxD σAveD σIso√
1 0.49 2.78 52.9 0.41 0.22 0.014√
2 0.58 2.49 44.1 0.46 0.28 0.018√
3 0.56 2.51 45.4 0.45 0.27 0.017

Table 2: The standard deviation of the various estimates induced by random perturbation of initial marker
locations within three sampling ranges,

√
1,
√

2, and
√

3 Mahalanobis distance, around the tumor center
estimated from the marker given by the radiologists.σMean: the average of standard deviations (SD) for
single coordinate variables,σCov: SD of the Frobenius matrix norm,σVol: SD of the 3D volume invoxel3

unit, σMaxD: SD of the maximum diameter invoxel unit, σAveD: SD of the average diameter invoxel
unit, andσIso: SD of the isotropy parameter ranging within [0,1].

Range (Vol,AveD) <(150,6.7) <(525,10) <(1250,13.3) <(2425.16.7) <(4190,20)

σVol 4.00 15.9 21.0 39.6 45.4
σAveD 0.13 0.25 0.25 0.27 0.27
σMaxD 0.23 0.42 0.42 0.44 0.45

Table 3: The standard deviation of the volumetric estimates shown as a function of five different tumor size
ranges. The ranges are described in both volume (Vol) and average diameter (AveD) invoxel3 andvoxel
units, respectively. The largest sampling range,

√
3, is used for this experiment.

same performance evaluation for Table 1 is carried out with the total of 1469 markers. The results were

almost identical to the ones without the duplicate markers; correct estimation: 81.3%, failed estimation:

18.7%, true positive: 76.3%, false negative: 5.0%, true negative: 15.4%, false positive: 3.3%.

Second, the robustness is evaluated by numerical stability analysis of estimation variances induced

by random perturbation of initial marker locations. For this experiment, we randomly select 550 nodules

from the second database which are correctly estimated and verified (confirmed by our eye appraisal) and

are of size between 3 and 20 voxels in the average diameter. For each selected nodule, its mean and covari-

ance are estimated by our method from the marker given by the radiologists. A set of 10 test markers are

randomly sampled around the estimated mean within
√

3 Mahalanobis distance range for each nodule. The

variance of estimates with the 5500 test markers are studied for center (mean), spread (covariance), volume,

maximum/average diameter, and isotropy.

Table 2 and 3 summarize the results shown as a function of sampling ranges and tumor sizes, re-

spectively. The spread varianceσCov is quantified by the standard deviation of the Frobenius norm of the

covariance matrix. While the isotropy parameter is non-dimensional, the variance for the center, volume,

maximum/average diameters are expressed by the standard deviation of the estimates invoxel unit. Since

the voxel dimension of our data is bounded by a 1 mm cube and roughly isotropic, these volumetric esti-

mate variances invoxel unit can be treated as an upper-bound of the variances inmillimeter unit for the
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measurements by using Eq.(23-26). The results in Table 2 show that the various estimation variances do not

change largely by using the different sampling ranges from
√

1 to
√

3 Mahalanobis distances, indicating the

insensitivity against the marker perturbation. The absolute values for the mean location and spread variances

are also very small, showing the robustness of our estimation process. Table 3 shows that the absolute value

of the estimation variances correlates better to the estimated tumor sizes. For the given range of the tumor

sizes, the standard deviations with the
√

3 Mahalanobis distance perturbation were small with respect to the

corresponding tumor sizes, ranging between 1-3% of the estimated measurement values. The overall results

of the above stability analyses suggest the insensitivity of our solution against the initialization or intra- and

inter-operator variability. Due to the lack of the ground-truth, the error analysis of the estimation bias was

not possible. However the eye appraisal of the results using the visualization in the form of Fig.4 and 6

indicated at least reasonable accuracy of the mean location and maximum diameter estimates.

6.3 System Implementation

The above-described 3D nodule analysis system is implemented in C language and processes each 33-voxel

volume-of-interest (VOI) by an average of two seconds using an off-the-shelf PC with a 2.4GHz Intel CPU.

A quasi real-time nodule characterization and visualization software is developed by using this system. The

C-implemented system is packaged as the matlab’s mex library which is used as a computational module of

a volume visualization tool built on the matlab’s GUIDE (GUI development environment). Fig.6 illustrates

screen-snapshots of the nodule characterization and visualization process.

7 Discussions

This article proposed a comprehensive robust framework for characterizing the 3D anisotropic pulmonary

nodules. The nodule’s geometric structure is specified by a 3D ellipsoid that is provided by robustly fitting

the anisotropic Gaussian-based intensity model to the volume data. The new estimation framework unifies

the mean shift-based robust statistical analysis and the linear scale-space-based multi-scale analysis. The

unification is realized by formally extending the density mean shift towards the continuous positive func-

tion representing the volume data. The proposed verification algorithm also complements the estimation

framework, providing an effective goodness-of-fit measure for rejecting accidental ill-estimates. The ana-

lytical volumetric measurement solutions are also proposed for efficiently approximating the nodule volume,

maximum/average diameter, and isotropy directly from the fitted ellipsoid.
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Figure 6: Quasi real-time nodule characterization and visualization. Three slices of the volume data read
from dicom files can be viewed in 2D (top) and 3D (bottom) layouts. A mouse-click in the root view (top-
left) initiates the nodule characterization process. After an average of 2 seconds, the process is completed
and results in a zoom-up view of the nodule in the 2D (top-right) and 3D (bottom-right) layouts, as well as
its volumetric measurements. The estimated nodule spread is visualized by yellow ellipses in the top-right
figure and a red opaque ellipsoid in the bottom-right figure.
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The nodule characterization system is validated by two sets of the large number of nodules as well

as 1D and 2D synthetic data. The experimental results with the clinical chest HRCT data demonstrated a

successful application of volumetric nodule characterization, providing robust estimation of 3D location and

anisotropic spread, as well as the stable volumetric measurements, of the non-spherical pulmonary nodules.

The quasi real-time system developed in this study also provides an efficient tumor visualization that can

aid the tasks of radiologists. Such application for visualization is possible due to the ellipsoidal nature of

our tumor characterization unlike other promising features such as fractal dimension analysis [17, 18].

As discussed in the introduction, the importance of accurately diagnosing the small and part- or non-

solid (GGO) nodules has been revealed by recent clinical studies. Such clinical demands pose technical

challenges since much higher characterization accuracy in both shape and volume is required for detecting

the malignancy and for quantifying the related tumor growth-rate. Moreover, the voxel intensity distribution

of the sub-solid nodules are much more irregular than the typical nodules targeted by the previous studies.

Our experimental results suggest that the proposed model-based approach is a promising technique for

segmenting and quantifying the volume of the non-solid nodules, with which the intensity thresholding-

based segmentation may fail. More GGO cases, especially the part-solid nodules, should be further evaluated

in future for deriving more clinically conclusive result.

One of the contributions of this work is the proposed estimation solution for the fully anisotropic

Gaussian intensity model. The importance of considering the anisotropic covariance in the scale-space was

also suggested by Lillholm et al. [39] in their image reconstruction analyses with various local features

defined as combinations of the first and second order scale-space derivatives. Their results have direct

implications to our problem since the second order derivatives (or Hessian matrix) are explicitly related to

the covariance matrix [2, p.178][40].

The main technical strengths of our solution is its robustness against the effects of the margin-

truncation (i.e., attachment to vessels and pleural surfaces) and the non-Gaussianity (i.e., part- and non-solid

nodules) that are common in the pulmonary CT data or clinically significant. Such robustness is due to

the nature of our framework consisting of i) the multi-scale joint Gaussian fitting and segmentation using

only samples within the basin of attraction, ii) the divergence-based scale selection, and iii) the constraint

least-squares covariance estimation. The robustness against the non-Gaussianity also supports our choice of

the Gaussian intensity model. While such model is appropriate for small nodules due to the partial volume

effect, it may not serve as an accurate model for large nodules whose intensity profile tends to resemble a
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constant plateau or a step function. The scale-space approach used in our solution helps to fit a Gaussian

function to such data by regularizing a step function into more Gaussian-like uni-modal signal. Moreover,

the stability-based scale selection algorithm helps to absorb the modeling error by choosing the best fit

regardless of such errors.

The proposed solutions provide volumetric measurements of target nodules which can be used for

the differential diagnosis in the CAD application context. The advantage of our approach is three-folds.

First, our solution inherits the robustness of our model estimation solution, resulting in a low intra- and

inter-operator variability of the measurements. Second, the ellipsoidal formulation provides the type of

measurements such as the average diameter and isotropy that are difficult to measure by conventional meth-

ods. Third, the robust solution for measuring the maximum nodule diameter can be related to the clinical

RECIST scheme. The main issue of our approach is a bias due to the ellipsoidal approximation. The ellip-

soidal segmentation is limited to an approximation of true tumor boundary. When the target tumor possesses

irregular surface, the volumetric measurements by our method can be biased from the absolute value of the

(unknown) ground-truth volume. While this issue can be well addressed by the previous segmentation-based

approaches that explicitly account for the irregular surface structures and the boundary between the nodule

and other structures (e.g., Kostis et al. [14]), the robustness of such approach has not been fully investigated.

The proposed solution emphasizes the robustness over the ability to describe fine surface structure. In the

context of the differential diagnosis, this may be a reasonable trade-off when, due to the robustness, the bias

is unique to specific data, because such bias can be then canceled by differentiating a pair of volumes.

Our experimental results also indicated that most of the biased estimations were due to the small

nodules with pleural attachments. In the nodule taxonomy introduced by Kostis et al. [14], our system per-

formed well on the well-circumscribed, vascularized, and pleural tail nodules. Although many juxtapleural

cases were also characterized correctly by our robust method, most of the failures were due to this type of

nodules when they are small and heavily embedded into the surface. In such situation, the nodule center may

become an unstable spatial local maximum, forcing the center/mean estimate to be drifted to a nearby non-

target peak such as rib bones. This is an open issue of the proposed approach. Further improvement of the

system performance on such case is clinically important since such peripheral nodules are found frequently

in practice.

The issue of the estimation bias due to the ellipsoidal approximation can be solved by combining the

proposed model-based approach with an additional non-parametric segmentation-based approach. The el-
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lipsoidal approximation derived from the Gaussian fitted by our method can be used as the initial prior state,

from which the finer boundary segmentation can be non-parametrically derived. Moreover, the intensity

statistics can be sampled only within the ellipsoidally segmented nodule area, reducing the estimation bias.

We have recently proposed such a non-parametric segmentation solution using 4D joint domain density

mean shift analysis where the analysis bandwidth is directly derived from the fitted Gaussian [25]. An-

other natural continuation of this study is the extension of our framework for the automatic nodule detection

problem. The most simple approach is to apply our nodule characterization solution from a set of markers

distributed over the entire lung volume. This requires an intelligent sampling scheme and voting mechanism

for realizing an efficient automatic detection solution, which remains as our future work.

Overall, our solution is generic and does not depends on semantics of the absolute CT values in the

Hounsfield unit. The robustness, flexibility, and efficiency of the proposed framework, therefore, facilitates

not only the pulmonary nodule applications in CT sought in this article but also various other applications

in different imaging domains (e.g., PET scans) and different pathological and anatomical structures (e.g.,

polyps), involving with the analysis of blob-like geometrical structures. We plan to explore such other

applications of our method in near future.
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