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Abstract

We propose EMD-L1: a fast and exact algorithm for computing the Earth Mover’s Distance (EMD)

between a pair of histograms. The efficiency of the new algorithm enables its application to problems

that were previously prohibitive due to high time complexities. The proposed EMD-L1 significantly

simplifies the original linear programming formulation of EMD. Exploiting theL1 metric structure, the

number of unknown variables in EMD-L1 is reduced toO(N) from O(N2) of the original EMD for

a histogram withN bins. In addition, the number of constraints is reduced by half and the objective

function of the linear program is simplified. Formally without any approximation, we prove that the

EMD-L1 formulation is equivalent to the original EMD with aL1 ground distance. To perform the

EMD-L1 computation, we propose an efficient tree-based algorithm, Tree-EMD. Tree-EMD exploits

the fact that a basic feasible solution of the simplex algorithm-based solver forms a spanning tree

when we interpret EMD-L1 as a network flow optimization problem. We empirically show that this

new algorithm has average time complexity ofO(N2), which significantly improves the best reported

super-cubic complexity of the original EMD. The accuracy of the proposed methods is evaluated by

experiments for two computation-intensive problems: shape recognition and interest point matching

using multi-dimensional histogram-based local features. For shape recognition, EMD-L1 is applied to

compare shape contexts on the widely tested MPEG7 shape dataset, as well as an articulated shape

dataset. For interest point matching, SIFT, shape context and spin image are tested on both synthetic

and real image pairs with large geometrical deformation, illumination change and heavy intensity noise.

The results demonstrate that our EMD-L1-based solutions outperform previously reported state-of-the-art

features and distance measures in solving the two tasks.

Index Terms Earth Mover’s Distance, transportation problem, histogram-based descriptor, SIFT,

shape context, spin image, shape matching, interest point matching

I. I NTRODUCTION

Histogram-based local descriptors are ubiquitous tools in numerous computer vision tasks, such

as shape matching [3], [32], [47], [48], [26], image retrieval [29], [21], [34], [31], [27], texture

analysis [22], color analysis [42], [45], and 3D object recognition [18], [36], to name a few.

For comparing these descriptors, it is common to applybin-to-bin distance functions, including

Lp distance,χ2 statistics, KL divergence, and Jensen-Shannon (JS) divergence [25]. In applying

these bin-to-bin functions, we often assume that the domain of the histograms are previously

aligned. However, in practice, such an assumption can be violated due to various factors, such

as shape deformation, non-linear lighting change, and heavy noise. TheEarth Mover’s Distance
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(a) (b) (c)

(d) (e) (f)

Distance d(a, b) d(b, c)

L1 1.0 0.875

L2 0.3953 0.3644

χ2 0.6667 0.6625

EMD 0.5 1.5625

(g)

Fig. 1. An example where bin-to-bin distances meet problems. (a),(b) and (c) show three shapes and log-polar bins on them.

(d),(e) and (f) show the corresponding 2D histograms (shape context) of (a),(b) and (c) using the same 2D bins, respectively.

The distances between (d) and (e) and the distances between (e) and (f) are summarized in table (g). All EMDs here use the

L1 ground distance.

(EMD) [42] is across-bindistance function that addresses this alignment problem. EMD defines

the distance between two histograms as the solution of thetransportation problemthat is a

special case of linear programming (LP). Beyond the color and texture signature application

originally considered by Rubner et al. [42], we demonstrate in this article that EMD is useful

for more general classes of histogram descriptors such as SIFT [29] and shape context [3].

Fig. 1 illustrates an example with the shape context, demonstrating the advantage of the cross-

bin EMD over common bin-to-bin functions. The small articulation of two blobs between (a) and

(b) causes a large change in their corresponding shape contexts as 2D histograms. EMD correctly

describes the perceptual similarity of (a) and (b), while the three bin-to-bin distance functions,L1,

L2 andχ2, falsely state that (b) is more similar to (c) than to (a). Despite this favorable robustness

property, EMD has seldom been applied to general histogram-based descriptors (especially local

descriptors) to the best of our knowledge. The main reason lies in its expensive computational

cost, which is larger thanO(N3) (super-cubic1) for a histogram withN bins. Targeting this

problem, we propose an efficient algorithm to compute EMD between histograms.

The contribution of this paper is twofold.

1) We propose a new fast algorithm,EMD-L1, to compute EMD between histograms with

L1 ground distance. The formulation of EMD-L1 is much simpler than the original EMD

1By super-cubic, we mean a complexity inΩ(N3) ∩O(N4).
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formulation. It has onlyO(N) unknown variables, which is significantly less than the

O(N2) variables required in the original EMD. Furthermore, EMD-L1 has only half the

number of constraints and a more concise objective function. We prove that EMD-L1 is

formally equivalent to the original EMD withL1 ground distance. As an optimization solver

of EMD-L1 computation, we designed an efficient tree-based algorithm. The new algorithm

greatly improves the efficiency of the original transportation simplex algorithm as used in

[42]. An empirical study demonstrates that the running time of EMD-L1 quadratically

increases withN , which is much faster than the previous super-cubic algorithm.

2) For the first time, EMD is successfully applied to compare histogram-based local descrip-

tors. The speedup gained by EMD-L1 enables us to compute EMD directly for multi-

dimensional histograms without reducing the discriminability by introducing approxima-

tion. We tested the proposed approach in two tasks: shape matching and interest point

matching. First, EMD-L1 is applied to shape recognition tasks with the shape context [3]

and the inner-distance shape context [26]. The experiments are conducted on two previously

tested data sets, the widely tested MPEG7 shape data set and an articulated shape set. Our

results show that EMD-L1 outperforms all previously reported results. The second task

is interest point matching for intensity images with three local descriptors, SIFT [29],

shape context [3] and spin images [18], [22]. We experimented on both synthetic and

real image pairs, under significant geometrical deformation, lighting change, and intensity

noise. Again, EMD-L1 demonstrates excellent performance. The results show that EMD-

L1 outperforms common metrics and works as accurately as the original, much slower,

EMD with L2 ground distance.

The rest of the paper is organized as follows. Sec. II discusses related works. In Sec. III, we

review the original Earth Mover’s Distance and present its formulation for histograms. Sec. IV

introduces the proposed EMD-L1, together with a formal proof of equivalence between EMD-

L1 and EMD with L1 ground distance. Then a novel fast tree-based algorithm for computing

EMD-L1 is proposed in Sec. V. In Sec. VI, we report the results of experiments evaluating

EMD-L1 for shape matching using shape context and for interest point matching using SIFT,

shape context and spin images. Finally, Sec. VII concludes this article and discusses our future

work.
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II. RELATED WORK

Early works using a cross-bin matching cost for histogram comparison can be found in [44],

[49] and [38]. Particularly, in Peleg et al. [38], images are modeled as sets of pebbles after

normalization. The similarity between two images is the matching cost of two sets of pebbles

based on the distances between them.

Adapted from previous work, the Earth Mover’s Distance (EMD) is proposed by Rubner et al.

[42] and Rubner and Tomasi [41] to compare distributions for image retrieval tasks. By modelling

distribution comparison as a transportation problem [13] (a.k.a. the Monge-Kantorovich problem

[39]), a specialized efficient linear programming algorithm, thetransportation simplex(TS)

algorithm [12] is proposed to solve the EMD. It is shown in [42] that TS has a super-cubic

empirical time complexity. In [42], EMD is applied to signatures of distributions instead of

directly to histograms. Signatures are abstracted representations of distributions and are usually

clustered from histograms. This approach is very efficient and effective for distributions with

sparse structures, e.g., the color histograms in the CIE-Lab space [42]. However, for histogram-

based local descriptors that are not sparse in general, e.g. SIFT [29], EMD should be applied

to histograms directly. In a typical setting to solve real vision problems, the number of required

comparisons between these descriptors is very large, which forbids the use of the original TS

algorithm. For example, to compare two images with 300 local features each, 90,000 comparisons

are needed! Note that, although there is a fast exact EMD algorithm for 1D histograms [38],

such a solution does not scale to higher dimensions - while most of the histogram-based local

descriptors have two or three dimensions. In contrast, in this paper we extend it to general

multi-dimensional histograms.

Since its initial proposal by Rubner et al. [42], EMD has attracted a large amount of research

interest. Here we briefly summarize some examples. Cohen and Guibas [4] studied the problem

of computing a transformation between distributions with minimum EMD. Levina and Bickel

[24] proved that EMD is equivalent to the Mallows distance [30] when applied to probability

distributions. Tan and Ngo [46] applied EMD for common pattern discovery using EMD’s partial

matching ability. Indyk and Thaper [16] proposed a fast approximation EMD algorithm and used

it for image retrieval [16] and shape matching [7]. In addition, Holmes et al. [14], [15] touched

on several areas explored in the paper, including EMD approximations in a Euclidean space for

classes of derivative histograms and partial matching.
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The fast algorithm proposed by Indyk and Thaper [16] is through embedding the EMD metric

into a Euclidean space. The approach first embeds EMD between point sets into aL1 space.

This is done via some hierarchical distribution analysis. Then fast nearest neighbor retrieval is

achieved via Locality-Sensitive Hashing (LSH). The EMD can then be approximated by theL1

distance in the Euclidean space. Grauman and Darrell [7] extended the approach for fast contour

matching. For this purpose, a shape is treated as a set of features on the contours, where each

feature is treated as a point in the feature space. The time complexity of these algorithms are

O(Nd log ∆), whereN is the number of points,d is the dimension of the feature space, and∆

is the diameter of the union of the two feature sets to be compared. These approaches are very

efficient for retrieval tasks and global shape comparison [16], [7]. However, the approximation

due to the embedding may sacrifice precision, reducing the discriminability of descriptors. As

indicated in [16], the distortion upper bound isO(log ∆) and empirical distortion is about 10%.

In addition, these approaches focused on point set matching rather than the histogram comparison

in which we are interested. Recently, Grauman and Darrell [8] proposedpyramid matching kernel

(PMK) for feature set matching. PMK can be viewed as a further extension of the fast EMD

embedding in that it also compare the two distributions in a hierarchical fashion. PMK also

handles partial matching through histogram intersections [45].

In addition to EMD, other histogram dissimilarity measures and their performance evaluation

can be found in [40]. Both bin-to-bin distances and cross-bin distances are discussed in [40],

including thequadratic form distance[35], [10]. Quadratic form distance is another cross-bin

distance. It allows comparison of histograms across different bin locations whose connectivity

is heuristically determined by a quadratic form.

Unlike the above previous work, we focus on designing a distance metric for histogram-based

local descriptors, which have attracted a lot of research interests recently [3], [32], [47], [48],

[26], [29], [21], [34], [31]. Three representative examples are chosen in our experiments. First,

the shape context, introduced by Belongie et al. [3], captures the distribution of landmark points.

It is demonstrated to be very discriminative for shape matching. Some extensions of the shape

context can be found in [32], [47], [48], [26]. The second is the scale invariant feature transform

(SIFT) proposed by Lowe [29], which is a three-dimensional histogram measuring local gradient

distributions. SIFT and its extensions are widely used for image matching and retrieval, e.g. [29],

[21], [34], [31]. The third one is the spin image that basically computes the joint distribution of the
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intensity and distance of pixels around given interest points. It was first proposed by Johnson and

Hebert [18] for 3D object recognition and later extended to a 2D texture descriptor by Lazebnik

et al. [22]. A review of other descriptors and their performance evaluation can be found in [31].

Previously, these histogram-based local descriptors are compared by bin-to-bin metrics, especially

the χ2 distance and theLp norms (e.g., Euclidean distance, Manhattan distance). In this paper,

we will show that the proposed EMD comparison achieves better performance, especially for

tasks involving large distortions including geometric deformation, illumination change and heavy

intensity noise.

III. T HE EARTH MOVER’ S DISTANCE (EMD)

A. The Original EMD between Signatures

The Earth Mover’s Distance (EMD) is proposed by Rubner et al. [42] to measure the dissim-

ilarity between signatures that are compact representations of distributions. A signature of size

N is defined as a setS = {sj = (wj,mj)}N
j=1, wheremj is the position of thej-th element and

wj is its weight.

Given two signaturesP = {(pi, ui)}m
i=1 andQ = {(qj, vj)}n

j=1 with sizem,n respectively, the

EMD between them is modeled as a solution to a transportation problem. Treat elements inP

as “supplies” located atui and elements inQ as “demands” atvj. Thenpi andqj indicates the

amount of supply and demand respectively. The EMD is defined as the minimum (normalized)

work required for resolving the supply-demand transports, i.e.

EMD(P, Q) = min
F={fij}

∑
i,j fijdij∑

i,j fij

with the following constraints:

∑
j

fij ≤ pi ,
∑

i

fij ≤ qj ,
∑
i,j

fij = min{
∑

i

pi,
∑

j

qj} , fij ≥ 0 ,

whereF = {fij} denotes a set offlows. Each flowfij represents the amount transported from

the i-th supply to thej-th demand. We calldij the ground distancebetween the positionui and

vj. Fig. 2 gives an example, whereP has four elements andQ has three.

The transportation problem is a special case of linear programming (LP) problems. The

constraint matrix in this case has a very sparse structure that enables an efficient algorithmic

solution. One such efficient algorithm is the transportation simplex (TS) [42], [12]. Modified from
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Fig. 2. EMD between two signatures (m = 4, n = 3) as a transportation problem.

the standard simplex algorithm, TS greatly reduces the number of operations to maintain the

constraint matrix by taking advantage of its special structure. The empirical study in [42] shows

that the time complexity is super-cubic for signatures with sizeN . Other possible solutions

mentioned in [42] include interior-point algorithms [20] and incapacitated minimum network

flow [1] that have similar time complexities.

B. The EMD between Histograms

Histograms can be viewed as a special type of signatures in that each histogram bin corresponds

to an element in a signature. In this view, the histogram values are treated as the weightswj in

a signatureS, and the grid locations (indices of bins) are treated as positionsmj in S.

In the following we assume two dimensional histograms for illustrative simplicity. They are

widely used for shape and image descriptors and derivations for higher dimensional cases are

straightforward. Without loss of generality, we use the following assumptions and notations.

• Histograms havem rows andn columns andN = m× n bins.

• The index set for bins is defined asI = {(i, j) : 1≤i≤m, 1≤j≤n}. We use(i, j) to denote

a bin or a node corresponding to it.

• The index set for flows is defined asJ = {(i, j, k, l) : (i, j) ∈ I, (k, l) ∈ I}.
• P = {pij : (i, j) ∈ I} andQ = {qij : (i, j) ∈ I} are the two histograms to be compared.

• Histograms are normalized to a unit mass, i.e.,
∑

i,j pij = 1,
∑

i,j qij = 1. As will be clear

later, the normalization is not essential for the algorithm we will propose.
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• The bin sizes in both dimensions are equal. Without loss of generality, each bin is assumed

to be a unit square.

With these notations and assumptions, we obtain the following new definition of EMD between

two histogramsP andQ

EMD(P, Q) = min
F={fi,j;k,l:(i,j,k,l)∈J}

∑
J

fi,j;k,ldi,j;k,l (1)

s.t.





∑
(k,l)∈I fi,j;k,l = pij ∀(i, j) ∈ I

∑
(i,j)∈I fi,j;k,l = qkl ∀(k, l) ∈ I

fi,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J
(2)

whereF is a flow fromP to Q andfi,j;k,l denotes a flow from bin(i, j) to (k, l). Note that we

use the term “flow” to indicate both the set of flows in a graph and a single flow between two

nodes, when there is no confusion. A flowF satisfying (2) is calledfeasible.

The ground distancedi,j;k,l is commonly defined byLp distance

di,j;k,l = ‖(i, j)> − (k, l)>‖p = (|i− k|p + |j − l|p)1/p (3)

For example, the original EMD proposed by Rubner et al. [42] employed theL1 (for texture)

andL2 (for color) ground distances.

IV. EMD-L1

This section introduces EMD-L1, a novel efficient formulation of EMD between histograms.

We first show that, by using theL1 (Manhattan) distance as the ground distance, EMD-L1 dras-

tically simplifies the original formulation. Then, we formally prove that EMD-L1 is equivalent

to the original EMD withL1 ground distance. Note that we use the term EMD-L1 to refer to the

proposed formulation (and algorithms), which should be distinguished with the original EMD

with L1 ground distance.

A. Formulation of EMD-L1

The robustness and efficiency of theL1 norm often makes it preferable to theL2 norm in

computer vision and related areas, such as low-level vision learning [6], stereo analysis [19],

[5], 1-norm support vector machine [51], etc. In addition, theL1 and L2 norms often perform

similarly for image retrieval tasks [2]. Furthermore, theL1 formulation had been also used in

DRAFT



10

EMD, such as in [50], [42], [4] etc.. Inspired by this evidence, we chooseL1 as EMD’s ground

distance. In the rest of the paper, unless indicated otherwise, theL1 ground distance is implicitly

assumed when dealing with EMD. With theL1 ground distance, formula (3) becomes

di,j;k,l = |i− k|+ |j − l|

Note that the ground distance takes only integer values now. For illustrative purpose, the flow

index setJ is divided into three disjoint subsetsJ = J0

⋃J1

⋃J2, each of which corresponds

to one of the following types of flows.

• J0 = {(i, j, i, j) : (i, j) ∈ I} is for flows between bins at the same location. We call this

type of flowsself-flowsor s-flowsfor short.

• J1 = {(i, j, k, l) : (i, j, k, l) ∈ J , di,j;k,l = 1} is for flows between neighbor bins. We call

this type of flowsn-flows.

• J2 = {(i, j, k, l) : (i, j, k, l) ∈ J , di,j;k,l > 1} is for other flows that are calledf-flows

because of theirfar distances.

An important property of theL1 ground distance is that every positive f-flow can be replaced

by a sequence of n-flows. This is because theL1 distance forms a shortest path system on the

integer lattice. For example, given an f-flowfi,j;k,l, i≤k, j≤l, the L1 ground distance has the

following decomposition

di,j;k,l = di,j;i,l + di,l;k,l =
∑

j≤x<l

di,x;i,x+1 +
∑

i≤y<k

dy,l;y+1,l (4)

In other words, anyL1 shortest path from(i, j) to (k, l) can be decomposed into a sum of

edges with ground distance one. It follows that, without changing the total weighted flow
∑

f∈F fd, the f-flowfi,j;k,l can be removed by increasing all n-flows along the path[(i, j), (i, j+

1), . . . , (i, l), (i + 1, l), . . . , (k, l)] with fi,j;k,l. This is illustrated in Fig. 3

Fig. 3. Decompose an f-flowfi,j;k,l, k = i + 1, l = j + 2. Only flows involved in decomposition are shown.
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In addition to f-flows, s-flows can also be removed due to the zero ground distances associated

with them while maintaining the total weighted flow. With these intuitions, we proposeEMD-L1:

a new simplified formulation of EMD that only uses n-flows

EMD-L1(P,Q) = min
G={gi,j;k,l:(i,j,k,l)∈J1}

∑
J1

gi,j;k,l (5)

s.t.





∑
k,l:(i,j,k,l)∈J1

(gi,j;k,l − gk,l;i,j) = bij ∀(i, j) ∈ I
gi,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J1

(6)

wherebij = pij−qij is the difference between the two histograms at a bin (i,j). We call a flowG

satisfying (6) afeasibleflow, analogous to that in the original EMD. The intuition of constraint

(6) is that, for a feasible flowG, the total flow that leaves any node(i, j) minus the total flow

that enters(i, j) should be equal tobij (the difference between the two histogram bins).

EMD-L1 is largely simplified compared to the original EMD in (1) and (2). The specific

simplifications include

1) There are only4N variables in (5), one order of magnitude less than that in (1). This

is critical for speedup since the number of variables is a dominant factor in the time

complexity of all LP algorithms. In addition, the memory efficiency gained by this is very

favorable for histograms with a large number of bins.

2) The number of equality constraints is reduced by half. This is another important factor for

deriving an efficient LP algorithm.

3) All the ground distances involved in the EMD-L1 become ones. This is practically useful,

because it removes all the distance computation and thus each flowg is equivalent to the

corresponding weighted flowgd (d is the ground distance corresponds to the flowg). It

also allows the use of integer operations to handle the coefficients.

EMD-L1 can also be interpreted as a network flow model illustrated in Fig. 4. In the model,

each bin(i, j) is treated as a node with weightbij, and eight flow edges (as shown in Fig. 4)

between the node and its four neighbors. The total weight of the nodes is 0 (
∑

I bij = 0). The

task is to redistribute the weights via the flows to make all weights vanish. In this interpretation,

EMD-L1 is given by a solution with the minimum total flow.

The above simplifications and the network flow interpretation enable us to design a fast tree-

based algorithm to solve EMD-L1, which we present in Sec. V-C.
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Fig. 4. The EMD-L1 as a network flow problem for3× 5 histograms.

B. Equivalence between EMD-L1 and Original EMD withL1 Ground Distance

The equivalence here is in the sense of the weighted total flows. For example, a flowG

for EMD-L1 and a flow F in the original EMD is said to be equivalent if
∑

J1
gi,j;k,l =

∑
J di,j;k,lfi,j;k,l, i.e., they have same total weighted flow. The following proposition states the

equivalence in which we are interested.

Proposition Given two histogramsP andQ as defined above

EMD(P, Q) = EMD-L1(P, Q) . (7)

We now introduce the intuition of the proof. The discussion in the last subsection suggests

that, for any feasible flowF for the original EMD, an equivalent feasible flowG for EMD-L1

(i.e.
∑

J1
gi,j;k,l =

∑
J di,j;k,lfi,j;k,l) can be created by eliminating all f-flows inF by using the

decomposition and removing s-flows. This impliesEMD(P, Q) ≥ EMD-L1(P, Q). Now we

need to verify the other direction. Given a flowG for EMD-L1, find an equivalentF for the

original EMD. The key issue is how to satisfy the constraints (2) in the original EMD. To do

this, we introduce a “merge” procedure. The idea is to merge input and output flows at each

bin so that either input or output flows disappear as a result. This is demonstrated in Fig. 5 on

page 15. Notice that, for this proof, we only need anF to have a total weight no greater than

that of G. This makes the proof with the merge procedure much simpler, allowing us to merge

any pair of input and output flows.
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Proof To prove (7), it suffices to prove

EMD(P, Q)≥EMD-L1(P, Q) and EMD(P, Q)≤EMD-L1(P, Q) .

Part I Proof of EMD(P,Q)≥EMD-L1(P, Q).

It suffices to prove that for any feasible flowF = {fi,j;k,l : (i, j, k, l) ∈ J } for the original

EMD, there exists an equivalent feasible flowG = {gi,j;k,l : (i, j, k, l) ∈ J1} for EMD-L1, i.e.

∑
J

fi,j;k,ldi,j;k,l =
∑
J1

gi,j;k,l (8)

This is because, if the above statement is true, we have

EMD(P, Q) = min
F

∑
J

fi,j;k,ldi,j;k,l ≥ min
G

∑
J1

gi,j;k,l = EMD-L1(P,Q)

where “≥” is due to the above statement.

For any F satisfying (2), we create an auxiliary flowF ′ = {f ′i,j;k,l:(i,j,k,l)∈J }. First, F ′ is

initialized by F . F ′ has three properties which will be maintained during its evolution




∑
J f ′i,j;k,ldi,j;k,l =

∑
J fi,j;k,ldi,j;k,l∑

k,l(f
′
i,j;k,l − f ′k,l;i,j) = bij ∀(i, j) ∈ I

f ′i,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J
(9)

Then, we evolveF ′ to make all f-flows vanish. For every positive f-flowf ′i,j;k,l in F ′, we

decompose it into a sequence of n-flows as illustrated in Fig. 3. In detail, assumei≤k, j≤l, the

three modifications toF ′ are conducted as following in the given order




f ′i,x;i,x+1 ← f ′i,x;i,x+1 + f ′i,j;k,l ∀x, j≤x < l

f ′y,l;y+1,l ← f ′y,l;y+1,l + f ′i,j;k,l ∀y, i≤y < k

f ′i,j;k,l ← 0

(10)

It is clear that (9) always holds before and after (10) (though it might be violated when (10)

is only partially finished). A similar operation can be defined for other index inequality cases.

After all the f-flows vanish, we buildG from F ′

gi,j;k,l = f ′i,j;k,l , ∀(i, j, k, l) ∈ J1 (11)

From (9), it follows thatG satisfies (6) and (8) (due to the fact thatf ′i,j;k,l = 0, ∀(i, j, k, l) ∈
J0

⋃J2). That is,G is a feasible flow forEMD-L1(P, Q) that is equivalent toF . Therefore,

we haveEMD(P,Q)≥EMD-L1(P, Q).

DRAFT



14

Part II Proof of EMD(P,Q)≤EMD-L1(P, Q).

Similar to Part I, it suffices to prove that, for any feasible flowG = {gi,j;k,l : (i, j, k, l) ∈ J1}
satisfying (6), there existsF = {fi,j;k,l : (i, j, k, l) ∈ J } satisfying (2), such that

∑
J

fi,j;k,ldi,j;k,l ≤
∑
J1

gi,j;k,l (12)

For anyG satisfying (6), we create an auxiliary flowG′ = {g′i,j;k,l : (i, j, k, l) ∈ J }. G′ is

first initialized byG

g′i,j;k,l =





gi,j;k,l ∀(i, j, k, l) ∈ J1

0 ∀(i, j, k, l) ∈ J0

⋃J2

G′ has three properties which will be maintained during its evolution




∑
J g′i,j;k,ldi,j;k,l ≤ ∑

J1
gi,j;k,l∑

k,l∈I(g
′
i,j;k,l − g′k,l;i,j) = bij ∀(i, j) ∈ I

g′i,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J
(13)

Note that, in the first equation of (13), “≤” is used instead of “=”.

Now we evolveG′ targeting the equality constraints (2) in the original EMD. This is done by

the following procedure.

Procedure: MergeG′

FOR each grid node(i, j)

WHILE exists flowg′k,l;i,j > 0 AND flow g′i,j;k′,l′ > 0 DO




δ ← min{g′i,j;k′,l′ , g′k,l;i,j}
g′k,l;k′,l′ ← g′k,l;k′,l′ + δ

g′k,l;i,j ← g′k,l;i,j − δ

g′i,j;k′,l′ ← g′i,j;k′,l′ − δ

(14)

END WHILE

END FOR

Fig. 5 shows an example of merging. The four steps in (14) need to be applied in the order

as given. Moreover, each run of (14) removes at least one non-zero flow, so the procedure is

guaranteed to terminate. Note that the merged flow may not be unique. However this does not

affect our proof because only total weighted flows are concerned.
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Fig. 5. Flow merging, wherebij > 0, g′i,j;k′,l′ > g′k,l;i,j > 0.

Because of the triangle inequalitydk,l;k′,l′ ≤ dk,l;i,j + di,j;k′,l′, the procedure (14) will not alter

the first inequality in (13) since it only decrease its left hand side. The second equality in (13)

also holds because (14) changes the input and output flows of a node always with the same

amount (δ). The third condition in (13) obviously holds true.

An important observation due to (13) and the proposed merge procedure is




g′i,j;k,l = 0 ∀(i, j, k, l) ∈ J if bij ≤ 0

g′k,l;i,j = 0 ∀(i, j, k, l) ∈ J if bij ≥ 0
(15)

Now we buildF from G′:

fi,j;k,l =





min{pij, qkl} ∀(i, j, k, l) ∈ J0

g′i,j;k,l ∀(i, j, k, l) ∈ J1

⋃J2

(16)

From (13), (15) and (16), we have thatF satisfies (2) and (12). That is,F is a feasible for

EMD(P,Q) and
∑

J fi,j;k,ldi,j;k,l ≤
∑

J1
gi,j;k,l. Therefore,EMD(P, Q)≤EMD-L1(P,Q). ¥

V. A LGORITHMS FOREMD-L1

To compute EMD-L1 between histograms is equivalent to solving the linear programming (LP)

problem in (5) and (6). We designed a tree-based algorithm as an efficient discrete optimization

solver, which extends the original simplex algorithm. The tree-based algorithm is significantly

faster than the original simplex, and has a more intuitive interpretation as a network flow problem.

As a reference, we will first briefly describe the standard simplex applied to EMD-L1. After

that, an extended transportation simplex algorithm for EMD-L1 is designed based on the original

transportation simplex [12] used in [42]. Finally, the tree-based algorithm is derived by further

extending the fast simplex.
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A. The Simplex Algorithm for EMD-L1

The simplex algorithm is a popular solution to linear programming problems because of its

average polynomial time complexity. In this subsection, we will first formulate EMD-L1 as a

standard linear program and then briefly describe its solution by the standard simplex algorithm.

Detailed descriptions of the simplex algorithm can be found in any linear optimization book.

We follow definitions and terminologies in [12].

First, write EMD-L1 as a standard LP problem

max Z (17)

s.t.





Z +
∑

J1
ci,j;k,lgi,j;k,l = 0

∑
k,l:(i,j,k,l)∈J1

(sijgi,j;k,l − sijgk,l;i,j) = |bij| ∀(i, j) ∈ I
gi,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J1

(18)

wheresij = sign(bij) is the sign ofbij. The constraints can be written in matrix formulations,

 1 c>

0 A





 Z

g


 =


 0

b


 (19)

where

A =




...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . . −sij . . . −sij . . . sij sij sij sij . . . −sij . . . −sij . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...


 (20)

g = (. . . gi−1,j;i,j . . . gi,j−1;i,j . . . gi,j;i−1,j, gi,j;i,j−1, gi,j;i,j+1, gi,j;i+1,j

. . . gi,j+1;i,j . . . gi+1,j;i,j . . .)> (21)

b = (. . . |bij| . . .)> (22)

c = (1 . . . 1)> (23)

Notes: 1) In the above formulation,Z = −∑
J1

ci,j;k,lgi,j;k,l is the negative of the original

objective function, which makes the problem as a “maximization” problem. 2) The objective

function is treated as the first row of the constraint matrix for convenience. 3) The coefficientc

is not constant. Roughly speaking, it reflects the constraints between components of variableg

and controls the iteration of the optimization. For more details, the readers are referred to [12,

Chapter 4 and 5].

There are several observations on this LP formulation of the EMD-L1:
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• Each row ofA corresponds to a node/bin in the histograms. Furthermore, only eight entries

are non-zero for each row - four for input flows and the other four for outputs. A row

corresponding to a bin(i, j) is shown in (20) and the corresponding flows are shown in

(21) accordingly.

• Each column ofA has only two non-zero entries that relate to the two ends of a flow.

Specifically, for the column corresponding togi,j;k,l, only rows corresponding to the node

(i, j) and (k, l) are non-zero.

• Although there aremn equality equations in (18), the actual number of constraints ismn−1

because
∑

bij = 0.

The simplex algorithm searches for the optimum solution among the space ofbasic feasible

(BF) solutions. A BF solution is a solution of (18) such that only a fixed number of variables

can be non-zero. These variables are calledbasic variable(BV) flows in our formulation and

we useB to denote the set of BV flows. The number of BV flows corresponds to the number

of constraints in the LP problem (mn − 1 for EMD-L1). The simplex algorithm employs an

iterative optimization approach: given an initial BF solution, it iteratively finds a better BF

solution (and replaces the old one) until the optimum is reached. Intuitively, each BF solution

lies at an intersection of the constraint boundaries (hence the number of BF solutions is finite).

The simplex iteration is guaranteed to converge to the global optimum because of the convexity

of the constraints [37, Theorem 2.9, p53-54].

The coefficientc is very important in three ways. First, the algorithm reaches optimumiff all

elements ofc are non-negative. This is used as the termination criterion for the iteration in the

simplex algorithm. Second,ci,j;k,l vanishes for every BV flowgi,j;k,l in a BF solutiong. Third,

the most negative element inc is used to determine how to improve the current BF solution.

The key to the algorithm is to find a better BF solution than the current one. The new BF

solution has only one different BV flow than the current one. In other words, in each iteration,

one flow leavesB and one flow entersB (from outsideB). The flow leavingB is calledleaving

BV and denoted asgi1,j1;k1,l1. Accordingly, the flow enteringB is calledentering BVand denoted

asgi0,j0;k0,l0. During each iteration, the simplex algorithm first findsgi0,j0;k0,l0 outsideB by some

greedy criteria. Thengi1,j1;k1,l1 that achieves the maximum improvement ofgi0,j0;k0,l0 is found

insideB. Table I outlines the simplex algorithm applied to EMD-L1. Details of the terminologies,

as well as the simplex algorithm, can be found in [12, Chapter 4].
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18TABLE I

SIMPLEX ALGORITHM FOR EMD-L1

Step 1 /* Initialization */

Initialize matrix A, b andc

Find the initial BF solutiong

Updatec andA according tog

Step 2 /* Iteration */

WHILE (1)

/*Optimality test*/

IF (ci,j;k,l ≥ 0, ∀(i, j, k, l) ∈ J1)

g is optimal, goto Step 3

END IF

/*Find a new improved BF solution*/

Find entering BV flowgi0,j0;k0,l0 by the formula

(i0, j0, k0, l0) = argmin(i,j,k,l)∈J1
ci,j;k,l

Find the leaving BV flowgi1,j1,k1,l1 by theMinimum Ratio

Test [12]. The intuition is to achieve the maximum

improvement ongi0,j0;k0,l0

Use the elementary row operations (Gaussian eliminations)

to update system (19), includingA, c and a new

BF solutiong.

END WHILE

Step 3 Compute the total flow by formula (5) as the EMD distance.

B. Extended Transportation Simplex for EMD-L1

The original EMD is solved by the transportation simplex (TS) algorithm [12, Chapter 8] by

taking advantage of the special structure of the original EMD formulation. As mentioned in the

last subsection, EMD-L1 has a sparse structure of the constraint matrixA, which is similar to

the original EMD. To exploit this similarity, we designed anextended transportation simplex

(ETS) for EMD-L1.

The basic idea of ETS is to intelligently update the BF solutiong, c andA during the simplex

iteration. Notice that in the iteration, only row operations are applied on the constraint equation

(19). Hence, instead of storing the whole matrixA, we only need to keep track of multiples

of each row when updatingc. For this reason, a new vectorv = (. . . , vij, . . .)
> is used, where
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vij represents current multiples of the row corresponding to the node(i, j). As a consequence,

coefficientsc is updated by

ci,j;k,l = 1− sijvij + sklvkl ∀(i, j, k, l) ∈ J1 (24)

Notice thatvij is always coupled withsij, so we merge them to form asigned multiple vector

u = (. . . , uij = sijvij, . . .)
>. Then equation (24) is simplified to

ci,j;k,l = 1− ui,j + uk,l ∀(i, j, k, l) ∈ J1 (25)

Now the problem reduces to solving equation (25) aboutu andc, and updatingg accordingly.

Notice thatci,j;k,l vanishes for every BV flowgi,j;k,l, therefore

ci,j;k,l = 1− ui,j + uk,l = 0 ∀ BV flow gi,j;k,l (26)

Since there aremn− 1 BV flows andmn unknownuij, uij can be solved very efficiently using

the special structure of (26). First, pick oneuij (e.g, u11) and set it to 0. Then, starting from

it, we keep applying (26) until all otheruij are solved. Onceu is determined,c can be solved

using (25).

Finding a better BF solution from the current BF solutiong is not straightforward. First, the

entering BVgi0,j0;k0,l0 is found using the same procedure as in the original simplex algorithm,

i.e., (i0, j0; k0, l0) satisfies thatci0,j0;k0,l0 = min(i,j,k,l)∈J1 ci,j;k,l. Then, to find the leaving BV,

we search for a loop in the BV flows starting fromgi0,j0;k0,l0. The loop is a sequence of BV

flows gr0,c0;r1,c1gr1,c1;r2,c2 . . .grL,cL;r0,c0 where r0 = i0, c0 = j0, r1 = k0, c1 = l0. The existence

and uniqueness of this loop is guaranteed. This loop contains all the BV flows to be updated

in order to includegi0,j0;k0,l0 into the new BF solution. Finally, the leaving BV flowgi1,j1;k1,l1 is

chosen from the loop, which has the minimum flow value and a reverse direction togi0,j0;k0,l0.

For example, in Fig. 6 (b), the entering BV creates a loop when combined with current non-zero

flows (the second and third columns from left). Among all the edges in this loop that have

reversed directions to the entering BV, the one on the top is chosen as the leaving BV because

it has the minimum flow value (0.2).

Table II lists the ETS algorithm. For better understanding, we recommend readers to refer to

the original transportation simplex described in [12, Chapter 8].
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20TABLE II

EXTENDED TRANSPORTATIONSIMPLEX (ETS) ALGORITHM FOR EMD-L1

Step 1 /* Initialization */

Initialize b

Find the initial BF solutiong

Updateu andc according tog

Step 2 /* Iteration */

WHILE (1)

/*Optimality test*/

IF (ci,j;k,l ≥ 0, ∀(i, j, k, l) ∈ J1)

g is optimal, goto Step 3

END IF

/*Find a new improved BF solution*/

Find entering BV flowgi0,j0;k0,l0 by the formula

(i0, j0, k0, l0) = argmin(i,j,k,l)∈J1
ci,j;k,l

Find a loop starting from the entering BV(i0, j0, k0, l0)

Find the leaving BVgi1,j1;k1,l1 as the one with the minimum

flow value and a reverse direction in the loop asgi0,j0;k0,l0 .

Updateg along the loop, removegi1,j1;k1,l1 from B
and addgi0,j0;k0,l0 into B.

Updatec using formula (25).

END WHILE

Step 3 Compute the total flow by formula (5) as the EMD distance.

C. Tree-EMD

Now consider the structure of a BF solution from the viewpoint of the network flow interpre-

tation of EMD-L1, which was mentioned in Sec. IV-A and in Fig. 4. There are two useful facts

of ETS as listed below.

1) There aremn nodes in the network and onlymn− 1 non-zero flows in a BF solution.

2) An optimal BF solution contains no cycles.

These facts suggest that a BF solution forms aspanning treein the network graph. In the

following, we call such a tree abasic feasible tree(BFT). Fig. 6 (a) shows an example of

a BFT. As a result, an efficient solution of EMD-L1 can be designed to find a BF tree with

minimum total tree weight (flows). Note that BF trees are undirected trees though flows do have
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directions (as shown in Fig. 6). In other words, when talking about cycles in this subsection, we

mean undirected cycles.

With this tree-based formulation, the iteration in ETS has a new interpretation. The entering

BV gi0;j0;k0,l0 is an edge to be added to the tree to reduce the total flow. A loop is formed after

addinggi0;j0;k0,l0. The leaving BVgi1,j1;k1,l1 is the minimum edge in the loop that has a direction

reversed fromgi0;j0;k0,l0.

A tree-based algorithm,Tree-EMD, can be naturally extended from ETS. First, an initial BFT

is built. Then the BFT is iteratively replaced by a better BFT until the optimum is reached.

Compared to ETS, Tree-EMD is more efficient due to the following reasons.

• Finding the loop from thegi0,j0;k0,l0 in transportation simplex requires graph searching [12].

This can be very slow (exponential worst complexity), especially for large histograms. A

tree-based algorithm can solve this problem efficiently, since the cycle containinggi0;j0;k0,l0

can be easily identified by tracing from node(i0, j0) and (k0, l0) until finding their latest

common ancestor. This is very efficient because it avoids the brute force search used in the

ETS algorithm [12, p327-328].

• With a tree structure, there is no need to update the wholeu. Only uij in a subtree needs

to be updated. This is true becauseuij only depends on their parents and we can always

setuij to 0 for the root. In addition, we also avoid locating unsolveduij as required in the

transportation simplex algorithm [12, p328].

An example tree updating in one iteration is illustrated in Fig. 6. Fig. 6 (b) shows the entering

BV and leaving BV found from the tree in (a). Fig. 6 (c) shows the new improved tree after

removing the leaving BV and adding the entering BV. In addition, an edgep is shown to indicate

the root of the subtree whereu need to be updated.

The Tree-EMD algorithm is presented in Table III. Several issues are discussed below.

1) The root of a BFT: The rootr is heuristically set to be the center of the graph. This is to

make the tree as balanced as possible. Oncer is fixed, theu value atr is fixed to0.

2) Build the initial BFT: For this task, we designed a greedy algorithm that is listed in Table

IV. The nodes are considered sequentially, in a left-to-right and bottom-to-top order, i.e.,

starting from bottom-left node. When processing nodeq, all the flows connecting its lower

and left neighbors are fixed. As a result, only one BV flow needs to be chosen between

q and either its upper or right neighbor such that the flow makes the weight atq vanish.
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(a) A BF tree. Some of the flow values and node values (bi,j) are listed.

r denotes the root of the tree. Only part of the flow values and weights are shown.

(b) The entering BV and leaving BV are found. Note the loop formed.

(c) The improved BF tree.p is the root of the subtree whereu need to be updated.

The subtree is indicated in the dashed bounding box.

Fig. 6. Tree updating in Tree-EMD algorithm.
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23TABLE III

TREE-EMD

Step 1 /* Initialization */

Initialize b

Build the initial BFT g rooted atr by a greedy initial solution (Table IV)

r← the center of the graph /*r is the root of the tree */

p∗←r /* p∗ is the root of the subtree to be updated */

Step 2 /* Iteration */

WHILE(1)

/*Recursively updateu in the subtree rooted atp∗)*/

FOR any childq of p∗

Updateuij at nodeq according to (26)

Recursively updateq’s children

END IF

/*Optimality test*/

IF (ci,j;k,l ≥ 0, ∀(i, j, k, l) ∈ J1)

g is optimal, goto Step 3

END IF

/*Find a new improved BF solution*/

Find entering BV flowgi0,j0;k0,l0 by the formula

(i0, j0, k0, l0) = argmin(i,j,k,l)∈J1
ci,j;k,l

Find loop by tracing from node(i0, j0) and (k0, l0) to find their latest ancestor.

Find the leaving BVgi1,j1;k1,l1 as the one with the minimum flow value and

a reverse direction in the loop asgi0,j0;k0,l0 .

Updateg along the loop

Maintain the tree, include removinggi1,j1;k1,l1 from it and addinggi0,j0;k0,l0 into it,

together with related parent-child linkages.

Updatec using formula (25).

Setp∗ as the root of subtree to updateu

END WHILE

Step 3 Compute the total flow by formula (5) as the EMD distance.

The choice is based on which direction is more effective in making the rest of the nodes

“even” (i.e., with smaller total absolute weights, see Table IV for details). Note that this
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24TABLE IV

GREEDY-SOLUTION FOR INITIALIZING BFT. NOTE. 1) THE SUMMATION Σr+1≤i≤m,1≤j≤nb′ij AND Σ1≤i≤m,c+1≤j≤nb′ij

CAN BE COMPUTED DYNAMICALLY FOR EFFICIENCY. 2) A BV FLOW CAN HAVE ZERO VALUE. 3) THE TOPMOST ROW AND

RIGHTMOST COLUMN MAY BE TREATED SEPARATELY, HERE WE PREFER THE CONCISE DESCRIPTION FOR CLEARNESS.

Step 1 /* Initialize all the flows */

gi,j;k,l ← 0, ∀(i, j, k, l) ∈ J1

b′i,j ← bij, ∀(i, j) ∈ I /* residual weights */

Step 2 /* Greedily find BV flows */

FOR c = 1 : n

FOR r = 1 : m

IF r 6= m AND c 6= n

IF |b′r,c + Σr+1≤i≤m,1≤j≤nb′ij | < |b′r,c + Σ1≤i≤m,c+1≤j≤nb′ij |
/* Flow to or from up */

IF b′r,c > 0 gr,c;r+1,c ← b′r,c

ELSE gr+1,c;r,c ← b′r,c

END IF

b′r+1,c ← b′r+1,c + b′r,c

ELSE

/* Flow to or from right */

IF b′r,c > 0 gr,c;r,c+1 ← b′r,c

ELSE gr,c+1;r,c ← b′r,c

END IF

b′r,c+1 ← b′r,c+1 + b′r,c

END IF

END IF

END FOR

END FOR

approach can be easily extended for dimensions higher than two. A similar idea is also

used for initialization of the transportation simplex, i.e. thenorthwest corner ruleand the

Russel’s initialization[12, p320-324].

D. Empirical Study of Time Complexity

The simplex algorithm is known to have good empirical time complexity but poor worst

case time complexity. Therefore, to evaluate the time complexity of the proposed algorithm, we
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conduct an empirical study similar to that in [42]. First, two sets of 2D random histograms are

generated for sizes:n × n, 2 ≤ n ≤ 20. For eachn, 1000 random histograms are generated

for each set (i.e. 2000 for all). Then, the two sets are paired and the average time to compute

EMD for each sizen is recorded. We compare EMD-L1 (with Tree-EMD) and the original EMD

(with the TS algorithm2). In addition, EMD-L1 is tested for 3D histograms with similar settings,

except using2 ≤ n ≤ 8. In summary, three algorithms are compared: EMD-L1 for 2D, EMD-L1

for 3D, and the original EMD. The results are shown in Fig. 7. From (a) it is clear that EMD-L1

is much faster than the original one. Fig. 7 (b) shows that EMD-L1 has a complexity ofO(N2),

whereN is the number of bins (n2 for 2D andn3 for 3D). Furthermore, in our image feature

matching experiments (Sec. VI-B), EMD-L1 shows similar running time as the quadratic form

distance (see Table VII), which has a quadratic time complexity.
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Fig. 7. Empirical time complexity study of EMD-L1 (Tree-EMD). (a) In comparison to the original EMD (TS Algorithm). (b)

Average running time vs. square of histogram sizes. (c) The ratio of the running time, i.e.running time of the original EMD
running time of EMD-L1(2D) .

In addition to the above experiment, we also compared Tree-EMD and ETS in a pilot exper-

iments for 2D histograms with 80 bins. We observed that Tree-EMD is roughly six times faster

than the ETS algorithm.

By far EMD-L1 has been shown to be more efficient than the original EMD. However,

for sparse histograms, especially in high-dimensional spaces, the original EMD might have an

advantage as it uses signatures that can compactly represent the sparse spaces with a relatively

low number of features (bins).

2With Rubner’s code, http://ai.stanford.edu/∼rubner/emd/default.htm
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VI. EXPERIMENTS

In this section, the EMD-L1 is evaluated for various histogram-based local descriptors in two

vision tasks. The first task is shape matching, where EMD-L1 is used to compare shape context

[3] and inner-distance shape context [26]. The second task is image feature (interest point)

matching, comparing a number of distance metrics with SIFT [29], shape context [3] and spin

image [18], [22]. These experiments show that EMD-L1 is robust to the quantization problems

[42] induced by geometrical deformation, illumination change and heavy noise.

A. Shape Matching with Shape Contexts

The EMD-L1 is tested for shape matching with shape context (SC) [3] and the inner-distance

shape context (IDSC) [26]. Given a shape and its boundary landmark points, SC attaches with

each point, sayp, with a histogram that measures the spatial distribution of all other points

according top’s local coordinate system. IDSC is an extension of SC by using the shortest

path distance inside the shape for distance bins instead of Euclidean distance. In [26], SC and

IDSC are used for contour comparison with a dynamic programming (DP) scheme. We use the

same experimental framework, except for replacingχ2 distance with the EMD-L1 for measuring

dissimilarity between (inner-distance) shape contexts. We choose two shape data sets that have

been previously used by other studies for comparison.

One useful property of the EMD is that it has a lower bound that can be efficiently computed

with linear complexity [42]. This is used in our dynamic programming scheme to avoid com-

puting the EMDs larger than twice the occlusion penalties. Also note that we did not test the

EMD with L2 ground distances for shape matching due to its high time requirement.

1) Articulated Database:The articulated shape data set [26] contains 40 images from 8

different objects. Each object has 5 images articulated to different degrees (see Figure 8). This

data set is designed for testing articulation, which is a special and important case of deformation.

As shown in [26], the original shape context withχ2 distance does not work well for these shapes.

The reason is that the articulation incurs a large deformation in the histogram.

The experimental setup, also used in [26], is as follows. Two hundred points are sampled along

the outer contours of every shape; five log-distance bins and twelve orientation bins are used

for constructing SC and IDSC. For both shape representations, the same dynamic programming

matchings are used to compute distances between pairs of shapes.
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Fig. 8. Articulated shape database. This dataset contains 40 images from 8 objects. Each column contains five images of the

same object with different articulation.

To evaluate the recognition result, for each image, the four most similar matches are computed

from the dataset. Table V shows the retrieval results. The retrieval results are summarized as

the number of 1st, 2nd, 3rd and 4th most similar matches that come from the correct object.

It demonstrates that EMD-L1 works better than the originally usedχ2 distance. Note that the

improvement for IDSC is less impressive than for SC. This is because IDSC is articulation

invariant by itself and there is not much room for improvement by using a different metric.

TABLE V

RETRIEVAL RESULT ON THE ARTICULATE DATASET.

SC Top 1 Top 2 Top 3 Top 4

χ2 [26] 20/40 10/40 11/40 5/40

EMD-L1 36/40 19/40 10/40 8/40

IDSC Top 1 Top 2 Top 3 Top 4

χ2 [26] 40/40 34/40 35/40 27/40

EMD-L1 39/40 39/40 34/40 32/40

2) MPEG7 CE-Shape-1:The MPEG7 CE-Shape-1 database [23] has been widely used to test

various shape matching algorithms. The data set contains 1400 silhouette images from 70 classes.

Each class has 20 different shapes (see Figure 9 for some typical images). The performance of

different solutions is measured by the Bullseye test; every image in the database is matched

with all other images and the top 40 most similar candidates are counted. At most 20 of the 40

candidates are correct hits. The Bullseye score is the ratio of the number of correct hits of all

images to the best possible number of hits (which is20× 1400).

In this experiment, again we use the same setup as in [26] and replace theχ2 metric with

EMD-L1. The bullseye score is listed in Table VI along with the previously reported results.

DRAFT



28

From the table it is clear that EMD-L1 improves the performance of the IDSC. Moreover, the

results of IDSC with EMD-L1 outperforms the best reported score in the literature using the

same data set, demonstrating our method’s effectiveness.

Fig. 9. Typical shape images from the MPEG7 CE-Shape-1, two images per class.

TABLE VI

RETRIEVAL RATE (BULLSEYE) OF DIFFERENT METHODS FOR THEMPEG7 CE-SHAPE-1.

Algorithm CSS [33] Visual Parts [23] SC+TPS (χ2) [3] Curve Edit [43] Distance Set [9]

Score 75.44% 76.45% 76.51% 78.17% 78.38%

Algorithm MCSS [17] Gen. Model [48] IDSC (χ2) [26] IDSC (EMD-L1)

Score 78.8% 80.03% 85.40% 86.56%

B. Image Feature Matching

This subsection describes our experiments for interest point matching with several state-of-

the-art image descriptors. The experiment was conducted on two image data sets. The first data

set contains ten image pairs withsyntheticdeformation3, noise and illumination change. These

images are shown in Fig. 10. The second set contains six image pairs withreal deformation and

lighting changes, as shown in Fig. 11. The experimental setting and results are described below.

3Original images are chosen from the the Berkeley Segmentation Dataset.
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Fig. 10. Ten image pairs containing synthetic deformation, lighting change and noise.

Fig. 11. Four of the six image pairs containing real deformation and lighting change.

Dissimilarity measures.We tested EMD-L1 along with several popular bin-to-bin distances, as

well as some other cross-bin distances. The bin-to-bin distances includeχ2 distance, symmetric
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Kullback-Leibler divergence (KL), symmetric Jensen-Shannon (JS) divergence [25] and theL2

distance. The cross-bin distances include EMD (with theL2 ground distance) and quadratic form

(QF). For EMD, we use the code provided by Rubner et al. [42]. The quadratic form distance

is implemented according to [42]. We use the Tree-EMD algorithm for EMD-L1 .

Interest point. We use Harris corners [11] for locating interest points. The reason for this choice

is that other interest point detectors tend to fail for our data due to the large deformation, noise

and lighting change. This choice also allows us to focus more on comparing descriptors than the

interest point detection. For the synthetic data set, we computed 200 points per image pair with

the largest cornerness responses. To compute the descriptors, a circular support region around

each interest point is used. The region diameter is 41 pixels, which is similar to the setting used

in [31].

Descriptors. We tested the above distances on three different histogram-based local descriptors.

The first one is SIFT proposed by [29]. It is a weighted three dimensional histogram with four

bins for each spatial dimensions and eight bins for gradient orientation. The second one is the

shape context [3]. The shape context for images is extracted as a two dimensional histogram

counting the local edge distribution in a manner similar to [31]. In our experiment, we use eight

bins for distance and sixteen bins for orientation. The third one is the spin image [22], [18]

which measures the joint spatial and intensity distribution of pixels around interest points. We

use eight distance bins and sixteen intensity bins.

Evaluation criterion. For each pair of images with their interest points, we first find the ground-

truth correspondence. This is done automatically for the synthetic image pairs and manually for

the real image pairs. For efficiency, we removed the points in Image 1 without any correct

corresponding matches in Image 2. This also makes the maximum detection rate one. After that,

every interest point in Image 1 is compared with all interest points in Image 2 by comparing

the features extracted on them. The detection rate among the topN matches is used to study

the performance. The detection rater is defined similarly to [27]

r =
# correct matches
# possible matches

=
# correct matches

# valid points in Image 1

Experimental results. For evaluation, a performance curve for each distance measure is plotted

showing the detection rates versusN , which is the number of the most similar matches allowed.

The curves on the synthetic and real image pairs are shown in Fig. 12. The average time for
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comparing a real image pair is recorded and listed in Table VII. From the results it is clear

that cross-bin distances, especially EMDs, outperform bin-to-bin distances. Among the cross-bin

distances, both the proposed EMD-L1 and EMD withL2 demonstrate excellent accuracy, while

the former runs much faster. It also shows that, on average, EMD-L1 works better than the other

cross-bin quadratic form distance that has similar time complexity.

TABLE VII

AVERAGE TIME (IN SECONDS) FOR INTEREST POINT MATCHING BETWEEN A REAL IMAGE PAIR. SC IS SHORT FOR SHAPE

CONTEXT AND SI FOR SPIN IMAGE.

Approach SIFT [29] SC [3] SI [22], [18]

χ2 0.05 0.04 0.03

L2 0.008 0.008 0.008

KL 0.16 0.21 0.19

JS 0.32 0.27 0.28

QF 3.56 3.47 3.52

EMD-L1 5.76 3.54 3.58

EMD(L2) 568.15 397.88 446.02

VII. C ONCLUSION AND DISCUSSIONS

We propose EMD-L1, a novel solution for computing Earth Mover’s Distance (EMD) between

histograms withL1 ground distance. It reformulates the EMD into a drastically simplified version

by using the special structure of theL1 metric on histograms. The highlight is that the number

of unknown variables in the optimization problem is reduced fromO(N2) to O(N), where

N is the number of bins. We proved that EMD-L1 is equivalent to the EMD withL1 ground

distance. Furthermore, an efficient tree-based algorithm is designed to solve the EMD-L1. An

empirical study shows that EMD-L1 drastically improves the typical time complexity toO(N2)

from O(N3logN) of the original EMD. This speedup allows the EMD to be applied to compare

2D/3D histogram-based local features for the first time. Experiments on both shape descriptors

(shape context [3]) and image features (SIFT [29], shape context [3] and spin images [18], [22])

show the superiority of EMD-L1 for solving the two matching tasks with large deformation,

noise and lighting change. It is also noteworthy that EMD-L1 applied to IDSC outperformed the

best reported system in solving the shape matching task with MPEG7 CE-Shape-1 data set.
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Fig. 12. Performance curves for interest point matching experiments. The left column is for synthetic image pairs and the right

for real image pairs. The first row is for experiments with SIFT [29], the second for shape context [3], and the third for spin

image [22]. In each figure, the y axis denotes the detection rate and x axis denotes the number of most similar matches allowed.

There are several issues that may lead to interesting future work. First, the normalization

assumption of the histograms is not essential for EMD-L1. This is because neither the formulation

of EMD-L1 nor its proposed algorithms is limited to the normalization case. Therefore, EMD-L1
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is also applicable to histograms with unequal total values. As a result, similar to the original

EMD, EMD-L1 has the potential ability to deal with occlusion, which is an important problem in

local descriptors. Second, the Tree-EMD algorithm can also be generalized to solve the original

EMD problem (i.e. beyond histograms) for speedup. This is because the tree structure used in

Tree-EMD is also true for the transportation simplex used in the original EMD. In addition, as

indicated in [42], EMD can also be modelled as a network flow problem. This raises interest

in the underlying relationship between the tree-based algorithm and network flow algorithms. It

may be a key to find more efficient solutions to both the original EMD and EMD-L1.
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