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Abstract—Machine learning-based prediction of protein func-
tions plays a key role in bioinformatics and pharmaceutical
research, facilitating swift discovery of new drugs in high-
throughput settings. This paper presents an adaptation of Ran-
dom Forest to the structure-based protein function prediction.
Our system represents protein’s 3D physicochemical structural
information in microenvironment descriptors whose spatial reso-
lution is much finer than other sequence-based protein descrip-
tors. We prepare our datasets for seven active sites from five
protein function classes by using multiple public data banks and
train Random Forest classifiers to identify these seven function
models in proteins. This paper presents two experiment studies: 1)
a 5-fold stratified cross-validation for comparing Random Forest
with Naive Bayes and Support Vector Machine and 2) systematic
comparison of Random Forest’s two variable importance mea-
sures. Promising results of these studies demonstrate a potential
for Random Forest to improve the accuracy of the current protein
function assays.

I. INTRODUCTION

Recent advances in bioinformatics and pharmaceutical
research have pushed the growth rate of protein structure
databases far beyond our ability to manually curate and anno-
tate. To maximize utility of scarce lab resources and facilitate
swift discovery of new drugs, automated tools are critical
for prioritizing assays of protein structure with unconfirmed
function. Our work builds on top of FEATURE [1], [2]:
one of the major public online tools for automatic prediction
and annotation of protein function as a high-precision filter
to identify lowest risk assays. FEATURE analyzes protein’s
physicochemical 3D structure in microenvironments [3] while
many current popular methods rely on analyzing 1D pro-
tein sequences [4]. The sequence-based methods are spa-
tially imprecise, annotating sequences that can be hundreds
of Angstroms long. On the other hands, the structure-based
methods, such as FEATURE, can identify functional class
and position within a few Angstroms in 3D space. Therefore
predictions by FEATURE can be used in various position-
sensitive applications, such as pocket recognition [5] and time
series 3D analysis for studying molecular dynamics trajectories
produced in silico [6].

The goal of the present research is to improve FEATURE’s
predictive performance in recall at a high precision setting,
which has a tremendous payoff across multiple research and
pharmaceutical applications. At the heart of the FEATURE is
a predictive model of protein functions, built as a supervised
machine learning classifier mapping the protein structure to its
specific function via identifying a group of active sites: reactive

atoms in key residues. In its original release, FEATURE em-
ployed Naive Bayes (NB) classifier for this purpose [2]. More
recently, Support Vector Machines (SVM) has been adapted to
FEATURE for improving its prediction capabilities [7].

The main contribution of this paper is to introduce Random
Forest as a new predictive model for 3D protein function
analysis using FEATURE. Random Forest (RF) [8] is a popular
ensemble supervised classification method, which consists of
a set of binary CART decision trees, combining the theory of
Bagging [9] and Random Subspace [10]. Due to its superior
accuracy and robustness, RF has effectively been applied to
various machine learning applications, including bioinformat-
ics [11] and medical imaging [12], however RF’s application to
the structure-based protein function analysis has not yet been
fully explored in literature [13].

This paper presents a systematic experimental validation of
RF, SVM, and NB in the FEATURE framework tested on seven
protein function models. In order to account for the class-
imbalance in our dataset, our experiments employ a stratified
K-fold cross validation. The results demonstrate significantly
improved recalls of our RF-based solution over the previous
methods. Another unique advantage of RF over other compet-
ing machine learning methods is a set of powerful data mining
tools for measuring importance of each input feature [14],
[15]. Two such variable importance measures, mean-decrease-
Gini (MDG) and mean-decrease-accuracy (MDA), are applied
to our data and analyzed for identifying key features that
strongly contribute to predicting protein functionality. We
provide qualitative analyses of the selected features by the two
measures.

To the best of our knowledge, the presented work is the
first to apply RF for generalized protein function prediction
with fully structure-based protein descriptors. Qi et al [16]
used features from multiple sources, including high-throughput
gene expression and sequenced-based information. Chen et
al [17] and Sikic et al. [18] used RF to predict protein-protein
interactions. The former was based on Pfam HMM profiles,
which is also sequence-based, and the latter used secondary
structural motifs and physicochemical properties inferred from
1D amino acid sequences, finding that pure sequence-derived
features obtained the largest MDA values. Microenvironments
descriptor used in this study offers structural information much
finer than that explored in these previous studies. Moreover the
systematic comparison of MDA and MDG in our application
context is another major and unique contribution of this paper.



II. DATA: MICROENVIRONMENTS, PUBLIC DATA BANKS,
FUNCTION MODELS

In FEATURE, 3D structural information is encoded into
a feature vector by analyzing properties of atoms in small
local regions referred to as microenvironments [3], [2]. A
microenvironment consists of 6 concentric spherical shells,
each 1.25 Angstrom thick, centered at a reactive atom of
a biomolecular structure such as a protein. Each shell may
contain atoms, which are treated as 3D points. For each atom,
we calculate 80 physicochemical properties using information
obtained from public protein structure databases and software:
1) RCSB Protein Data Bank (PDB) [19] for atom coordinate
lists as the source of the most protein structure properties,
2) Dictionary of Protein Secondary Structure (DSSP) [1],
[20] for properties related to secondary structure, and 3) a
molecular simulation software, Assisted Model Building with
Energy Refinement (AMBER) [21], whose parameter files are
used to provision the properties related to bond geometries.
The structural properties we consider include partial charge,
Van der Waals radius, element (C, H, O, N, or S), residue
name, secondary structure, etc. In each shell, each of the
80 properties are summed over all atoms present. Thus a
microenvironment is characterized by a fixed-length feature
vector of 480 coefficients for 80 properties in 6 shells.

Seven sets of validation data that we refer to as function
models are prepared for this study. Protein active sites are evo-
lutionarily conserved functional regions in proteins structures.
An active site’s function is facilitated by reactive atoms in key
residues at specific positions in the active site. Each function
model is prepared to identify a specific reactive atom of a target
function, as identified by PROSITE [22]: an internationally-
supported knowledge base for protein functions. Given a func-
tion model, prediction of a reactive atom in a protein structure
implies the structure may have an active site. Therefore,
supervised learning of our protein function predictor requires
both positive and negative training samples with ground-truth
labels of specific active site. For a chosen active site, we collect
microenvironments computed from all structures in the PDB
that match with the PROSITE pattern of the target function
and have the same residue at the given pattern position.
We label these microenvironments as positive samples. For
negative samples, we first consider all structures from the
entire PDB that are similar to but different from the target
pattern and then randomly sample 50,000 microenvironments
without replacement. Samples with deprecated, withdrawn,
or otherwise missing protein structures are then discarded,
resulting with less than 50,000 negative samples for some
function models. These microenvironments that include atoms
similar to the positive one is then labeled as negative samples.

Table I summarizes our seven function models. We specify
each function model by a naming convention with four fields
delimitated by a period. Each of the four fields from left
to right denotes 1) PROSITE identifier of the target protein
pattern (e.g. ASP PROTEASE), 2) the position of amino acid
sequence of the PROSITE pattern (e.g., 4(-th)), 3) a key residue
of a protein function (e.g., ASP), and 4) a reactive atom in
the residue (e.g., OD1). The fields 2, 3, and 4 identify the
functional microenvironment in the active site. The PROSITE
patterns for ASP PROTEASE, EF HAND 1, IG MHC, PRO-
TEIN KINASE ST, and TRYPSIN HIS match proteins with

TABLE I. FUNCTION MODELS AND THEIR SAMPLE STATISTICS.

Function Model #Pos #Neg N Skew(#N/#P)
ASP PROTEASE.4.ASP.OD1 1585 47855 49440 30.2
EF HAND 1.1.ASP.OD1 1811 47855 49666 27.4
EF HAND 1.1.ASP.OD2 1811 47855 49666 27.4
EF HAND 1.9.GLN.NE2 15 47197 47212 3146.5
IG MHC.3.CYS.SG 2017 49064 51081 24.3
PROTEIN KINASE ST.5.ASP.OD1 1096 48924 50020 44.6
TRYPSIN HIS.5.HIS.ND1 446 50000 50446 112.1

the following functions: 1) aspartyl proteases, important to
HIV replication, 2) EF-hand calcium binding domain, 3)
immune system antibody domains, 4) serine/threonine protein
kinases, important to cancer research, and 5) trypsin-like serine
proteases, respectively. ASP, GLN, CYS and HIS specifies
residues of aspartates, glutamines, cysteines, and histidines,
respectively. OD1, OD2, NE2, SG, and ND1 indicates reactive
atoms of the first delta oxygen, the second delta oxygen,
the second epsilon nitrogen, the gamma sulfied, and the first
delta nitrogen, respectively. These seven models are chosen
due to relative familiarity in literature and availability of
test results by previous predictive models of NB and SVM.
The total number of samples N for each function model
ranges from 47, 212 to 51, 081. And the data skew defined
by the ratio of the number of negatives (# Neg) to positives
(# Pos) ranges from 24.3 (IG MHC.3.CYS.SG) to 3146.5
(EF HAND 1.9.GLN.NE2), indicating high class-imbalance
in our data.

III. METHODS

A. Random Forest Classifier
Random Forest (RF) classifier [8] is an ensemble of

decision tree (DT) classifiers. Given a function model Θ =
{(Θn, ln)}Nn=1 as training data, RF is trained with two free
parameters mTry (the number of features sampled randomly
when growing each tree node) and nTree (the number of trees
in RF), where each feature vector Θn contains M = 480
physicochemical properties and a binary classification ln ∈
{−,+} is considered.

In training, Θ is first randomly sampled with replacement,
yielding nTree bootstrapped datasets of N samples [9]. With
each bootstrapped set, a DT is built by following the CART
algorithm [23] except that the best feature at each tree node
is selected only from a randomly sampled subset containing
mTry < M proprieties [10]. We denote a trained RF as
h(x,Θ, nTree,mTry), where x represents a test observation.

A novel test observation x is then classified by the plurality
of binary decisions by the nTree DTs given x as the input.
The bootstrap sampling in the above training procedure leaves
roughly one-third of total data unused for training in each
bootstrapped set. These unused samples are called out-of-bag
(OOB) samples and are used to estimate generalization errors
of h(x,Θ, nTree,mTry) by averaging the errors for each
OOB cases.

B. Variable Importance by Random Forest
RF provides variable importance measures: ways to rank

each feature in terms of the amount of its contribution for
making correct classifications so that important features can
be selected. We employ two such measures that come with
the standard RF algorithm: mean decrease Gini (MDG) and
mean decrease accuracy (MDA) [8], [14].



TABLE II. PARAMETER SPACES FOR RF, SVN, AND NB.

Algorithm Parameter Space #Param
RF nTree = {100, 500, 1000, 1500}, 24

mTry = {5, 10, 20, 30, 40, 50}
SVM-1 C = {−5,−4, ...,−2,−1, 0, 1, 2, ..., 4, 5} 11
SVM-2 C = {−10,−9, ...,−2,−1, 0, 1, 2, ..., 9, 10} 21
NB P = {−6.0,−4.0,−2.0,−1.0,−0.3,−0.1} 6

MDG is a filter-type measure that is computed when a RF is
trained. RF training builds each DT by iteratively partitioning
the dataset along the best feature which increases the label-
homogeneity in the resulting partitions most or equivalently
decreasing Gini impurity most. MDG records these Gini de-
creases at every node of RF then aggregates them along their
corresponding features.

MDA is a wrapper-type measure that is computed with
the OOB test cases. MDA measures the average increase
of the error rate (i.e., decrease of accuracy) against random
permutation of values across OOB cases. With a trained RF,
the values of OOB cases for a tree are first permuted along the
m-th feature. Then error rate with and without this permutation
are recorded and their difference computed. This is repeated
for all DTs and the average of these differences gives the m-th
feature’s MDA.

MDA often results in more robust measure than MDG.
However MDA computation is more time consuming than
MDG. It is also stochastic, so multiple runs on the same RF,
using the same data, can yield different results.

IV. EXPERIMENTS

The following describes our experimental study for assess-
ing the efficacy of RF for protein function prediction and for
discovering key physicochemical properties in specific protein
functions. Throughout this study we employ R’s RF software
package randomForest 4.6-7 [14]. To validate its merit, RF
is compared against two other popular classifiers: SVM and
NB. For NB, we employ FEATURE’s Naive Bayes implemen-
tation described in [2]. One of the standard SVM packages,
libsvm [24], is also used. Our cross-validation experiments are
scripted in Perl and executed on computer clusters: Amazon
AWS and our in-house Sun Grid Engine cluster system with
160 compute cores.

In order to assure a fair comparison of the three
classification models, we first explore the best parameter
settings by exhaustive grid search. Table II lists the range and
the interval of the parameter spaces for the three classification
methods explored by our grid search. SVM’s parameter C
indicates an exponent of the penalty for mis-classification
in the linear soft-margin SVM cost used in this study:
argminw,ξi,b

{ 12 ||w||
2 + 2C

∑n
i=1 ξi} subject for all i = 1, .., n

to yi(w · xi − b) ≥ 1 − ξi, ξi ≥ 0, where w · x − b = 0
defines the classification hyperplane and ξi is a slack variable
measuring the degree of error for xi. NB’s parameter P is an
exponent of the prior probability for positive classification:
P(positive) = 10P . The NB’s parameter range with the 6
values follows the original work by Wei and Altman in
[25]. As our performance statistics, we elect to use averaged
recall value at 99% precision computed by 5-fold cross
validation (CV). For each function model, we select the
parameter setting that maximizes this statistic. When multiple
parameter settings yield the same performance, we opt for

TABLE III. MINIMUM AVERAGE OOB ERRORS.

Function Model nTree mTry aveOOBerr (%)
ASP PROTEASE.4.ASP.OD1 500 20 2.9 ±0.6
EF HAND 1.1.ASP.OD1 500 50 25.5 ±0.5
EF HAND 1.1.ASP.OD2 750 50 24.0 ±0.5
EF HAND 1.9.GLN.NE2 100 5 3.0 ±0.0
IG MHC.3.CYS.SG 1000 40 12.3 ±0.5
PROTEIN KINASE ST.5.ASP.OD1 1000 50 10.0 ±0.4
TRYPSIN HIS.5.HIS.ND1 1000 50 4.6 ±0.5

small values. Note that the training procedure of RF is
stochastic, while the other two methods are deterministic, in
that we would have different RF classifiers when training
a RF multiple times on exactly the same training data. To
marginalize over this random factor, we repeat the RF’s
training ten times without fixing the random seed then
average the recall values over these 10 repeats. The resulting
parameters of RF’s (nTree,mTry) are (1500,30), (1500,20),
(500,20), (500,10), (500,40), (1000,40), and (1500,50) for
ASP PROTEASE*, EF HAND*OD1, EF HAND*OD2,
EF HAND*NE2, IG MHC*, PROTEIN KINASE*, and
TRYPSIN HIS*, respectively

The OOB error described in Sec III-A also offers a com-
mon performance statistic for RF. For reference, we compute
the minimum average OOB errors among the same parameter
space for the seven models, summarized in Table III. We
found that the favorably low OOB errors in this result are
misleading when dealing with data with high class-imbalance.
In such a case, the OOB error estimates tend to report falsely
optimistic performance by miss-classifying most positive sam-
ples. For example, the reported OOB error for the model
EF HAND 1.9.GLN.NE2 was 3% while missing 80% of the
positive samples. For this reason, we elect not to use OOB error
as our performance statistic. The usage of the recall measure
with 5-fold CV also allows a fair comparison of the three
classification methods since the OOB error is specific to RF
thus not available to SVM and NB.

A. Comparison of RF, SVM and NB by Stratified K-fold Cross-
Validation

The high class-imbalance in our datasets undermines the
standard K-fold cross validation procedure. This is because
the random sampling used in partitioning data into K folds
may arbitrary alter the class distribution in each fold, which
could arbitrarily skew the performance measure. One way to
address this issue is to stratify the sampling scheme in our
CV procedure. In this stratified K-fold CV, we independently
partition samples to 5 folds for positive and negative sample
pools first, then merge positive and negative folds to form the
K folds that preserves the class distribution of the original
dataset. The rest of the CV procedure is repeated after this. For
testing with each fold, recall values are computed for precision
values ranging from 0 to 1 in 0.005 step increments.

Table IV show the results of our comparison for RF, SVM
and NB. The table displays the recall values in percent at 99%
precision for the 7 models evaluated with the best parameter
settings found by our grid search. The recall values for RF are
averaged over the 10 repeats to marginalize over its random-
ness. We evaluate SVM with two parameter settings of narrow
(SVM-1) and wide (SVM-2) ranges as defined in Table II. The
best performance is indicated by bold-type for each model.
Results show that for all 7 models RF outperformed NB and



TABLE IV. COMPARISON OF RF, SVM, NB BY RECALL MEASURE AT 99% PRECISION FOR THE 7 FUNCTION MODELS.

Function Model NB SVM-1 SVM-2 RF
ASP PROTEASE.4.ASP.OD1 96.9 99.9 100 100 ±0.0
EF HAND 1.1.ASP.OD1 69.1 87.5 93.9 97.2 ±2.5
EF HAND 1.1.ASP.OD2 68.6 87.5 93.2 96.2 ±1.9
EF HAND 1.9.GLN.NE2 13.3 20.0 27.1 31.4 ±19.9
IG MHC.3.CYS.SG 74.1 90.2 99.8 95.8 ±1.4
PROTEIN KINASE ST.ASP.OD1 74.1 90.2 98.6 97.4 ±0.2
TRYPSIN HIS.5.HIS.ND1 91.3 94.8 96.8 96.9 ±0.3
Average Recalls 69.6±27.2 81.4±27.5 87.1±26.6 87.8 ±24.9
p-values (vs NB, Wilcoxon) - 0.2486 0.05502 0.04716 *
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Fig. 1. Two example of ROC plots (sensitivity vs 1-specificity).
Left: EF HAND 1.1.ASP.OD1 where RF performed the best, Right: PRO-
TEIN KINASE ST.5.ASP.OD1, where SVM performed the best.

SVM-1 with the narrow parameter range. When comparing
RF with SVM-2 with the wider parameter range, RF’s perfor-
mance was similar to SVM. RF’s performance was better than
SVM-2 for the three EF HAND 1 models, roughly equivalent
to SVM-2 for ASP PROTEASE and TRYPSIN HIS, and
inferior to SVM-2 for IG MHC and PROTEIN KINASE.
Note however that for the models all classifiers struggled
with (e.g., EF HAND 1), RF tends to perform better than
SVM. On average over the seven models, RF scored the best
at 87.8±24.9%. Wilcoxon rank sum test revealed that RF
performed significantly better than NB (p = 0.047), while
we observed no statistically significant differences between
other classifier pairs (p > 0.05). Fig. 1 shows two illustrative
examples for mean ROC plots by RF: 1) a case that RF
performed the best (EF HAND 1*OD1) and 2) a case that
SVM-2 performed the best (PROTEIN KINASE*). Ten ROC
curves are averaged by linearly interpolating sensitivity values
at a set of fixed specificity values. We observed a tendency
of a wider variance for the RF’s ROC curves computed over
repeated CV tests when training for challenging function
models.

B. Variable Importance Analysis: Identification of Key Fea-
tures

MDG and MDA measures of RF are used to explore
important features for the 7 function models. To address the
stochastic nature of RF, we repeated (10 times) the sequence of
RF training with entire model dataset followed by computing
the MDG and MDA measures for all 480 features. The results
are averaged over the 10 repeats for each feature then we sort
the features according to the mean measures. Figs. 2-8 compare
the top 10 features by MDG and MDA for the 7 models,
respectively. A detail caption for these figures are provided
in Fig. 2.

For many of the 7 models, features selected by
MDG and MDA agreed. Models, ASP PROTEASE*,
EF HAND*OD1, EF HAND*OD2, EF HAND*NE2,
IG MHC*, PROTEIN KINASE*, and TRYPSIN HIS*

had respective 8, 3, 2, 4, 6, 7, and 8 features shared
among the top 10 list of MDG and MDA. For
ASP PROTEASE* and IG MHC*, the top three features
(RESIDUE NAME IS GLY shell2, RESIDUE CLASS1 IS UNKNOWN shell2,
RESIDUE NAME IS THR shell4) and the top two fea-
tures (SECONDARY STRUCTURE1 IS STRAND shell5, SEC-

ONDARY STRUCTURE1 IS STRAND shell4) were ranked exactly
same by MDG and MDA, respectively. PROTEIN KINASE*
shared the 2nd feature (SECONDARY STRUCTURE1 IS COIL shell5),
4th feature (SECONDARY STRUCTURE1 IS 3HELIX shell5),
and 5th feature (SECONDARY STRUCTURE1 IS 3HELIX shell4)
and EF HAND 1*OD1 shared the 7th feature
(SECONDARY STRUCTURE1 IS BEND shell3) between MDG and
MDA. Interestingly, these degrees of agreement between
top features selected by MDG and MDA correlate with
RF’s accuracy estimated by our CV experiment in Table IV,
suggesting a potential importance for considering both MDG
and MDA together. Qualitatively, MDG tends to come with
greater change of importance values and more break-points
(i.e., a large change of value between successively ranked
features) than MDA. We also observe that some selected
features are biochemically plausible (e.g., glycine (required
at the 2nd residue position away from the reactive aspartate)
selected 1st for ASP PROTEASE; and solvent accessibility
(needed for EF HAND 1 loop) and 4helix at shell5 (in its
helix-loop-helix motif) selected 1st and 2nd by MDA for both
EF HAND 1*OD1 and EF HAND 1*OD2), demonstrating
their potential merit.

V. CONCLUSIONS

This paper introduces an adaptation of RF to improve
the accuracy of structure-based protein function prediction
with microenvironment descriptors used in the FEATURE
framework. Using a well-balanced set of seven function mod-
els prepared from multiple public data banks, we conducted
systematic experimental evaluations of our RF-based system
in its accuracy with respect to SVM and NB, and in its
efficacy of the two VI measures. Our 5-fold stratified CV
experiments show that RF’s high accuracy is significantly
better than NB and matches SVM and after careful parameter
tuning. Our experiments on MDG and MDA shows that top
features selected by the two measures often correlates with
each other and also with the classification accuracy. These
results suggest the potential merit of RF in generalized protein
function assays.

One of the limitations of our system is due to the class-
imbalance in dataset. In our dataset, EF HAND*ND2 model
was with an extreme data skew of a factor more than 3000.
Although our RF-based system performed best among those
tested, the absolute performance for this model was signif-
icantly lower than other models. This caused high standard
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Fig. 2. Top 10 features selected by MDG and MDA for
ASP PROTEASE.4.ASP.OD1 model. In each plot, features are listed
by the decreasing order of importance. Features noted by ”#” and by the
black-colored bars indicate those ranked the same by MDG and MDA.
Features noted by ”*” and by the gray-colored bars indicate those appeared
in the top 10 list by both MDG and MDA.
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Fig. 3. For EF HAND 1.1.ASP.OD1 model. See Fig. 2 for details.

deviations of the recalls in Table IV. Improving our system
to better handle such high class-imbalance and evaluating its
performance with more data are important future work for us.
Furthermore, we plan to expand our qualitative analysis of
the features selected by the VI measures with respect to the
existing biochemical knowledge for more function models.
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Fig. 4. For EF HAND 1.1.ASP.OD2 model. See Fig. 2 for details.
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Fig. 5. For EF HAND 1.9.GLN.NE2 model. See Fig. 2 for details.
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Fig. 6. For IG MHC.3.CYS.SG model. See Fig. 2 for details.
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Fig. 7. For PROTEIN KINASE ST.5.ASP.OD1 model. See Fig. 2 for details.
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Fig. 8. For TRYPSIN HIS.5.HIS.ND1 model. See Fig. 2 for details.
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