
A Pose-Invariant Face Recognition System using Linear PCMAP ModelKazunori Okada1;3 Christoph von der Malsburg1;2 Shigeru Akamatsu31 Laboratory of Computational and Biological Vision, USC, Los Angeles, U.S.A.2 Institut f�ur Neuroinformatik, Ruhr-Universit�at Bochum, Bochum, Germany3 Human Information Processing Research Laboratories, ATR, Kyoto, JapanHNB228 Los Angeles, CA 90089-2520 U.S.A.kazunori@selforg.usc.eduAbstractWe propose a novel pose-invariant face recognition sys-tem using a manifold representation for human faceswith pose variations (linear PCMAP model) as the entryformat for a database of known persons. The model'sgeneralization capability for unknown head poses en-ables a continuous coverage of the pose parameter space,providing high approximation accuracy for pose estima-tion (analysis) and transformation (synthesis). Withthis model as the entry format for the database, thehead pose of each known face is aligned to an arbitraryhead pose of an input face, resulting in a pose-invariantrecognition. Experimental results with 3D facial modelsrecorded by a Cyberware scanner show that the recog-nition performance of our model against pose variationsis superior to that of a single-view model and is equiva-lent to that of a multi-view model within a limited poserange in test samples.1 IntroductionIn this study, we present a representation and process-ing model of human faces with head pose variations andapply it to a pose-invariant face recognition system.This model attempts to �nd mappings between facialimages and physical parameters, in our case 3D head an-gles, via parameterized manifold representations of facesusing the PC-subspace method. We approximated thesemappings by using a combination of linear systems: 1)subspaces of input representation spaces spanned byprincipal components (PC-subspace) [13, 14], and 2) lin-ear transfer matrices between these subspaces and a poseparameter space. We call this model the linear PCMAPmodel [11]. When learned for an individual, the map-pings account for various poses of the individual's face(manifold representation) and provide an explicit inter-face of the model with physical pose parameters, en-abling processes of pose estimation (analysis) and trans-formation (synthesis). The model's generalization capa-bility for unknown head poses from a limited numberof observable samples enables a continuous coverage of

the pose parameter space, providing high approximationaccuracy for the analysis and synthesis processes.We also propose a novel pose-invariant face recogni-tion system using the linear PCMAP model as the entryformat for a database of known persons. The head poseof each known person in the database is aligned to aninput pose by synthesizing model views whose pose isthe same as the input. This synthesis uses an analysis-synthesis chain of learned models. As a result of the posealignment, the recognition performance should improveagainst pose variations. Furthermore, there is no system-atic limitation to particular discrete head poses becauseof the continuous coverage of the pose parameter space.This paper is organized as follows. Section 2 gives aformal description of the linear PCMAP model and itsrelation to a number of previous studies. In section 3, wepropose a novel pose-invariant face recognition systemusing the linear PCMAP model as an entry format fora database of known persons. Our system is analyzedin comparison to other standard systems in experimentswith 3D facial models recorded by a Cyberware scanner.Finally, we conclude this paper by discussing the resultsof the analyses and our future work in section 4.2 Linear PCMAPModel for Rep-resenting Faces with Pose Vari-ations2.1 Model DescriptionThe learning and matching stages of the linear PCMAPmodel are described in this section. In the learning stageof this model, pairs of 2D facial images and their corre-sponding 3D head angles are used as a training data set.We employed separate representations for the shape andtexture of human faces [4, 15, 8].We denote a training data set by (~vm; ~�m)1;::;M , where~vm and ~�m express the m-th training facial image andits 3D head angles, respectively. In the �rst step, ~vm isdecomposed to a pair of shape and texture representa-tions, (~xm;~jm;n). Shape information is represented by a1



2N -component vector ~xm of object-centered image coor-dinates of N facial landmarks. For each landmark xmn ,an L-dimensional Gabor jet ~jm;n is recorded from ~vm asthe localized texture representation of the landmark nin the frame m, where jm;nl is the jet coe�cient derivedfrom the l-th Gabor �lter.Next (~xm)1;::;M and (~jm;n)1;::;M ;1;::;N are indepen-dently subjected to PCA resulting in a set of PCs asorthonormal bases of shape and texture representationspaces, (~yp)1;::;P and (~bs;n)1;::;S;1;::;N , where s and p arethe indices of PCs in decreasing order of their corre-sponding variances. Shape and texture subspaces arede�ned by selecting Po and Sno as small as possible butstill large enough to have the subspaces (~yp)1;::;Po and(~bs;n)1;::;Sno cover a large share of the data variance. Wecall the shape and texture subspaces shape and texturemodels, respectively. In this study, for simplicity, weused the same So for all N landmarks. The shape andtexture models have an optimal reconstruction propertyby a linear combination in the least square sense,~x � ~x0 + PoXp=1 qp~yp ; (1)where ~x0 = 1=MPMm=1 ~xm,and Po-component shape pa-rameters ~q is de�ned as ~q = h~x� ~x0j~ypi1�p�Po;~jn � ~j0;n + SoXs=1 rns~bs;n ; (2)where ~j0;n = 1=MPMm=1~jm;n, and So-component tex-ture parameters at n-th landmark ~rn is de�ned as ~rn =h~jn � ~j0;nj~bs;ni1�s�So . Note that (1) and (2) becomeequations when Po = P = 2N and So = S = L.Next, we linearly relate model parameters ~qm and ~rm;nand 3D head angles ~�m. For face-to-pose mapping (anal-ysis), we relate only shape model parameters to 3D headangles because shape parameters showed a higher cor-relation to head angles than texture parameters in ourpilot experiments. For pose-to-face mapping (synthesis),we �rst relate 3D head angles to shape parameters. Tex-ture parameters are then related to shape parameters,exploiting the correlation between the shapes and tex-tures of faces. In order to compensate for obvious non-linearity in mappings between shape parameters and 3Dhead angles, we nonlinearly expand 3-component headangle vectors ~�m to 6-component pose parameters ~'mby using a trigonometric functional transformation K,K : (�; �; ) 7!(cos(�); sin(�); cos(�); sin(�); cos(); sin()) : (3)Thus, the shape model parameters are related to thesepose parameters instead of being directly related to 3Dhead angles. Now we formulate these relations in matrixnotations, � = Q �H ; (4)
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xFigure 1: De�nition of Facial Landmarks.Q = � �G ; (5)Rn = Q � Fn ; (6)where Rn = (~r1;n; ::; ~rM;n)t, Q = (~q1; ::; ~qM)t, � =(~'1; ::; ~'M)t = (K(~�1); ::;K(~�M))t. The transfer matri-ces H, G, and Fn are computed by solving these equa-tions with the SVD algorithm.After �nding these mappings, we can estimate 3D headangles from a given facial representation with an arbi-trary pose (analysis) and can synthesize a facial imagefrom given 3D head angles (synthesis) using the learnedmodel. These processes are called the matching stage.The face-to-pose mapping of the analysis process iswritten as ~va L! ~xa Eq:(1)! ~qa Eq:(4)! ~'a arctan! ~�a ; (7)and the pose-to-face mapping of the synthesis process is~�a K! ~'a Eq:(5)! ~qa Eq:(6)! ~ra;1; ::; ~ra;N#Eq:(1) #Eq:(2)~xa ~ja;1; ::;~ja;N&R .R~va : (8)To separate shape and texture information, we must�nd facial landmarks in every sample. We used a fa-cial landmark tracking system developed by Maurer etal. [10], which assumes that training and test samples aregiven by video sequences starting from a frontal view offaces. This decomposition of shape and texture infor-mation is denoted by the operator L in formula 7. Fig-ure 1 shows a de�nition of the 20 facial landmarks usedthroughout this study.An algorithm for a grey-level image reconstruction ofa Gabor jet based graph representation of faces [6, 16],which was developed by Poetzsch et al. [12], performs areverse operation that reconstructs a facial image fromsynthesized shape and texture representations. This op-eration is symbolized by the operator R in formula 8.By connecting the analysis and synthesis stages, wecreate a process of model matching that allows us tosynthesize, from an arbitrary input face, a facial imagewhose pose is aligned to the input and whose appear-ance is from one learned in the matched model. We call2



this combination of processes an analysis-synthesis-chainprocess, and we use it in the face recognition system de-scribed in the next section. See Okada et al. [11] forperformance analyses of this linear PCMAP model withsamples from video sequences.2.2 Previous StudiesOur work is related to a number of previous studies.Maurer and von der Malsburg proposed an algorithmfor pose transformation that maps two jets sampled attwo di�erent head poses [9]. This algorithm, however,requires a priori knowledge of 3D facial structure and itsapplication has been limited to a small number of dis-crete poses. Beymer et al. proposed analysis and syn-thesis systems of pose and expression variations basedon RBF networks [1]. Although their framework is sim-ilar to ours, they only exploited pixel-value based sin-gle view representations and analyzed only one degreeof freedom from the 3D rotations of heads. Recently,Lanitis et al. [8] have presented a facial processing sys-tem using PCA based manifold representations. Theyalso used separate shape and texture representationsand proposed a pose estimation system similar to ourmodel. Their texture representation, however, was basedon pixel values instead of our Gabor jet based texturerepresentation. Moreover, their pose estimation did notinclude planar rotations and they did not discuss poseeither transformation or a generalization capability forunknown head poses.3 Pose-InvariantFace Recognition System usingLinear PCMAP Model3.1 System DescriptionIn this section, we present a novel face recognition systemusing the linear PCMAP model as an entry to a knownperson's gallery.Figure 2 shows an overview of this recognition sys-tem. In this system, an arbitrary input is subjected tothe analysis-synthesis-chain process, described in section2, with each linear PCMAP model stored in the gallery.This results in model views of each known person whosepose is aligned to the input. After this pose alignment,we perform a nearest neighbor classi�cation of the inputwith these model views. Because of the pose alignment,the recognition performance should improve against posevariations. Furthermore, there is no systematic limita-tion to particular discrete head poses due to the contin-uous coverage of the pose parameter space as a result ofusing the linear PCMAP model. As long as the learnedlinear PCMAPs cover a su�cient range of head poses,an input with arbitrary poses can be processed withoutany pose restrictions.

Figure 2: Pose-Invariant Recognition System with Lin-ear PCMAP Models
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Figure 5: Known Persons in Database.man [7] are based on this approach.The type B approach utilizes a gallery representingeach known person with multiple views. We call thistype the multi view model (MVM). An input's identityis estimated by �nding a personal entry that containsthe view most similar to the input. This multi-viewgallery can be constructed from a single view gallery us-ing a class speci�c transformation as shown in the �gure.Beymer and Poggio proposed two systems of this type:one by manually creating a multi view gallery [2] andthe other by synthesizing a multi-view gallery from asingle view gallery using a class speci�c transformation(parallel deformation) [3].Figure 4 illustrates our approach. This approach com-bines the SVM and MVM in that 1) it uses estimatedinformation of an input pose similar to the SVM, and2) it represents each known person by using knowledgederived from multiple views of the person similar tothe MVM. With the information derived from inputs,a search space within the gallery can be greatly reducedin comparison to the MVM. Moreover, this model-basedgallery is more compact than the MVM, which simplyrepresents each known person with a set of multipleviews. A special treatment for the canonical pose is notrequired in our approach, while it is required for boththe SVM and MVM. Such knowledge is learned directlyfrom sample statistics. Whereas the SVM and MVMcover the viewing sphere discretely, our approach pro-vides a continuous coverage of the viewing sphere.3.3 Experiments3.3.1 Data SetIn this experiment, we use samples generated from 3Dfacial models recorded by a Cyberware 3030 scanner.Twenty models (10:female,10:male, shown in �gure 5)are randomly picked from a 3D facial model database ofJapanese faces developed at ATR. For each model, testand training samples are generated by rendering 2D viewsnapshots while explicitly rotating the 3D face model [5].For the training samples, each model is rotated alongonly one axis at a time as shown in �gure 6. Alongeach axis, 248 snapshots are generated, so there are 744
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x,y,−z Figure 7: Test Samples.training samples for each person. For the test samples,each model is simultaneously rotated along three axes,as shown in �gure 7. 186 samples are generated for eachperson. Locations of facial landmarks in various posesare determined by explicitly rotating 3D reference co-ordinates that are found manually for a frontal view ofeach model. The head pose of each frame is directlygiven from the model's rotation angles. The test andtraining samples are appropriate for our system's eval-uations since there are no measurement errors of headpose angles and landmark locations.3.3.2 ResultsFigure 8 shows the result of the performance analysisof our system of recognizing faces with pose variations.The proposed system is compared with two standard sys-tems: i) each entry of a known person's database is rep-resented by a single frontal view of the person (SVM),and ii) each entry is represented by multiple views of theperson (all training samples used to train linear PCMAPmodels, MVM).E The bars in the �gure show the per-centages of correct identi�cations by the three systemswhen the range of head angles in test samples is limitedto �5, �10, �15, �20, and �30 degrees, respectively.The recognition rates of our system are constantly bet-ter than or equivalent to the SVM. Our system's perfor-mance is equally good in comparison to the MVM withinthe pose range of �20 degrees. However, the MVM out-performed our system beyond the �20 pose range.4 DiscussionsIn this paper, we have presented a linear PCMAP modelthat is a manifold representation of 2D facial images withan explicit interface of pose variations. An advantage ofour model is that both the analysis and synthesis pro-4
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Single−View Model Figure 8: Percentages of Correct Identi�cations with 1)Linear PCMAP Model, 2) MVM, and 3) SVM as EntryFormat of a Database of Known Personscesses continuously and smoothly cover the space of poseparameters by utilizing interpolation. Our model is ca-pable of generalizing unknown poses from a limited num-ber of training samples with a limited range of poses [11].The model is also compact: the data compression ratiofrom a set of training samples to a learned model is ap-proximately 60 [11].We have also proposed a novel pose-invariant facerecognition system using the linear PCMAP model asan entry format of a known person's gallery. Our recog-nition system postulates that pose-invariance can beachieved by giving a learning capability to the mem-ory/knowledge systems, a known person's gallery in thiscase, instead of trying to �nd pose-invariant proper-ties in input representations within a perceptual process.The experimental results presented in this paper suggestthat this system improves the recognition performanceagainst pose variations in comparison to the SVM, whichrepresents a known person with a single frontal view ofthe person. When a pose range in the test samples iswithin �20 degrees, the performance of our system isequivalent to the MVM. However, the MVM outperformsour system beyond the pose range. This is due to thefact that the e�ective range of the linear PCMAP modelin which accurate approximations can be carried out isabout �15 degrees [11]. The choice of the linear imple-mentation of the PCMAP model provides the advantageof generalization for unknown poses, but unfortunatelyit leads to this limitation. One way to solve this problemis to patch the whole parameter space with a set of locallinear models. Therefore, a point in the parameter spacecan be interpolated with a number of neighboring localmodels. This is one of our future research topics.The parameterization of our model with physical headangles provides a compact interface for other perceptualmodules that is easy to interpret. This characteristic alsoprovides a number of potential application scenarios be-sides the identi�cation task investigated in this paper.These scenarios include low-bandwidth visual communi-
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