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Abstract

We propose a novel pose-invariant face recognition sys-
tem using a manifold representation for human faces
with pose variations (linear PCMAP model) as the entry
format for a database of known persons. The model’s
generalization capability for unknown head poses en-
ables a continuous coverage of the pose parameter space,
providing high approximation accuracy for pose estima-
tion (analysis) and transformation (synthesis). With
this model as the entry format for the database, the
head pose of each known face 1s aligned to an arbitrary
head pose of an input face, resulting in a pose-invariant
recognition. Experimental results with 3D facial models
recorded by a Cyberware scanner show that the recog-
nition performance of our model against pose variations
is superior to that of a single-view model and is equiva-
lent to that of a multi-view model within a limited pose
range in test samples.

1 Introduction

In this study, we present a representation and process-
ing model of human faces with head pose variations and
apply it to a pose-invariant face recognition system.
This model attempts to find mappings between facial
images and physical parameters, in our case 3D head an-
gles, via parameterized manifold representations of faces
using the PC-subspace method. We approximated these
mappings by using a combination of linear systems: 1)
subspaces of input representation spaces spanned by
principal components (PC-subspace) [13, 14], and 2) lin-
ear transfer matrices between these subspaces and a pose
parameter space. We call this model the linear PCMAP
model [11]. When learned for an individual, the map-
pings account for various poses of the individual’s face
(manifold representation) and provide an explicit inter-
face of the model with physical pose parameters, en-
abling processes of pose estimation (analysis) and trans-
formation (synthesis). The model’s generalization capa-
bility for unknown head poses from a limited number
of observable samples enables a continuous coverage of

the pose parameter space, providing high approximation
accuracy for the analysis and synthesis processes.

We also propose a novel pose-invariant face recogni-
tion system using the linear PCMAP model as the entry
format for a database of known persons. The head pose
of each known person in the database is aligned to an
input pose by synthesizing model views whose pose is
the same as the input. This synthesis uses an analysis-
synthesis chain of learned models. As a result of the pose
alignment, the recognition performance should improve
against pose variations. Furthermore, there is no system-
atic limitation to particular discrete head poses because
of the continuous coverage of the pose parameter space.

This paper is organized as follows. Section 2 gives a
formal description of the linear PCMAP model and its
relation to a number of previous studies. In section 3, we
propose a novel pose-invariant face recognition system
using the linear PCMAP model as an entry format for
a database of known persons. Qur system is analyzed
in comparison to other standard systems in experiments
with 3D facial models recorded by a Cyberware scanner.
Finally, we conclude this paper by discussing the results
of the analyses and our future work in section 4.

2 Linear PCMAP Model for Rep-
resenting Faces with Pose Vari-
ations

2.1 Model Description

The learning and matching stages of the linear PCMAP
model are described in this section. In the learning stage
of this model, pairs of 2D facial images and their corre-
sponding 3D head angles are used as a training data set.
We employed separate representations for the shape and
texture of human faces [4, 15, 8].

We denote a training data set by (¢, 67’”)17“71\4, where

7™ and 6™ express the m-th training facial image and

its 3D head angles, respectively. In the first step, ™ is
decomposed to a pair of shape and texture representa-

tions, (&M, _"m’”). Shape information is represented by a



2N-component vector Z™ of object-centered image coor-
dinates of N facial landmarks. For each landmark ],
an L-dimensional Gabor jet fm’”
the localized texture representation of the landmark n
in the frame m, where j;" is the jet coefficient derived
from the [-th Gabor filter.

Next (™)1, m and (jm’”)le;le are Indepen-
dently subjected to PCA resulting in a set of PCs as
orthonormal bases of shape and texture representation
spaces, (7)1, p and (I_)’s’”)lwg;le, where s and p are
the indices of PCs in decreasing order of their corre-
sponding variances. Shape and texture subspaces are
defined by selecting P, and S as small as possible but

still large enough to have the subspaces (7)1, p, and

1s recorded from v as

(I_)’s’”)lwggz cover a large share of the data variance. We
call the shape and texture subspaces shape and texture
models, respectively. In this study, for simplicity, we
used the same S, for all N landmarks. The shape and
texture models have an optimal reconstruction property
by a linear combination in the least square sense,

P,
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where 7% = 1/M Z%Il F™ and P,-component shape pa-
rameters ¢ is defined as ¢ = (Z — £°|¢ )1<p<p,;

So
j’n ~ j’O,n + Zr?[;'s,n ’ (2)
s=1

where jOn = 1/M Z%Il 7™ and S,-component tez-
ture parameters at n-th landmark 7" is defined as 7 =
<;” — ;0’”|Es’”>1§ssgo. Note that (1) and (2) become
equations when P, = P =2N and S, =5 = L.

Next, we linearly relate model parameters ¢™ and 7"
and 3D head angles ™. For face-to-pose mapping (anal-
ysis), we relate only shape model parameters to 3D head
angles because shape parameters showed a higher cor-
relation to head angles than texture parameters in our
pilot experiments. For pose-to-face mapping (synthesis),
we first relate 3D head angles to shape parameters. Tex-
ture parameters are then related to shape parameters,
exploiting the correlation between the shapes and tex-
tures of faces. In order to compensate for obvious non-
linearity in mappings between shape parameters and 3D
head angles, we nonlinearly expand 3-component head
angle vectors o™ to 6-component pose parameters go?”
by using a trigonometric functional transformation K,

K :(a,B,7)—~

(cos(«), sin(w), cos(B), sin(8), cos(v), sin(v)) . (3)

Thus, the shape model parameters are related to these
pose parameters instead of being directly related to 3D
head angles. Now we formulate these relations in matrix
notations,

d=Q- H, (4)

Figure 1: Definition of Facial Landmarks.

Q=0.G, (5)

R'=Q F", (6)

where R® = (FL7 . 7Mn) Q= (¢, .., ¢dY), @ =

(.., M) = (I((@l), . K(@M))t. The transfer matri-

ces H, (G, and F™ are computed by solving these equa-
tions with the SVD algorithm.

After finding these mappings, we can estimate 3D head
angles from a given facial representation with an arbi-
trary pose (analysis) and can synthesize a facial image
from given 3D head angles (synthesis) using the learned
model. These processes are called the matching stage.

The face-to-pose mapping of the analysis process is
written as

Saq L —oq Ba-(1) —oq Bq.(4) oq arctan 7

TS TS S ST

(7)

and the pose-to-face mapping of the synthesis process is

go 5 o LY FLO gl N
AR
\I/Eq~(1) \I/Eq.(2)
7o ja,l’“’ja,N . (8)
iR R
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To separate shape and texture information, we must
find facial landmarks in every sample. We used a fa-
cial landmark tracking system developed by Maurer et
al. [10], which assumes that training and test samples are
given by video sequences starting from a frontal view of
faces. This decomposition of shape and texture infor-
mation is denoted by the operator L in formula 7. Fig-
ure 1 shows a definition of the 20 facial landmarks used
throughout this study.

An algorithm for a grey-level image reconstruction of
a Gabor jet based graph representation of faces [6, 16],
which was developed by Poetzsch et al. [12], performs a
reverse operation that reconstructs a facial image from
synthesized shape and texture representations. This op-
eration is symbolized by the operator R in formula 8.

By connecting the analysis and synthesis stages, we
create a process of model matching that allows us to
synthesize, from an arbitrary input face, a facial image
whose pose is aligned to the input and whose appear-
ance is from one learned in the matched model. We call



this combination of processes an analysis-synthesis-chain
process, and we use it in the face recognition system de-
scribed in the next section. See Okada et al. [11] for
performance analyses of this linear PCMAP model with
samples from video sequences.

2.2 Previous Studies

Our work is related to a number of previous studies.
Maurer and von der Malsburg proposed an algorithm
for pose transformation that maps two jets sampled at
two different head poses [9]. This algorithm, however,
requires a priori knowledge of 3D facial structure and its
application has been limited to a small number of dis-
crete poses. Beymer et al. proposed analysis and syn-
thesis systems of pose and expression variations based
on RBF networks [1]. Although their framework is sim-
ilar to ours, they only exploited pixel-value based sin-
gle view representations and analyzed only one degree
of freedom from the 3D rotations of heads. Recently,
Lanitis et al. [8] have presented a facial processing sys-
tem using PCA based manifold representations. They
also used separate shape and texture representations
and proposed a pose estimation system similar to our
model. Their texture representation, however, was based
on pixel values instead of our Gabor jet based texture
representation. Moreover, their pose estimation did not
include planar rotations and they did not discuss pose
either transformation or a generalization capability for
unknown head poses.

3 Pose-Invariant

Face Recognition System using
Linear PCMAP Model

3.1 System Description

In this section, we present a novel face recognition system
using the linear PCMAP model as an entry to a known
person’s gallery.

Figure 2 shows an overview of this recognition sys-
tem. In this system, an arbitrary input is subjected to
the analysis-synthesis-chain process, described in section
2, with each linear PCMAP model stored in the gallery.
This results in model views of each known person whose
pose is aligned to the input. After this pose alignment,
we perform a nearest neighbor classification of the input
with these model views. Because of the pose alignment,
the recognition performance should improve against pose
variations. Furthermore, there is no systematic limita-
tion to particular discrete head poses due to the contin-
uous coverage of the pose parameter space as a result of
using the linear PCMAP model. As long as the learned
linear PCMAPs cover a sufficient range of head poses,
an input with arbitrary poses can be processed without
any pose restrictions.
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Figure 2: Pose-Invariant Recognition System with Lin-

ear PCMAP Models
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Figure 3: Two Previous Approaches for Pose-Invariant
Face Recognition Systems.

3.2 Previous Studies

A number of previous studies addressed the issue of ro-
bustly recognizing faces with pose variations using a
nearest neighbor recognizer. These studies estimated an
input’s identity by finding the most similar entry to the
input from a known person’s database or gallery. Such
systems can be categorized into two types of approaches
as illustrated in figure 3.

The type A approach utilizes a gallery representing
each known person with a single view. We call this type
the single view model (SVM). In order to compensate
for pose variations, the head pose of an input view and
gallery entries can be matched by transforming the in-
put’s pose to a canonical pose. Recognition systems by
Maurer and von der Malsburg [9] and Lando and Edel-
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Figure 4: Our Pose-Invariant Face Recognition System.



Figure 5: Known Persons in Database.

man [7] are based on this approach.

The type B approach utilizes a gallery representing
each known person with multiple views. We call this
type the multi view model (MVM). An input’s identity
is estimated by finding a personal entry that contains
the view most similar to the input. This multi-view
gallery can be constructed from a single view gallery us-
ing a class specific transformation as shown in the figure.
Beymer and Poggio proposed two systems of this type:
one by manually creating a multi view gallery [2] and
the other by synthesizing a multi-view gallery from a
single view gallery using a class specific transformation
(parallel deformation) [3].

Figure 4 illustrates our approach. This approach com-
bines the SVM and MVM in that 1) it uses estimated
information of an input pose similar to the SVM, and
2) it represents each known person by using knowledge
derived from multiple views of the person similar to
the MVM. With the information derived from inputs,
a search space within the gallery can be greatly reduced
in comparison to the MVM. Moreover, this model-based
gallery is more compact than the MVM, which simply
represents each known person with a set of multiple
views. A special treatment for the canonical pose is not
required in our approach, while it is required for both
the SVM and MVM. Such knowledge is learned directly
from sample statistics. Whereas the SVM and MVM
cover the viewing sphere discretely, our approach pro-
vides a continuous coverage of the viewing sphere.

3.3 Experiments

3.3.1 Data Set

In this experiment, we use samples generated from 3D
facial models recorded by a Cyberware 3030 scanner.
Twenty models (10:female,10:male, shown in figure 5)
are randomly picked from a 3D facial model database of
Japanese faces developed at ATR. For each model, test
and training samples are generated by rendering 2D view
snapshots while explicitly rotating the 3D face model [5].
For the training samples, each model is rotated along
only one axis at a time as shown in figure 6. Along
each axis, 248 snapshots are generated, so there are 744
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Figure 6: Training Samples.
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Figure 7: Test Samples.

training samples for each person. For the test samples,
each model is simultaneously rotated along three axes,
as shown in figure 7. 186 samples are generated for each
person. Locations of facial landmarks in various poses
are determined by explicitly rotating 3D reference co-
ordinates that are found manually for a frontal view of
each model. The head pose of each frame is directly
given from the model’s rotation angles. The test and
training samples are appropriate for our system’s eval-
uations since there are no measurement errors of head
pose angles and landmark locations.

3.3.2 Results

Figure 8 shows the result of the performance analysis
of our system of recognizing faces with pose variations.
The proposed system is compared with two standard sys-
tems: i) each entry of a known person’s database is rep-
resented by a single frontal view of the person (SVM),
and ii) each entry is represented by multiple views of the
person (all training samples used to train linear PCMAP
models, MVM).E The bars in the figure show the per-
centages of correct identifications by the three systems
when the range of head angles in test samples is limited
to £5, £10, £15, £20, and +30 degrees, respectively.
The recognition rates of our system are constantly bet-
ter than or equivalent to the SVM. Our system’s perfor-
mance 1s equally good in comparison to the MVM within
the pose range of 20 degrees. However, the MVM out-
performed our system beyond the +20 pose range.

4 Discussions

In this paper, we have presented a linear PCMAP model
that is a manifold representation of 2D facial images with
an explicit interface of pose variations. An advantage of
our model is that both the analysis and synthesis pro-
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Figure 8: Percentages of Correct Identifications with 1)
Linear PCMAP Model, 2) MVM, and 3) SVM as Entry

Format of a Database of Known Persons

cesses continuously and smoothly cover the space of pose
parameters by utilizing interpolation. Our model is ca-
pable of generalizing unknown poses from a limited num-
ber of training samples with a limited range of poses [11].
The model 1s also compact: the data compression ratio
from a set of training samples to a learned model is ap-
proximately 60 [11].

We have also proposed a novel pose-invariant face
recognition system using the linear PCMAP model as
an entry format of a known person’s gallery. Our recog-
nition system postulates that pose-invariance can be
achieved by giving a learning capability to the mem-
ory/knowledge systems, a known person’s gallery in this
case, instead of trying to find pose-invariant proper-
ties in input representations within a perceptual process.
The experimental results presented in this paper suggest
that this system improves the recognition performance
against pose variations in comparison to the SVM, which
represents a known person with a single frontal view of
the person. When a pose range in the test samples is
within £20 degrees, the performance of our system is
equivalent to the MVM. However, the MVM outperforms
our system beyond the pose range. This is due to the
fact that the effective range of the linear PCMAP model
in which accurate approximations can be carried out 1s
about +15 degrees [11]. The choice of the linear imple-
mentation of the PCMAP model provides the advantage
of generalization for unknown poses, but unfortunately
it leads to this limitation. One way to solve this problem
is to patch the whole parameter space with a set of local
linear models. Therefore, a point in the parameter space
can be interpolated with a number of neighboring local
models. This is one of our future research topics.

The parameterization of our model with physical head
angles provides a compact interface for other perceptual
modules that is easy to interpret. This characteristic also
provides a number of potential application scenarios be-
sides the identification task investigated in this paper.
These scenarios include low-bandwidth visual communi-

cation systems, in which only the head pose information
is sent over a network, or tele-conferencing systems, in
which facial orientations in a virtual space can be cor-
rected to maintain eye contact.
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