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Abstract—The overall goal of our Software Engineering 
Teamwork Assessment and Prediction (SETAP) project is to 
develop effective machine-learning-based methods for assessment 
and early prediction of student learning effectiveness in software 
engineering teamwork. Specifically, we use the Random Forest 
(RF) machine learning (ML) method to predict the effectiveness 
of SE teamwork learning based on data collected during student 
team project development. These data include over 100 objective 
and quantitative Team Activity Measures (TAM) obtained from 
monitoring and measuring activities of student teams during the 
creation of their final class project in our joint SE classes which 
ran concurrently at San Francisco State University (SFSU), 
Fulda University (Fulda) and Florida Atlantic University (FAU) .  
Although we have previously published RF analysis on a very 
limited data set, in this paper we provide the first RF analysis 
results done at SFSU on our full data set covering four years of 
our joint SE classes.  These data include  74 student teams with 
over 350 students, totalling over 30000 discrete data points.  
These data are grouped into 11 time intervals, each measuring 
important phase of project development during the class (e.g. 
early requirement gathering and design, development, testing 
and delivery). In this paper we briefly elaborate on the methods 
of data collection and description of the data itself.  We then 
show prediction results of the RF analysis applied to this full data 
set.  Results show that we are able to detect student teams who 
are bound to fail or need attention in early class time with good 
(about 70%) accuracy. Moreover, the variable importance 
analysis shows that the features (TAM measures) with high 
predictive power (highly ranked by RF) make intuitive sense and 
even pointed us to measurements we did not originally expect to 
have high predicve importance, such as statistics on comments to 
source code postings. These measures can be used to guide 
educators and softare engineering managers to ensure early 
intervention for teams bound to fail. This research is funded in 
part by NSF TUES Grant # 1140172. 
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I. INTRODUCTION 
There is now a consensus across industry and academia that 

to be successful in today’s workplace, computer science 
students and software engineers must learn and practice 
effective software engineering teamwork skills. This need is 
evidenced by the unacceptably high incidence of failures of 
software projects in industry:  about 9% are abandoned, about 
one third fail, and over half experience cost and schedule 
overruns.  These project failures apparently stem from failures 
in communication, organization and teamwork aspects of 
software engineering [1-6, 25].  The emergence of global 
software development projects utilizing geographically 
distributed teams adds significant difficulty to overcoming 
these failure points.  For the education community, though it is 
clear where the problem lies, little is known about the factors 
that influence actual student learning of software engineering 
teamwork skills or about how to objectively and quantitatively 
assess, monitor and predict student progress in the acquisition 
of these skills. This knowledge, especially the knowledge of 
the factors that most influence or best predict learning 
effectiveness, will enable educators to better and more 
efficiently assess and improve software engineering education 
and classroom practice and apply early classroom intervention 
when necessary. For industry, this knowledge will benefit 
project managers to improve software engineering project 
management.   

The Software Engineering Teamwork Assessment and 
Prediction (SETAP) project, led by San Francisco State 
University (SFSU) with collaborators at Fulda University, 
Germany (Fulda) and Florida Atlantic University (FAU), 
addressesing this need by using the Random Forest (RF) [18, 
20] machine learning (ML) classification method for 
assessment, prediction, and most importantly discovery of 
factors determining the prediction of learning effectiveness of 
software engineering teamwork in the educational setting [13-
17, 30].  In this research the effectiveness of learning software 
engineering teamwork is defined as an ability of a student 
team: (i) to learn and effectively apply software engineering 
processes in a teamwork setting, and (process component) (ii) 
to work well in developing satisfactory software product 
(product component).  

This research was funded in part by NSF TUES Grant #1140172
  



ML has been used in education for other similar 
applications such as predicting student dropout rate, teaching 
effectiveness, grades etc.  Machine learning can be used in 
education to discover models that can help in understanding or 
predicting some aspects of educational situations, to provide 
some characterization of the teaching or learning process, or to 
assist in generating tools for education [10, 30].  ML 
techniques are applied on subjective (e.g. surveys) or objective 
(e.g. student age) data extracted from an educational 
environment.  For example, a class in a semester may yield 
data of:  the demographics of students, survey responses of the 
students, registration and academic data, student activity and 
grades.  Paired with independently obtained outcome 
assessments, these data constitute so-called “training 
databases”. ML systems are then trained on those training 
databases, and tested in terms of their ability to correctly 
predict or mimic independently obtained outcomes on variables 
under investigation such as grading, dropout rate, learning 
achievement etc. [7-12, 26, 30].   Though ML methods (often 
RF) have been applied to software engineering [27-28], we are 
not aware of any major work using ML to predict teamwork 
learning outcomes in software engineering. 

In this paper we provide first RF teamwork prediction and 
factor analysis results on our full data set which covers over 4 
years of our joint softare engineering classes, conducted from 
Fall 2012 through Fall 2015.  These classes constitute 74 
student teams of over 350 students.  We obtained over 30000 
discrete data items used to create our ML training database.  
We briefly elaborate on the methods of data collection and 
description of the data, and then show prediction accuracy 
results of RF analysis applied to this full data set together with 
ranking of team activity measures (TAMs) offering the most 
predictive power.  

II. SETAP PROJECT  DATA COLLECTION AND THE CREATION 
OF THE MACHINE LEARNING TRAINING DATABASE  

SETAP data are obtained from a joint software engineering 
class taught concurrently at SFSU, Fulda and FAU, where 
student teams at all three schools are “embedded and observed” 
in as realistic project and teamwork development environment 
as possible, thus providing a rich learning environment for 
students and more realistic data for researchers.  The class now 
involves about 140 students each year, working in 25-30 teams 
of 5-6 students each.  Local student teams are composed of 
students from the same university, and global student teams are 
composed of volunteer students from multiple—usually two— 
universities. Each student team develops the same software 
application.  The semester is divided into five formally 
managed milestones, M1 through M5, which are synchronized 
across all three schools (Table I) 

All student teams use the same software development and 
communication tools (source code management, development 
and deployment software and servers), which are hosted on an 
Amazon Web Service cloud instance, and managed by the 
SFSU team. Details about organization and data collection in 
our joint SE class have been reported earlier [13-17]. Data 
collection and analysis is done at SFSU.  

 

TABLE I.  STUDENT PROJECT MILESTONE DESCRIPTIONS 

Milestone Description 
M1 high level requirements and specs 
M2 detailed requirements and specs 
M3 prototype development; 
M4 beta launch 
M5 final delivery and demo 

 

The SETAP ML training database used to train and 
develop the RF predictive model is a critical component of the 
project.  The most time consuming tasks in this project were 
creating, curating and maintaining this database.  This forced 
us to pay the utmost attention and significant resources to 
ensuring data accuracy and validity.  The final outcome of this 
work is a reliable training database that will be available to 
researchers at http://setapproject.org.   

The data are organized by student teams and milestones, 
and comprise TAM data for each student team paired with 
separate evaluations of software engineering teamwork 
learning outcomes, one for software engineering process and 
one for software engineering product. These outcomes, for the 
purposes of this research, are categorized in two ML classes:  
"A", represents student work at or above expectations, and "F", 
represents student work below expectation or needing 
attention.  The grades A and F are therefore considered ML 
class labels whose prediction we are aiming for.  Note that 
these grades/labels are a different from student class grades and 
are derived by applying cutoffs to student team percentage 
grades for process and product.  More details of grading, 
including rubrics for our software engineering class are 
available in [13].  To protect student privacy, the ML training 
database contains no individually identifiable student 
information.  

To focus our analysis only on factors influencing team 
success exhibited during the class and minimize the influence 
of an individual student’s experience and skills developed prior 
to the class, student teams were formed with approximately the 
same overall combination of skills and experience. We form 
student teams by using a team placement survey with about 20 
questions about student experience, and a simple programming 
test, which we then analyze.  The analysis provides the skill 
criteria that are then used to create teams such that the skill 
profile in each team is approximately equal. Individual student 
skills and experiences are not included in TAMs.   

Team leads are chosen from a volunteer pool of students in 
the class.  Potential team leads are briefly interviewed and 
chosen by the instructor.  Teams must approve of the 
instructors' choice of team lead before final appointment.   
More details about our software engineering class management 
is in [13]. 

There are several issues of possible bias that we had to 
address. In order to reduce inherent bias, where instructors 
grade and at the same time try to use ML to predict grades, two 
techniques were used.  For software engineering product 
grading we involve reviewers external to the class, usually two. 
Also, grading rubrics have been devised that in general have 
more and different items from what we measure in TAMs.   



TAM data consists of aggregated individual student activity 
measures (SAM) from each team.  SAM and TAM data are 
collected use several methods such as:  

a) Weekly Timecard Surveys (WTS): these mandatory 
surveys collect information from each student about the time 
spent  during  the  week  on  coding, meetings, teamwork, etc.;  

b) Tool Logs (TL): comprise the collected  statistics of  
individual student  usage  of  software engineering  
communication  and  development tools such as code 
repository; and  

c)  Instructor Observation (IO): logs of  team  activity  
such  as team  member participation,  the number  of  issues  
requiring  instructor intervention, number and percent of issues 
closed late, etc. [13].   

TABLE II.  TIME INTERVAL TO MILESTONE CORRESPONDENCE 

Time Interval Corresponding Milestone 
 T1  M1 
 T2  M2 
 T3  M3 
 T4  M4 
 T5  M5 
 T6  M1 – M2 
 T7  M1 – M3 
 T8  M1 – M4 
 T9  M1 – M5 
 T10  M3 – M4 

 T11  M3 – M5 
 

The ML analysis is performed on different time intervals, 
numbered T1-T11 (Table II), which correspond to the five 
predefined milestones M1-M5 times and groupings of them.  
Grouped milestones are intended to find different trends and 
dynamics during the lifecycle of the student projects. For 
example, T6 corresponds to M1 and M2 –  covering early high-
level requirements through detailed specs, or T11 which covers 
M3–M5 covering implementation, testing and delivery. ML 
analysis is applied separately to each time interval.  Special 
focus was placed on interpretation of early time intervals (T1, 
T2, T3, T6) due to our goal of early prediction. 
Fig 1.  Setap Data Collection and Processing Flow 

 TAMs have been updated from ones reported in [13] based on our experience and initial analysis.  We added over 10 new measures including statistics for commit messages, and removed measures shown to be not reliable given student usage dynamics (e.g. low usage reliability) such as group e-mail statistics where students preferred to use their own and not our instrumented e-mail clients. 

SETAP data collection and processing is described in Fig 1. 

For each team, 115 TAMS were calculated from SAMs for 
every time interval.  Many of these TAMs are averages and 
standard deviations derived from core values, such as hours 
spent in person in meetings, number of commits, etc, over 
intervals of weeks, student, or time interval.  We list here only 
the core values.  Full TAM information is available at the 
project website http://setapproject.org.   

General TAMs:  

Year, 
semester, 
timeInterval, 
teamNumber, 
semesterId,   
teamMemberCount,  
femaleTeamMembersPercent,  
teamLeadGender,  
teamDistribution 

Weekly Time Cards (WTS) TAMs:  

teamMemberResponseCount, 
meetingHours, 
inPersonMeetingHours. 
nonCodingDeliverablesHours, 
codingDeliverablesHours, 
helpHours, 
globalLeadAdminHours, 
LeadAdminHoursResponseCount, 
GlobalLeadAdminHoursResponseCount 

Tool Logs (TL) TAMs: 

commitCount, 
uniqueCommitMessageCount, 
uniqueCommitMessagePercent, 
CommitMessageLength 

Instructors’ Observations (IO) TAMs: 

issueCount,  
onTimeIssueCount, 
lateIssueCount 

For each of the TAMs “core” variables e.g. CommitCount, 
where applicable we compute several  TAMs. This is done, for 
example, by computing average for the week separately by the 
team and then by the student, then by computing of standard 
deviation over weekly and student averages in each team (the 
latter serving to show dynamics of intergroup participation).  
The core variable name then gets labels pre-and-post-pended 
consistently, by use of formal naming grammar, to reflect 
specific aggregation method and statistical measures.  For 
example variable CommitCount is aggregated by week for each 
student to become CommitCountByWeek then its average and 
standard deviation are computed to yield final TAM variables 
standardDeviationCommitCountByWeek. These names are 
made to be easily read by humans and are consistently used in 
all data fields, documentations and in final training data files. 

To complete the ML training DB, TAMs for each team are 
paired with two ML class labels, one for softare engineering 

 



Process (A or F) and one for softare engineering Product (A or 
F). Our goal is to try to predict occurrences of F for softare 
engineering process and softare engineering Product especially 
in early stages of the class (time periods T1, T2, T3, T6). 

To implement creation of ML training database we 
developed a complex data collection infrastructure.  At its heart 
a master SETAP MySQL relational DB that first collects all 
raw (SAM) data from various sources (WTS, TL, IO). 
Dedicated scripts extract data from weekly on-line time card 
surveys (WTS) and tool logs (TL) databases. Some values such 
as instructors’ observations (IO) are entered manually from 
paper forms used in the class. To aggregate SAM into TAMs 
for each team and in each desired time interval, we created 
dedicated SQL code using its statistical functions.  Extracted 
TAMs are paired with class labels A and F and stored back in 
the master SETAP DB as a final training database table. A 
custom Python script then exports training database data for 
chosen time interval into CSV files ready to be used by ML 
analysis software. Each of these CSV files has extensive 
human-readable header information automatically generated 
for data provenance and management.  Finally, ML analysis 
uses the randomForest machine learning package for the R 
statistical mathematics program to perform RF analysis ([19]). 

Guided by our experience and the complexity of data 
collection, as well as criticality of good ML training DB, we 
decided to pay utmost attention to data accuracy and validity. 
This was achieved by several softare engineering “best 
practices” including: a) testing of all data gathering, 
aggregation and extraction software with real and synthetic 
data; b) manual spot checking of data by two independent 
researchers; c) dealing with NULL or missing data in 
appropriate ways (some records are dropped, some are handled 
by appropriate statistics and some are imputed based on 
specific ways variables were extracted). In addition, given that 
we also intend to disseminate our training database for others 
to use, we designed extensive human-readable documentation 
integrated with the files themselves as file headers for 
documentation, ease of management and data provenance.  

The current training data is collected from 74 student teams 
from Fall 2012 through Fall 2015 from our joint softare 
engineering classes. This data involves 383 Students and 18 
class sections. For each team 115 TAM measures have been 
aggregated from related SAM measures. Total number of 
grades for softare engineering Process were 49 As and 25 Fs, 
and for softare engineering Product 42 As and 32 Fs. For each 
team we collected about 400 data items (student team selection 
survey, time cards, deliverable tracking, grading of outcomes 
etc.), hence our training DB involves about 30000 data points. 
In two semesters, for T1 and T4 intervals we had to drop some 
teams do to missing time card surveys.  

III. USE OF RANDOM FOREST TO DETERMINE FACTORS THAT 
PREDICT STUDENT LEARNING EFFECTIVENESS OF SOFTWARE 

ENGINEERING TEAMWORK 
We use RF [18,20] as our ML technology, which we have 

also tested successfully on other applications [24], and we 
designed experiments to be consistent with our other 
experiences in using ML for bioinformatics [23]. RF is an 
ensemble classifier, consisting of a set of CART (decision tree) 

classifiers, each of which is generated by the Bagging 
algorithm [18]. To train a RF, two parameters, the number of 
CARTs (ntree) and the number of randomly selected features 
used to evaluate at each CART node (mtry), must be supplied, 
as well as a training database with ground-truth class labels.  
RF also allows adjustment of the voting threshold or cutoff 
(fraction of trees needed to vote for a given class), which we 
have exploited in this study. 

One of the RF algorithm's strengths, and reasons we chose 
it, is its ability to calculate the variable importance (VI) 
measure, namely Mean Decrease Gini (MDG), to determine 
rank of each RF input variable (in our case TAM) based on its 
contribution to the RF prediction [18, 20].  MDG represents 
variable-wise information gain averaged over all decision trees 
included in a RF classifier. During the RF's training, each 
CART is built by iteratively expanding a tree node by selecting 
the best single variable thresholding function to split training 
data to gain most information. This information gain is 
quantified by decrease of Gini impurities between before and 
after the data split. This Gini decrease is then associated with 
the variable chosen for that node. When a tree building is 
completed, The Gini decreases from all tree nodes are 
aggregated for each variable. These variable-wise aggregated 
Gini decreases are then averaged over the trees, yielding the 
MDG measures. Finally variables are ranked according to 
MDG values indicating their importance to RF 
prediction/classification.   

The accuracy estimate built into the RF algorithm and all 
its software implementations, and recommended by inventors 
of RF [18] is called Out of Bag Error (OOB), which measures 
the average misclassification ratio. We augment our report by 
also computing recall and precision for our target class F, 
accuracy (1 – OOB), and confusion matrices.  

In order to implement RF for our study, after evaluation, 
we chose statistical package R [19,21,22] namely its 
randomForest package. 

IV. EXPERIMENTS AND RESULTS 
Our experiments and specific questions we seek to answer 

are twofold:   

a) Determine Prediction Accuracy: How accurate are 
we in predicting software engineering process and software 
engineering product class labels, specifically in the target class 
F?  In which time intervals is the best accuracy achieved?  
This prediction accuracy (OOB, accuracy, recall and precision 
for F) are estimated by performing RF training and accuracy 
estimation using R package by varying the RF parameters as 
follows: ntree = 1000; mtry = {5,10,20,30} and by varying 
voting cutoff threshold  as {10%, 20%, 25%, 30%, 35%, 40%, 
50%} to adjust optimal RF sensitivity for our needs e.g. 
favoring F class detection. This is repeated for softare 
engineering Product and softare engineering Product and for 
each time interval T1, T2, T3, T6, T9 and T11. We also 
repeated each experiment several times with different random 
seed, observing only very minimal changes. Results are shown 
in Tables III – V. 



b) Discover factors that contribute to prediction: For the 
above optimal RF predictive models (e.g. operating points with 
maximal accuracy) we compute best ranked TAM variables 
using Gini measures as provided by R package, and investigate 
if they have an intuitive explanation based on instructors’ or 
any other experience. These factors (e.g. top ranked TAMs) 
can serve as a guidance to practitioners. Results are shown in 
Table VI and Table VII. 

TABLE III ACCURACY RESULTS FOR SOFTWARE ENGINEERING PROCESS AND 
PRODUCT. 

Teamwork 
Component 

Time 
Interval 
with best 

prediction 

OOB (ntree, 
mtry, cutoff) 

Overall 
Accuracy 

Recall for 
F 

Precision 
for F 

SE Process T2 0.30 
(1000,20, 

 35%) 

0.7 0.76 
 

0.54 

SE Product T3 0.29 
(1000, 30, 

40%) 

0.71 0.81 0.61 

TABLE IV.  CONFUSION MATRIX FOR SE PROCESS T2. 

SE process for T2 Predicted A Predicted F 

True A 33 16 
True F 6 19 

TABLE V.  CONFUSION MATRIX FOR SE PRODUCT T3. 

SE product  for T3 Predicted A Predicted F 

True A 26 16 
True F 6 26 

TABLE VI. TOP RANKED TAM MEASURES BY GINI, FOR SOFTARE 
ENGINEERING PROCESS FOR RF BEST PREDICTION PARAMETERS: TIME 
INTERVAL = T2 

TAM Name GINI 
lateIssueCount 3.86 
issueCount 1.05 
standardDeviationHelpHoursTotalByWeek 1.05 
averageHelpHoursTotalByWeek   1.04 
standardDeviationHelpHoursAverageByWeek            .08 
codingDeliverablesHoursAverage                     0.79 
standardDeviationMeetingHoursAverageByWeek   0.75 
helpHoursStandardDeviation 0.71 

 

TABLE I.  TABLE VII. TOP RANKED TAM MEASURES BY GINI, FOR 
SOFTARE ENGINEERING PRODUCT FOR RF BEST PREDICTION PARAMETERS: 
TIME INTERVAL = T3 

TAM Name GINI 
averageUniqueCommitMessageCountByWeek 2.11 
uniqueCommitMessageCount   1.35 
commitMessageLengthStandardDeviation   1.17 
standardDeviationInPersonMeetingHoursAverageByWeek  1.05 
standardDeviationCodingDeliverablesHoursAverageByWeek           0.98 
standardDeviationUniqueCommitMessagePercentByWeek               
     

0.94 

standardDeviationCodingDeliverablesHoursTotalByWeek   0.89 
standardDeviationNonCodingDeliverablesHoursAverageByStudent 0.88 
averageHelpHoursAverageByStudent   0.87 
standardDeviationMeetingHoursAverageByWeek 0.83 
 

V. DISCUSSION 
We have contributed toward demonstrating the success of 

ML (namely RF) to predict the teams that are likeley to fail in 
software engineering educational context. We also show that 
this can be done based on easy to measure objective and 
quantitative variables, and can be done early in the class or 
project which offers great advantages. Moreover, we show that 
factors contributing to these predictions are intuitive and offer 
practical guidance to teachers and managers in software 
engineering. 

 

More work remains in deeper understanding of why RF 
works, an issue we call explainability. This can be formulated 
in a  number of questions a practitioner (non ML expert) might 
ask: What would be hit on accuracy if we use much less TAMs 
so I can reduce the cost of applying this approach? How 
exactly top ranked variables contribute: e.g. does more helping 
time or less helping time indicate good  team? What variables 
most often mutually interact to produce correct decisions? We 
are actively engaged in this work. 

We also cannot overemphasize the importance of proper 
data collection, data management and testing, which took a lot 
of our effort and required utmost focus. 

Finally, in near future we will be disseminating our training 
database with full documentation so others can try their own 
ML approaches on it. 
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