
SETAP: Software Engineering Teamwork
Assessment and Prediction Using Machine Learning

Dragutin Petkovic1, Marc Sosnick-Pérez1, Shihong Huang2, Rainer Todtenhoefer3, Kazunori Okada1,
Swati Arora1, Ramasubramanian Sreenivasen1, Lorenzo Flores1, Sonal Dubey1

1Department of Computer Science
San Francisco State University

San Francisco, U.S.A.
{petkovic, msosnick, kazokada,

ltflores}@sfsu.edu, {sarora, sreeni,
sdubey}@mail.sfsu.edu

2Department of Computer Science and
Engineering

Florida Atlantic University
Boca Raton, U.S.A.
shihong@fau.edu

3Department of Applied Computer Science
University of Applied Science, Fulda

Fulda, Germany
rainer.todtenhoefer@informatik.hs-fulda.de

Abstract— Effective teaching of teamwork skills in local and
globally distributed Software Engineering (SE) teams is
recognized as an important part of the education of current and
future software engineers. Effective methods for assessment and
early prediction of learning effectiveness in SE teamwork are not
only a critical part of teaching but also of value in industrial
training and project management. This paper presents a novel
analytical approach to the assessment and, most importantly, the
prediction of learning outcomes in SE teamwork based on data
from our joint software engineering class concurrently taught at
San Francisco State University (SFSU), Florida Atlantic
University (FAU) and Fulda University, Germany (Fulda). Our
approach focuses on assessment and prediction of SE teamwork
in terms of ability of student teams to apply best SE processes
and develop SE products. It differs from existing work in the
following aspects: a) it develops and uses only objective and
quantitative measures of team activity from multiple sources,
such as statistics of student time use, software engineering tool
use, and instructor observations; b) it leverages powerful
machine learning (ML) techniques applied to team activity
measurements to identify quantitative and objective factors
which can assess and predict learning of software engineering
teamwork skills at the team level. In this paper we provide the
following contributions: a) we present in detail for the first time
the full team activity measurement data set we developed,
consisting of over 40 objective and quantitative measures
extracted from student teams working on class projects; b) we
present a ML framework which applies the Random Forest (RF)
algorithm to the team activity measurements and team outcomes,
focusing on predicting teams that are likely to fail; c) we describe
in detail our now fully implemented and operational data
processing pipeline, consisting of data collection methods from
multiple sources, ML training database creation, and ML
analysis subsystems; and finally d) we present very preliminary
results of ML analysis results based on the data from our joint
software engineering classes in Fall 2012, and Spring 2013, with
the data from 17 student teams. While our ML training database
is currently small, it continuously grows. Our preliminary
results, verified with two independent accuracy measures, show
that RF is able to predict SE Process and SE Product team
performance in intuitively explainable manner.

Keywords—Assessment, Software Engineering Teamwork,
Machine Learning, Education

I. INTRODUCTION
Modern software development involves intensive, often

globally distributed teamwork, with teams being required to
develop easy-to-use, maintainable software on schedule and on
budget, satisfying detailed specifications. The need for
improved teaching, industrial management, and training in
software development is evidenced by the unacceptably high
incidence of failure of industrial software projects: about 9%
are abandoned, about a third fail, and over half experience cost
and schedule overruns [1-5]. The research also indicates that
these failures stem primarily from failures in non-technical
aspects of software engineering (SE) such as communication,
organization and teamwork [1][4-8]. Therefore, there is a
critical need to develop methods to effectively teach and assess
teamwork skills. Given today’s distributed, global SE
development environment, it is also important that these
methods take into account locally and globally distributed SE
teams. Effective methods for assessment and early prediction
of learning effectiveness in SE teamwork are not only a critical
part of learning and teaching, but also of value in industrial
training and project management.

Most existing approaches to assessing achievement of SE
teamwork skills are based on qualitative and subjective data
captured via surveys taken at the end of the SE class, with only
rudimentary data analysis techniques applied to the collected
data (for example [9-10]). These qualitative surveys may
include questions such as “rate the impression of your SE
teamwork experience in the class”, etc. While these
approaches are very worthwhile, they are in general lacking in
the following ways: a) qualitative and subjective data used in
these methods are not precise nor amenable for sophisticated
data analysis; b) detailed user behavior and “meta-data” readily
available from today's SE tools, such as software development
tool usage and communication patterns among the team
members are rarely used; c) the more complex decision
methods such as machine learning (ML) [11] that are widely
used today in many applications ranging from medicine,
marketing, analysis of customer and user behavior (e.g. on-line
shopping [12]) to SE problems such as software reuse and
evolution management [13-14] are rarely used; d) methods for

This research is sponsored by National Science Foundation Transforming
Undergraduate Education in Science Grant #1140172.

978-1-4799-3922-0/14/$31.00 ©2014 IEEE 1299
2014 IEEE Frontiers in Education Conference

early prediction of SE team failure are rarely developed and
difficult to implement when data collection through class
surveys is performed only at the end of the class.

Our work focuses on assessment and prediction of SE
teamwork learning of teams, not of the individual students that
make up those teams. We define the learning of SE teamwork
as an ability of a team: (i) to learn and effectively apply SE
processes in a teamwork setting, and (ii) to develop software
that satisfies defined requirements. We therefore assess not
only the quality of the team’s output (i.e. the software product),
but also on the team’s ability to follow best practices in SE
teamwork. Since we study the behavior and communication of
the team as a whole during the semester, and not prior personal
and communication profile of each student, special attention
has been devoted to team selection. Our focus on the team
instead of the individual has also been motivated by the
observation that team cohesion and communication are critical
in the success of SE team projects.

II. OUR APPROACH
Our approach to assessment and, most importantly,

prediction of learning of SE teamwork consists of three basic
steps [22]:

Step 1: Collect the objective and quantitative data on
student team activity during joint SE classes at SFSU, FAU
and Fulda

Step 2: Create a ML training database comprising student
team activity measurements, instructor observations, and
grades for student SE teamwork achievement and product
quality

Step 3: Apply random forest (RF) ML method to the data to
discover models and factors that determine and predict SE
teamwork achievement and product quality of student teams.

Our approach is novel in that it: a) develops and uses only
objective and quantitative measures from multiple sources such
as statistics of student time use and SE tool use, counts of
emails exchanged and of issues needing attention etc.; and b)
applies powerful ML techniques which uses these quantitative
and objective measures of teamwork activity to assess and
predict team’s achievement in learning and applying of SE
teamwork skills. Our analysis is focused on teams and their
communication and behavior dynamics during the SE project
development.

We chose the RF ML approach [15-16] for its accuracy,
ease of implementation, availability as open source software,
and for its ability to rank variables in terms of their predictive
power, which can illuminate the most important factors for
assessment and prediction.

III. ORGANIZATION OF THE JOINT
SOFTWARE ENGINEERING CLASS

Our research is integrated and critically dependent on a
teamwork intensive, globally distributed SE class taught at San
Francisco State University (SFSU), Florida Atlantic University
(FAU) and Fulda University in Germany, which has been
ongoing since 2006 [17-21]. This class provides an

TABLE I. PROCESS AND PRODUCT GRADING RUBRICS USED IN
DETERMINING OUTCOMES AND ML CLASSES A AND F.

SE Process Grading Rubrics
1. Team participation at the meetings
2. Quality and timing of follow-up on outstanding issues
3. Ability to deal with feedback constructively
4. On time delivery of software on non-software items
5. Quality and completeness of non-software deliverables such as

website design, documentation, and milestone docs.
6. Number and severity of teamwork issues in which the instructor had

to intervene.
7. Ability to apply best SE and teamwork practices as taught in class

and as advised
8. Ability to effectively use collaborative software development and

communication tools

SE Product Grading Rubrics
1. Correctness and reliability of operation
2. Functionality actually delivered vs. team commitment
3. Ease of use, user interface
4. Performance
5. Architecture
6. Database design
7. Code quality and comments
8. Presentation and effectiveness of final demo

environment where student teams are “embedded and
observed” in as realistic a project and teamwork development
environment as possible, thus providing realistic data for the
research.

Our SE class now involves about 140 students each year,
working in 25 to 30 teams of 5 to 6 students each, which is
jointly and concurrently taught at SFSU, FAU, and Fulda in
Fall semesters and additionally at SFSU in Spring semesters.
The exact number of teams varies with class enrolment and is
growing.

A. Term Project and Grading
During the class, all student teams develop the same web

application, with mandatory use of a suite of modern SE
development and communications tools. Starting with only a
single page, high-level description of the product, student
teams develop their application in five well-defined milestones:

1. M1: high level requirements

2. M2: detailed requirements and specification

3. M3: prototype development and review

4. M4: beta release

5. M5: final delivery and demo

Student team composition may be local (comprising students
from the same school) or global (comprising students from
each of SFSU and FAU or SFSU and Fulda schools). Teams
meet weekly in class for a mandatory meeting with instructors,
and are expected to meet independently outside of class.
Teams (especially global teams) may use Skype or Google
Chat for meetings outside of class. Observations of student
teams are made and recorded by instructors during the in-class
meeting, for the components of SE product and SE process as
described in more details in TABLE I.

1300
2014 IEEE Frontiers in Education Conference

To ensure teamwork culture and student commitment, all
members of a student team share the same grade for the SE
process and SE product components, which each contribute
25% to the student's overall class grade. To ensure that
students quickly learn the class SE tools, an individual
milestone, M0, is instituted early in the class, requiring
students to install and learn the tools through the development
of a small example application. M0 is worth 5% of a student's
grade. A comprehensive final exam testing students’
knowledge of class material contributes the remaining 45% to a
student's grade.

Great effort has been made to smoothly integrate the
research and its related data collection with the SE class
teaching and grading. Class teaching is “just in time” i.e.
teaching topics are offered at the time when students need them
for project milestones. For about one hour at the end of each
class, instructors meet with student teams where the instructors
observe, advise and record their observations in instructor
observation logs (IO). Students complete a weekly time card
survey (WTS), which is used to collect “time spent”
information (e.g. time spent on meetings, coding,
documentation). It is made very clear to all students that no
information collected or derived from this research influences
student grade. Students are given the choice to participate in
the research study or not, and those who choose to participate
in the study sign informed consent documents. Students who
choose not to participate are grouped together into a team, and
the entire team’s data is discarded for that semester. To assure
strict adherence to student privacy, analysis is done and
published only at the aggregated team level from team activity
measurements (TAM).

The SE process component of the outcomes of student
teamwork learning is graded by instructors reviewing
observation logs and student project documentation, using the
rubric in TABLE I. to evaluate proper adherence to SE
processes by the student team and its members. The SE
product component of the learning outcomes is graded both by
instructors and by independent observers, who use the rubric in
TABLE I. to evaluate the quality of the team's final product.
Each team receives an absolute score in points, and is also
ranked relative to the other teams in the same class for that
semester. Following grading and ranking, for the purpose of
this research, the instructors classify each team's SE process
and SE product achievements into two ML classes: at or above
expectations receives class label A, and below expectations or
needing attention receives a class label F.

B. Team Organization
In order to focus our analysis only on factors influencing

team success exhibited during the class and minimize the
influence of an individual student’s experience and skills
developed prior to the class, it is critical to form student teams
with approximately the same overall distribution (mix) of skills
and experience. While we note the importance of prior student
personality profile, we focused only on the student SW and
team experience in composing the teams. To minimize
influence of personality and communication issues of each
student we used mentoring and coaching during early stages in
the class. The decision not to use student personality profiles

was also motivated by concerns of cost and efficiency of
obtaining the profiles given a tight class management schedule
and by privacy implications. We do however pay considerable
attention to communication and personality profile in choosing
team leads.

We have developed, and recently improved and formalized,
the following process for student team selection:

• A Team Placement Survey (TPS) is administered to all
students at the start of the class. This survey comprises
17 graded (Lickert) scale, Y/N questions, and a small
programming proficiency test. In the TPS, the student
is asked about their prior product development and
teamwork experience, GPA, gender, etc. The student is
asked to self-rate on a scale their proficiency in various
programming languages used in the class. Finally the
TPS includes 3 simple programming proficiency tests
on the languages that will be used during the semester.

• Each TPS is rated by the weighted sum of responses to
questions and instructor grading of the programming
tests to determine student skill scores for each student.
Teams are formed such that team skill scores, obtained
by averaging student skill scores are approximately
equal.

• Global teams are formed primarily from students who
have volunteered to be on a global team.

• Each team is asked to recommend a team lead, who is
evaluated and must be approved by instructors. Global
teams have a team lead in each participating school.

IV. COLLECTION OF DATA ON TEAM ACTIVITY
Team activity measurements (TAM) are computed for each

team by aggregating individual student activity measurements
(SAM) of participating team members.. The design of TAM
and SAM was motivated by the real-world experience and
intuition gained from teaching joint SE class for several years,
trying to formalize and understand how to better assess and
predict student teamwork learning.

The challenge was to choose only objective and
quantifiable measurements (e.g. time spent, counts of
events/issues, tool usage like e-mails, postings, etc.) suitable to
more advanced data analysis techniques like ML and motivated
by our teaching and teamwork evaluation experience. For
example, it was observed that teams who struggle to establish
communication early on tend to fail more often, so we measure
time spent in meetings and collect statistics about e-mail usage.
We observed that teams writing poor software repository
commit messages, such as messages that are empty or repeated,
tend to produce a lower quality software product, so we
measure the percent of unique commit messages to the code
repository. We have also noticed that teams completing
assignments late or having a high number of teamwork-related
issues tend not to do well, so we measure both percent of late
delivery and the count of issues requiring instructor
intervention. To measure dynamics in time and within the
team, we compute standard deviation of certain measures such
as e-mail usage and repository commits over time in weeks,

1301
2014 IEEE Frontiers in Education Conference

Fig. 1. Dataflow for the data acquisition and data processing phases of the

SETAP project, which results in the creation of the ML training
database.

and over team members. These measures are intended to help
reveal cases such as a student doing most of the work in a team
instead of the work being evenly distributed among the team
members. We have also conjectured that TAM predictive
importance and student team dynamics may change during the
course of project development (i.e. in each milestone), hence
we collect TAM data separately for time intervals
corresponding to five project milestones as well as for the
whole class period.

A. Data Collection Methods
Fig. 1 depicts the data collection process, starting from

collecting SAM measures, and using several methods such as:

Mandatory student Weekly Timecard Surveys (WTS)
collect information from each student about the time the
student spent during the week on coding, meeting,
teamwork, etc. It is difficult to collect this data by other
means without the use of significantly more invasive
collection methods. We are aware that students might
enter somewhat erroneous numerical estimates, but we
found that, when averaged over all the team members,
these estimates are reasonably reliable when used in
ML analysis. We emphasize to students that they are
not graded on the content of their WTS, only on the
submission of the WTS.

• Tool Logs (TL) collect statistics/counts of individual
student usage of SE communication and development
tools, such as the number of e-mails between the team
members, number of postings to source code repository,
quality of commit messages.

• Instructor observation logs (IO) of team activity such as
team participation, number of issues requiring instructor
intervention, number and percent of issues closed on

time, etc., are also recorded weekly and included in the
calculation of the TAM. Other basic data such as
semester, team lead gender, etc., are collected from
Class Data (CD).

Time stamps are kept for all data, since further analysis is
performed in selected time intervals, Ti, which correspond to
the five predefined milestones: T1 - start to end of Milestone 1;
T2 – start to end of Milestone 2 and so on; T6 is composed of
the data from T1 through T5, the dataset for the entire
semester.

Once collected, SAM data for team members are
aggregated with other data into TAM for each team and are
computed for each time interval T1 to T5 and T6. It is only
TAM data that are used for ML analysis, and no analysis is
performed on any data that may individually identify a student.

TABLE II. provides a description of rows 1-47 of the
TAM, the method of extraction of the data points, and the
name and brief description of the each TAM data item.

B. Data Collection Infrastructure
Teacher, student, and team accounts, software development
and communication tools, and data extraction software are
hosted on a virtual Ubuntu server hosted in the Amazon cloud,
which we call the SETAP server. Each student and each
student team is provided a Unix shell account on this server in
which to develop their project; the student team's final project
must be served from their group server account. The student
team projects are developed for a LAMP (Linux, Apache,
MySQL, PHP) stack, which is provided on the system. The
server provides SE tools, which the students are required to use
during project development, including Subversion
(http://subversion.apache.org), and Bugzilla
(http://www.bugzilla.org). Students are provided email service
through the class server, and are required to communicate with
their team and instructors with it. A custom web interface has
been developed for the creation and management of these
student and group services.

For processing of student email and Subversion activity,
custom PHP and shell scripts capture and convert data from
these tools' system logs and store the data to the central
MySQL (http://www.mysql.com) database. WTS are sent out
every week of the semester by an automated script, which also
notifies instructors of survey non-responders. The surveys are
administered to students using LimeSurvey [25] via a web
interface. Both LimeSurvey and Bugzilla write directly to the
database, so no additional data conversion is necessary. At the
beginning of the semester, class data (CD) are entered into an
excel spreadsheet. The spreadsheet is uploaded to the system
through a custom web interface. The CD are then converted
and stored to the database by custom scripts. Placement survey
data, instructor observation data, and project evaluations are
done on paper, and manually entered into a spreadsheet; these
spreadsheets are then uploaded to the system via a custom web
interface, where custom scripts convert the spreadsheet data
and store the information to the database. Strict quality control
(code reviews, testing, manual data checking etc.) of data

1302
2014 IEEE Frontiers in Education Conference

TABLE II. ML TRAINING DATABASE. TAMS (ROWS 1-47) AND SE
PROCESS AND SE PRODUCT OUTCOMES (ROWS 48-53). MEANS OF

COLLECTION: CD – CLASS DATA; WTS – WEEKLY TIMECARD SURVEYS; IO –
INSTRUCTORS' OBSERVATIONS; TL – TOOLS LOGS

Row Means Measure: Description
1 CD Year: Year the measures collected
2 CD Semester: Semester the measures collected
3 CD Time Interval: Time interval for which measures are collected

(i.e. milestones 1-5 or complete semester)
4 CD Team number: ID of the team
5 CD Team member Count: How many students in the team
6 CD Percent of female team members: Percent of female student

members in the team
7 CD Team Lead Gender: Gender of the team lead
8 CD Team Distribution: Local (from the same school); Global

(from different schools)
9-11 WTS Time spent on meetings: Average per student/week, standard

deviation (SD) over weeks, SD over team members
12-14 WTS Time spent on non-coding tasks: Average per student/week,

SD over weeks & team members
15-17 WTS Time spent on coding tasks: Average per student/week, SD

over weeks & team members
18-19 WTS Lead admin time: Average time and SD over weeks the team

lead (local or global) spent management tasks
20-21 WTS Global Team Lead Admin Time: Average time and SD over

weeks spent on admin for global portion of teamwork
22-24 WTS Time students spent helping other team members: Average

per student/week, SD over weeks & team members
25-26 IO Meeting participation: Average per team, SD over weeks of

percent of team members being present at in-class scrums
27 IO Percent of late deliverables: Percent of deliverables (e.g.

documentation, programs) not delivered on time.
28 IO Instructor teamwork intervention count: Count of instructor

process intervention for teamwork issues
29-31 TL Number of e-mails within a team: Average per student/week,

SD over weeks, SD over team members
32-33 TL Number of e-mails by team lead to team members: Average

per week, SD over weeks
34-36 TL Number of commits to code repository: Average per

student/week, SD over weeks, SD over team members
37-39 TL Length of commit message to code repository: Average per

student/week, SD over weeks; SD over team members
40-42 TL Uniqueness of commit messages: Average percent per

student/week, SD over weeks, SD over team members
43-45 TL Number of commit files changed: Average number per

student/week, SD over weeks, SD over team members
46 IO Total number of instructor initiated issues: Count of

instructor requested formal response to an issue/checkpoint
47 IO Percent of late issue responses: Percent of responses to issues

that were late
48-50 IO SE Process Outcome Grades: Letter (A or F), percentile, and

class rank of team’s SE process outcome grades
51-53 IO SE Product Outcome Grades: Letter (A or F), percentile, and

class rank of team’s product outcome grades.

collection SW and the data itself has been applied during
development to ensure accuracy of collected data.

V. CREATION OF THE MACHINE LEARNING TRAINING
DATABASE

In the final part of the data collection and processing phase,
data is extracted from the database by custom scripts and SQL
queries, which organize and extract the TAM data and
instructor evaluations into a ML training database. The ML

training database is composed of TAM data for each team
paired with ML class labels A or F for each of SE process and
SE product (A for teams at or above expectations and F for
teams below expectations or needing attention) to constitute
feature vectors in ML training database. This ML training
database is constructed at the team level with no individual
student data and in addition, to protect student privacy, this
database contains no individually identifiable student
information.

The complete ML training database shown in TABLE II.
consists, for each team, of: a) the Team Activity Measurements
or TAM (rows 1-47), and b) SE process and SE product
“ground truth outcomes” (rows 48-53) determined as
explained above. Currently, our ML training database contains
carefully vetted information from 17 teams: 11 teams
participated in the Fall 2012 semester, and 6 teams participated
in Spring 2013 (SFSU only, no global teams). In total, for SE
Product there were 12 teams classified as A and 5 as F, and for
SE Process 8 teams were classified as A and 9 teams classified
as F. We note a slight imbalance between A and F
classifications for SE Product. Our ML analysis procedure has
been designed to address this imbalance.

VI. APPLYING RANDOM FOREST MACHINE LEARNING
Our goals are to develop optimal predictive RF models

which, based on TAM data, best predict occurrence of teams
graded F for SE product and SE process learning outcomes
separately. In the future, using built-in RF variable importance
functionality, we will work on discovering which TAM data
has the highest predictive power for class F, thus indicating
factors which most influence the learning of SE teamwork.
The key challenge in this early phase is the small size of the
training database where each item corresponds to one student
team completing our class, which is limited by the number and
enrollment size of classes we can effectively teach. With time
this database will grow at an expected rate of 25 to 30 teams
per year. Another challenge from our focus on predicting
teams labeled F inspired the exploration of alternative accuracy
measures for RF predictor than the commonly used Out of Bag
Error (OOB) [15], which averages misclassification error for
all class labels (e.g. A and F). We also note our somewhat
unbalanced training data, where the class of interest (F) may
constitute a minority; we believe this problem might persist
with more data collected.

Fig. 2. Data flow of the ML portion of SETAP project.

1303
2014 IEEE Frontiers in Education Conference

Given our objectives, and in light of the above challenges,
we have developed ML analysis methods using RF as depicted
in Fig. 2. For accuracy measures, given our focus on class F,
we use recall and precision in detecting class F as our primary
accuracy measure. Recall is the number of samples correctly
classified as class F vs. all existing samples of class F.
Precision is the number of samples correctly classified as class
F vs. all samples classified as F. To estimate the recall and
precision in the presence of unbalanced training data we use
stratified sampling in cross validation (CV) so that each class is
fairly represented in every fold of a CV process. To make our
predictions practical (i.e. having good prediction with minimal
false predictions), we are specifically interested in finding
maximal recall for class F at a fixed high precision (e.g. 90%).
To account for different dynamics in each SE class milestone,
we perform prediction in different time intervals T1-T5
corresponding to each milestone M1-M5, and T6
corresponding to the whole class period. We also wish to
investigate if predictors from earlier time intervals (T1-T3) can
be used for early prediction of teams which later fail, enabling
earlier instructor intervention.

As a secondary accuracy measure, and to check for
consistency, we use above-mentioned Out of Bag Error (OOB)
common with all RF implementations. This measure is
computed in same early intervals T1-T3.

Specific questions we want to answer are:

• Can RF predict teams labeled F in SE Process and SE
Product with sufficient accuracy (indicated by high recall
and low OOB)?

• In which of early intervals T1-T3 does RF achieve the best
and sufficiently accurate prediction?

• Do recall and OOB accuracy measures indicate best
predictions in the same time intervals?

As depicted in Fig. 2, the ML portion of the system consists
of the combination of custom Unix shell, Perl and Python
scripts, which use the randomForest package run by the R
statistical computing package [26-27]. Again, to ensure
accuracy the code and the data have undergone multiple
reviews by experienced programmers, and tested on a synthetic
test data set with known results. We also leveraged our
experience and cross validation code from a project where we
used RF technology on bioinformatics data [28] and tested and
compared results on two independent ML systems.

A. Derivation of Random Forest Predictive Models
The derivation of predictive RF models and estimation of

accuracy in predicting teams classified as F is accomplished by
training RF on a ML training database to find the best RF
models, or predictors, for class F. The process of optimizing
RF consists of finding the optimal values of RF accuracy (i.e.
recall/precision or OOB) for the number of decision tress
(ntree) to be included in the RF ensemble (forest), and the
number of variables (mtry) to be evaluated at each tree node
during training, which maximizes the recall measure at the
desired 90% precision. The range and interval of grid search

Loop over ntree (1000, 50000)
 Loop over mtry (2, 4)
 Loop over 3-fold stratified cross-validation (K=1..3)
 Train RF on data from two folds, test on third fold
 Vary RF cutoff to achieve 90% Precision for class F,
 Record Recall for class F
 Average Recall measures for class F over 3 folds
Fig. 3. Pseudocode for RF optimization using CV

for ntree and mtry follows recommendations from literature,
given the nature and size of our training database. Due to the
very small training database and a relatively large number of
TAM measures, to avoid over-specification we currently use
{2, 4} for mtry and to provide for enough random tress given
large number of TAM data we use {1000, 50000} for ntree.
To handle our unbalanced data set, we adapt a 3-fold stratified
cross validation as recommended in [23-24]. 3-fold stratified
cross validation first partitions the training database into larger
training and smaller test sets, consisting of 2/3 and 1/3 of the
data, respectively. These partitions are constructed so that
samples labeled A and less frequent samples labeled F
participate proportionally in each partition. Training and
testing RF for each partition is followed by computing recall at
precision of 90% for class F by varying the RF decision
threshold to achieve the desired (90%) precision. Finally these
recall values are averaged over 3 different repetitions of cross
validation. The pseudo code for this process is in Fig. 3.

For OOB error estimates we used standard open source RF
implementation from randomForest library [26-27] using the
same range for ntree and mtry values as above.

The template is used to format your paper and style the
text. All margins, column widths, line spaces, and text fonts are
prescribed; please do not alter them. You may note
peculiarities. For example, the head margin in this template
measures proportionately more than is customary. This
measurement and others are deliberate, using specifications
that anticipate your paper as one part of the entire proceedings,
and not as an independent document. Please do not revise any
of the current designations.

Derived predictive models for class F consist of an
ensemble of decision trees provided by the RF implementation
(in our case the randomForest R library [26-27]) for optimally
determined ntree and mtry values as above, and are derived for
each interval T1-T3, and separately for SE process and SE
product prediction.

VII. RESULTS AND DISCUSSION
The system (methods and software implementation) for

data collection and creation of the ML training database is fully
operational and deployed for continuous data collection for
three concurrent SE classes at SFSU, FAU and Fulda with over
140 students and 25 to 30 student teams each year. This
system is fairly complex and took about 3 years to develop and
test. ML analysis system (algorithms, software) based on RF is
fully operational as well.

In this first step, we have created a ML database with over
40 TAM measures for each of 17 student teams from the
period of Fall 2012 and Spring 2013 including graded

1304
2014 IEEE Frontiers in Education Conference

outcomes of their achievement of SE Process and SE Product
learning. The data has been carefully checked for accuracy due
to complexity of collection process and large number of
parameters. Currently, we are organizing, checking and adding
the data from additional 25 teams from our joint SE class in
Fall 2013.

We note the current small size of our current training
database. Our approach was to first establish the “proof of
concept”, test and prepare the software infrastructure for more
data and then embark on more data processing and analysis.

We performed two kinds of ML experiments by
computing: recall and precision for detecting class F, and
standard RF OOB error of misclassification in intervals T1-T3,
for SE Process and SE Product separately.

To estimate RF prediction for class F with recall and
precision, we used 3 fold stratified cross validation, looking for
best RF predictor for class F both for SE process and SE
Product. We focused on early millstones M1, M2, M3 (the
time intervals T1, T2, T3) looking for early predictions so that
class intervention can be effectively implemented. We

TABLE III. BEST RF PREDICTORS FOR SE PROCESS

Time period
(milestone)

Recall at 90%
precision Ntree mtry

T2 (Milestone 2) 0.667 1000 2

T2 (Milestone 2) 0.667 1000 4

T2 (Milestone 2) 0.667 50000 4

TABLE IV. BEST RF PREDICTORS FOR SE PRODUCT

Time period
(milestone)

Recall at 90%
precision Ntree mtry

T3 (Milestone 3) 0.6 50000 4

measured recall for class F (teams that need attention or are
below expectations) at 90% precision. Results are in TABLE
III. and TABLE IV.

To assess RF performance using OOB as an accuracy
measure, we performed the same set of experiments as above
(same ntree, mtry and time intervals) using the radomForest
software library from R statistical computing [26-27].
Significantly, OOB results are consistent with recall and
precision, namely they provide best predictions in the same
intervals Ti as recall measure both for SE Process and SE
Product. Specifically: a) for SE Product the best OOB predictor
was again in interval T3 with an OOB of 18% for ntree=1000
and mtry=4, detecting 3 out of 5 teams F; b) for SE Process the
minimal OOB of 24% for ntree, mtry combinations (1000, 2;
1000,4; 50000,2; 50000, 4) was again in interval T2, detecting
6 out of 9 teams F.

These results have an intuitive explanation. It makes sense
for T2 (comprising Milestone 2 – the detailed specification
phase) to be the best predicting interval for teams’ SE Process
performance since in that milestone teams are at the peak of
establishing communication and teamwork while developing

many non-coding deliverables. Similarly, it makes sense that
T3 (comprising Milestone 3 – the prototyping phase) is the best
interval in predicting SE Product teams’ performance because
this is when the teams start implementing their project. In
terms of recommendations for educators and managers these
results indicate intervals when most attention has to be paid to
identifying teams that could fail.

We note again a very preliminary nature of results but we
conjecture that “proof of concept” has been validated with both
recall and OOB measures agreeing, and with the intuitively
justifiable interpretation of the results as above

Some bias in determining classes A and F is still present
since these grades are partially determined by class instructors,
an issue hard to eliminate completely. To mitigate this we
created as objective grading rubrics as we could and we also
involved external graders for SE Product grade.

We also recognize that we are simultaneously collecting
activity measures from student teams as the students are
learning and being coached, resulting in a “non-stationary
observed process”. We mitigate this by careful recoding of
team behavior with time stamps and whereby our more
aggressive coaching and help is generally withheld until after
M3 so that team behavior with all its issues can be exposed in
early stages (Milestones M1-M3).

VIII. CONCLUSIONS AND FUTURE WORK
In this paper we presented, for the first time, the details of

the SETAP Project's full data definition, data collection and
first preliminary ML analysis methods and results, and the
software pipeline used to implement them. The whole system
(methods, algorithms, software) for data collection, creation of
ML training database and ML analysis is fully operational and
deployed for continuous data collection and analysis from three
concurrent SE classes at SFSU, FAU and Fulda with over 140
students in 25 to 30 teams each year. Out preliminary results
show consistency when tested with two independent accuracy
measures and prediction intervals indicated by our ML
approach offer intuitive explanation.

Future work includes first and foremost gathering and
processing more data, which is under way with about 25-30
teams each year. In parallel we plan to investigate variable
importance measures associated with RF in order to derive
factors (e.g. TAM measures) that have most predictive power.
Knowing such measures will help educators and SW managers
better focus on predicting team performance.

We also recommend and plan ourselves the investigation of
other ML and analysis methods, specifically those which deal
well with small data sets and offer some explanation and
ranking of the variables.

We plan to significantly streamline and improve our SW
system for data gathering and collection into a training DB
including creating on-line forms for instructor observations. In
the long run we plan to leverage the fact that more and more
tools for SE development and communication offer statistics of
their usage as a byproduct, thus potentially enriching our TAM
observation data.

1305
2014 IEEE Frontiers in Education Conference

Our future work will also include special attention to
differences between local and global teams deploying, among
others, clustering techniques on ML training database.

In order to enable others to try their own analysis
techniques, and noting the very significant cost and time it
takes to collect the data for the ML training database, we plan
to make it publicly available once more data is collected.

ACKNOWLEDGEMENTS
We gratefully acknowledge the advice of Dr. Byron Dom

regarding the ML component of our project.

REFERENCES

[1] “Standish Group Report: CHAOS Summary 2009.”
http://www1.standishgroup.com/newsroom/chaos_2009.php Accessed
May 18, 2011.

[2] Sauer, Chris and Christine Cuthbertson. April 2003. “The State of IT
Project Management in the UK 2002-2003.” Computer Weekly.
London.

[3] Sauer, Chris, Andrew Gemino, and Blaize H. Reich. November, 2007.
“The impact of size and volatility on IT project performance,”
Communications of the ACM. Vol 50(11), pp. 79-84.

[4] Jones, Capers. 2010. Software Engineering best Practices: Lessons
from Successful Projects in the Top Companies. McGraw Hill. ISBN
978-0-07-162161-8.

[5] Reel, John S. 1999. “Critical success factors in software projects.”
IEEE Software. Vol 16(3), pp. 18-23.

[6] Charette, Robert N. September, 2005. “Why software fails.” IEEE
Spectrum. Vol. 42(9), p. 42.

[7] Pressman, Roger. 2005. Software Engineering: A Practitioner’s
Approach, Sixth Edition. McGraw Hill.

[8] Curtis, Bill, Herb Krasner, and Neil Iscoe. 1988. “A field study of the
software design process for large systems.” Communications of the
ACM. Vol. 31(11), pp 1268–1287.

[9] “CATME - Comprehensive Assessment for Team-Member
Effectiveness.” June, 2012. http://www.catme.org. Accessed June 6,
2012.

[10] Davis, Denny, Michael Trevisan, Patricia Daniels, Kenneth Gentili,
Cynthia Atman, Robin Adams, David McLean, and Steven Beyerlein.
2003. “A Model for Transferable Integrated Design Engineering
Education.” World Federation of Engineering Organizations.

[11] Baldi, Pierre and Søren Brunak. 2001. Bioinformatics: The Machine
Learning Approach, Second Edition (Adaptive Computation and
Machine Learning). MIT Press.

[12] Perner, Petra, ed. “Advances in data mining: applications in medicine,
web mining, marketing, image and signal mining,” 6th Industrial
Conference on Data Mining, ICDM 2006. Lecture notes in Computer
Science. Vol. 4065. Springer. 2006.

[13] Zhang, Du and Jing-Pha Tsai, eds. 2005. Machine Learning
Applications In Software Engineering. Vol. 16. World Scientific
Publishing. ISBN: 981-256-094-7

[14] Rajwinder Singh, Neeraj Mohan and Dr. Parvinder S. Sandhu.
“Evaluation of Success of Software Reuse using Random Forest
Algorithm.” In International Conference on Artificial Intelligence and
Embedded Systems (ICAIES'2012) July 15-16, 2012 Singapore.

[15] Breiman, Leo. 2001. Random Forests. Machine Learning. Vol. 45(1),
pp. 5–32.

[16] Liaw, Andy and Matthew Wiener. 2002. Classification and Regression
by randomForest. R News. Vol. 2(3), 18--22. http://www.r-
project.org/doc/Rnews/Rnews_2002-3.pdf. Retreived October 22, 2013.

[17] Petkovic, Dragutin, Rainer Todtenhöfer and Gary Thompson, “Teaching
practical software engineering and global software engineering: case
study and recommendations,” Proceedings of the 36th ASEE/IEEE
Frontiers in Education Conference. San Diego, CA, 2006. pp. 19–24.

[18] Petkovic, Dragutin, Gary Thompson, and Rainer Todtenhöfer.
“Teaching practical software engineering and global software
engineering: evaluation and comparison.” In Proceedings of the
Eleventh Annual Conference on Innovation and Technology in
Computer Science Education. Bologna. Italy, 2006. pp. 294–298.

[19] Petkovic, Dragutin, Gary Thompson, and Rainer Todtenhöfer.
“Assessment and comparison of local and global SW engineering
practices in a classroom setting.” Proceedings of the 13th Annual
Conference on Innovation and Technology in Computer Science
Education. Madrid, Spain. June 2008. pp. 78–82.

[20] Thompson, Gary, Dragutin Petkovic, Shihong Huang and Rainer
Todtenhöfer. “Teaching distributed collaborative development
techniques in a software engineering class setting.” Integrating FOSS
into the Undergraduate Computing Curriculum, Free and Open Source
Software (FOSS) Symposium. Chattanooga, Tenesee, USA. 2009.

[21] Petkovic, Dragutin, Gary Thompson, Rainer Todtenhöfer, Shihong
Huang, Barry Levine, S. Parab, G. Singh, R. Soni, and S. Shrestha.
“Work in progress: e-TAT: online tool for teamwork and “soft skills”
assessment in software engineering education.” Frontiers in Education
(FIE) 2010, IEEE. 27-30 Oct. 2010. pp. S1G-1-S1G-3,

[22] Petkovic, Dragutin, Kazunori Okada, Marc Sosnick, Aishwarya Iyer,
Shenshaochen. Zhu, Rainer Todtehoefer, Shihong Huang. “A Machine
Learning Approach for Assessment and Prediction of Teamwork
Effectiveness in Software Engineering Education.” Frontiers of
Education FIE 2012, Seattle, WA, October 2012. pp. 1-3.

[23] Chen, Chao, Andy Liaw, and Leo Breiman. July, 20014. “Using
Random Forest to Learn Imbalanced Data.” Statistics Technical Report.
ID: 666. UC Berkeley. http://statistics.berkeley.edu/sites/default/
files/tech-reports/666.pdf Retreived June, 20, 2014.

[24] Khoshgoftaar, Taghi, M., Moiz Golawala, and Jason Van Hulse. “An
Empirical Study of Learning from Imbalanced Data Using Random
Forest.” 19th IEEE International Conference on Tools with Artificial
Intelligence, 2007. ICTAI 2007. Vol. 2, pp. 29-31.

[25] “LimeSurvey – the free and open source survey software tool.”
http://www.limesurvey.org/en. Accessed June 20, 2014.

[26] Liaw, Andy and Matthew Wiener. 2013. “Breiman and Cutler’s
random forests for classification and regression”. R Package
‘randomForest’. http://cran.r-project.org/web/packages/randomForest/
randomForest.pdf. Accessed June 20, 2014.

[27] Team, R Core. 2012. “A Language and Environment for Statistical
Computing.”

[28] Buturovic Ljubomir, Wong Mike, Grace W.Tang, Russ B. Altman,
Dragutin Petkovic. 2014. “High Precision Prediction of Functional Sites
in Protein Structures.” PLoS ONE Vol 9 (3).

1306
2014 IEEE Frontiers in Education Conference

