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Abstract tions are entangled with each other and encoded implicitly
in the image makes the task of object recognition difficult.
A method of manifold representation for human faces With faces, this problem becomes more complex because
with pose variations is proposed. Our model consists ofthe innate characteristics of faces, which distinguish one
mappings between 3D head angles and facial images sepaface from another, do not vary greatly across different in-
rately represented in shape and texture, via sub-space modedividuals: the magnitudes of the variations of the innate
els spanned by principal components (PCs). Explicit map-characteristics in images are often much smaller than the
pings to and from 3D head angles are used as processesnagnitudes of the common variations. For the task of facial
of pose estimation and transformation, respectively. Gen-identification, analyses of innate facial characteristics are
eralization capability to unknown head poses enables ourpossible only after making these implicitly encoded varia-
model to continuously cover pose parameter space, pro-tionsexplicitin order to processnlythe innate characteris-
viding high approximation accuracy. The feasibility of this tics. This general problem still remains unresolved [15, 13].
model is evaluated in a number of experiments. We also pro- - Anqther important question in this realm is the nature of
pose a novel pose-invariant face recognition system using, iy representation. Even for a single face, the number of
our model as the entry format for a gallery of known per- 4 hossible views becomes prohibitively large because of a
sons. Experimental results with 3D facial models rec.orded combinatory explosion due to the number of dimensions of
by a Cyberware scanner show that our model provides a,arjation. Since it is simply impossible to store all the pos-
superior recognition performance against pose variations, gjp|e views, the representation needs to possess a general-
and that texture synthesis process is carried out correctly. ;- 4iion capability to continuously cover the face space from
a limited number of observable samples. As a solution to
this problem, subspace methods based on Principal Com-
1 Introduction ponent Analysis (PCA), eigenface systems [18, 19], have
been widely used as a compact and continuous parameter-
Images of objects vary in appearance due to changes irized model of faces. However, their model parameters are
image projection settings, background, object properties,often hard to interpret in relation to the observable phys-
and other sources of variation. The fact that these varia-ical parameters. Another approach for solving this prob-



lem is to treat it as a problem of learning nonlinear map- bic spline interpolation for computing continuous manifolds
pings between input representation and physical paramein compact PC-based subspaces. Their study addressed the
ter spaces. A number of systems based on a Radial Basisame problem of parameterizing object views by pose pa-
Function (RBF) network have been proposed for this ap-rameters, however they applied it to only a few number
proach [5, 1, 8]. They showed successful learning capabil-of generic objects and considered only one degree of free-
ity, and made these variations explicit. However, the gen-dom from the 3D rotations. Beymer et al. proposed analy-
eralization capabilities of such systems have not been fullysis and synthesis systems of pose and expression variations
investigated yet. based on RBF networks [1]. Although their framework is

In this study, we present a representation and processsimilar to ours, they only exploited pixel-value based sin-
ing model of human faces with head pose variations. Thisdle view representations and analyzed only one degree of
mode' attempts to finmappingﬂ)etween facia' images and freedom from the 3D rotations of heads. Recently, Lanitis
physical parameters, in our case 3D head anglespaia €t al. [9] presented a facial processing system using PCA
rameterized manifold representationisfaces using the PC-  based manifold representations. They also used separate
subspace method. For a better generalization capability, wshape and texture representations and proposed a pose es-
approximated these mappings by using a combination oftimation system similar to our model. Their texture repre-
|inear Systems: 1) Subspaces Of input representation Spac&?ﬂtaﬂon, hOWeVer, was based on piXel values instead of our
spanned by principal components (PC-subspace), and 2§3aborjet based texture representation. Moreover, their pose
linear transfer matrices between these subspaces and a po§étimation did not include planar rotations and they did not
parameter space. We call this model frear PCMAP discuss pose transformation and generalization capability to
model[14]. When learned for an individual, the mappings Unknown head poses.
account for various poses of the individual's face (mani- In this paper, the linear PCMAP model s first described.
fold representation) and provide an explicit interface of the We next analyze the model's performance when used as
model with physical pose parameters, enabling processes @ representation of single individuals. We also present
pose estimation and transformation. Since the mappings ar@ novel pose-invariant face recognition system using the
bidirectional, pose estimation and transformation can be relinear PCMAP model as an entry to a known person's
alized by face_to_pose and pose_to_face mappings, respe(giatabase. Finally, we conclude this paper by discussing the
tively. We call these respective face-to-pose and pose-tof€sults of the analyses and our future work.
face mappings: thanalysisandsynthesigprocesses.

It was Ullman and Basri [20] who first showed that ar- 2 Linear PCMAP Mode for Representing
bitrary objects in line drawings can be expressed with lin- Faces with Pose Variations
ear combinations of a small number of 2D templates of
the same objects, forming a foundation to a study of mani-
fold representation of objectkinear class theorproposed
by Poggio [17] extended this idea by connecting multiple . . .
classes of objects. This framework was successfully ap- The learning a}nd matchlng sta}ges of the Imear. PCMAP
plied by Beymer [2] and Vetter [21] to facial images. A model are described in this section. In the learning stage

limitation in these studies is the use of discrete samplingsOf th'j_ moggl,hpal(;s of IZD facial m:jages and_ thewdcorre-
of parameter spaces of physical variations. This not onlySP°NdIN9 ead angles are used as a training data set.

prohibits smooth coverage of the (pose) parameter space‘éve employed separate representations for the shape and

with a limited number of templates but also demands a Col_textqre of human faces. The benejits of separqtely repre-
lection of many templates with pre-determined (pose) vari- Se€nting shape and.texture information for 2D facial images
ations, which is often difficult in practice. Our model tries have been shown_ln_a nhumber of Stqd'es [4. 22, 9]. Slnc_:e
to solve this problem by providing continuous coverage of the head pose variation can be considered as a geometrical

the pose parameter space from a limited number of training?"©P/em. we designed our model such that pose variations
samples. are only related to the shape information of faces. Texture

) ) . information is then related to shape information, exploit-
Our work is related to a number of previous §tud|es. ing the correlation between the shapes and textures of faces.
Maurer and von (_jer Malsburg propos_ed an algorithm forThe effective range of a model depends on the training data
pose transformation that maps two jets sampled at WOget used for the learning stage of the model. In this section,

dlfferent hgaq kposels d[lO]. f ;S'? a_lglonthm, howe(;/(?r, ' we treat these mappings as manifold representatioirs of
q:yrei a F::'Of'b nowlg %edot aC|a”structtL)Jre afnd_lts aFt" dividual faces with pose variations by using training data
plication has been limited to a small NUMbEr of dISCrele gqiq consisting of facial images sifigleindividuals.!

poses. Murase and Nayar presented an object representation
model using parametric eigenspace [12]. They utilized cu- however the model is not innately restricted to single iiuttials.

2.1 Model Description




We denote a training data set byn,é’m)l,,,,M, where
™ andg™ express then-th training facial image and its
3D head angles, respectively. In the first stép, is de-
composed to a pair of shape and texture representations,
(#™,j™n). Shape information is represented by2A-
component vectaF™ of object-centered image coordinates
of N facial landmarks. For each landma#’, an L-
dimensional Gabor jef™" is recorded fromi™ as the
localized texture representation of the landmarin the
framem, wherej;™" is the jet coefficient derived from the
[-th Gabor filter.

Next (Z™);._a and (5™")1. a1~ are indepen-
dently subjected to PCA resulting in a set of PCs as or- Figure 1. Definition of Facial Landmarks.
thonormal bases of shape and texture representation spaces,

(#)1...p and (b™);._s... N, Wheres andp are the in-

dices of PCs in decreasing order of their corresponding vari-

ances. Shape and texture subspaces are defined by select-K : («, 3,7)

ing P, and S? as small as possible but still large enough  (cos(a), sin(a), cos(B), sin(3), cos(7), sin(7)) .
to have the subspacé¢g’),,. p, and (ES’”)L__,SQ cover a

large share of the data variance. We call the shape and tex- Thus, the shape model parame_ters are related to these
ture subspaceshape and texture modeleespectively. In pose parameters instead of being directly related to 3D head

this study, for simplicity, we used the sansg for all N angles. Now we formulate these relations in matrix nota-

landmarks. The shape and texture models have an optimal ons,
reconstruction property by a linear combination in the least

(3)

square sense, *=Q-H, )
Po Q=2G, (5)
T~ + qu*p ) 1)
- R'=Q-F", (6)
wherei® = 1/M Ef,f:la‘c’m,andPo—componenshape pa- whereR™ = (7, ..MMt Q = (.., ¢V)t, & =
rametersy is defined ag' = (7 — 2[5 )1<p<r.; (@, ..,dM) = (K(8Y),.., K(6M)). The transfer matri-

cesH, GG, andF™ are computed by solving these equations
with the SVD algorithm.

After finding these mappings, we can estimate 3D head
angles from a given facial representation with arbitrary pose
wherej?n = 1/M Z%zl jmm, andS,-componentexture (analysis) and can synthesize a facial image from given 3D

So
R A N S 2
s=1

parametersat n-th landmark™ is defined ag” = (j — head angles (synthesis) using the learned model. These pro-
j(),n|l_;s,n>1<s<30. Note that (1) and (2) become equations C€SSes are called the matghlng stage. . _ .
whenP, = P = 2N andS, = S = L. The face-to-pose mapping of the analysis process is writ-

Next, we linearly relate model parametgrs and#»»  t€nas

— | —a i) —a Eq_-gl) —a EQ_-(>4) —a aTC_i)an 0_’0, 7
and 3D head angle®™. For face-to-pose mappingraly- v z q ¥ ’ (7)
sig), we relate only shape model parameters to 3D head anand pose-to-face mapping of synthesis process is
gles because shape parameters showed a higher correlation

to head angles than texture parameters in our pilot experi- 6 %5 @o "% g FL il N

ments. For pose-to-face mappirgyfithesiy we first relate lEan) lEa2)

3D head angles to shape parameters. Texture parameters e jor, e .

are then related to shape parameters. In order to compen- R 'R

sate for obvious nonlinearity in mappings between shape O

parameters and 3D head angles, we nonlinearly expand 3- (8)
component head angle vectérs to 6-componenpose pa- To separate shape and texture information, we must find

rametersy™ by using a trigonometric functional transfor- facial landmarks in every sample. We used a facial land-
mation K, mark tracking system developed by Maurer et al. [11],
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Figure 2. Examples of Training Samples.

which assumes that training and test samples are given by

video sequences starting from a frontal view of faces. This __ Acouracy or Shape to Pose Mapping i Average Anautar Erors
decomposition of shape and texture information is denoted | i
by an operator. in formula 7. Figure 1 shows a definition L P— i

of the 20 facial landmarks used throughout this study. of T imracics
An algorithm for a grey-level image reconstruction of a

Gabor jet based graph representation of faces [7, 23], which &-r 1

was developed by Poetzsch et al. [16] performs a reverse X f f f : ]

Average Angular Error

operation that reconstructs a facial image from synthesized :r

shape and texture representations. This operation is sym- *

bolized by an operataR in formula 8. % s i 2 amber of Snape per” = = o
Connecting analysis and synthesis stages realizes a pro-

cess of model matching that allows us to synthesize, from

an arbitrary input face, a facial image whose pose is aligned ~ Figure 4. Accuracy of Shape to Pose Mapping.

to the input and whose appearance is from one learned in

the matched model. We call this combination of processes

analysis-synthesis-chainThis process will be used in the expressions.

face reCOgnition System described in the next section. We also measure the physica| head ang|es for each frame
by a magnetic sensor synchronized to a frame grabber for
2.2 Data Set the image acquisition. Horizontal, vertical, and planar ro-

tations of head are independently measured as a continu-

We first evaluate our model by training it with samples ous angular deviation from the frontal pose of the head, as
from single individuals. In this case, the model can be con-shown in figure 3. The range of rotation along each axis is
sidered as a manifold representation of individual faces withbetween -30 and +30 degrees.
an explicit interface of pose variations. Grey-level image
sequences of various head poses are recorded for three i12.3 Experiments
dividuals in this analysis. Each sequence consists of 1200
frames and four different types of pose variations. For first  In order to evaluate the accuracy of the linear PCMAP
three types shown in figure 2, subjects are asked to rotatenodel, we analyzed errors between test and synthesized
their heads along only one axis at a time. 300 frames aresamples. For each individual, a linear PCMAP model is
captured for each rotation: horizontal, vertical, and planartrained with 900 training samples, as described in the previ-
rotation (denoted in the figure 2 and 3 B2,3, respec- ous section. Each learned linear PCMAP model is tested by
tively). The total of 900 frames of these three types are usedusing a number of test sample sets: 1) 900 training samples,
as training samples for our model. For the rest of the 3002) test samples whose pose range is betwetd, 3)+15,
frames, subjects are asked to move their heads freely. Thesé) +-20, 5)+-25, and 64-30.
frames are used for test samples. During the acquisition of Figure 4 shows the average accuracy of a shape analy-
these images, lighting conditions and the background aresis with shape-to-pose mapping. We compared the 3D head
unchanged and subjects are asked to not change their faci@ngles of each test sample to estimated angles by using the



Accuracy of Pose to Shape Mapping in Average Pixel Errors -15 -10 -5 0 +5 +10 +15
2.6

i 1 X (5:;\ = (z ::‘.—.\ (;‘1_:);\ /.;ég_\ {Lr’ [f:_a’i"
e N & & RN G NG
o 1 Sf AN = =

2 o oy = o . ;

. *\g e @ E @ & A

1s 20 25 30 ES) a0
Number of Shape PCs

Figure 5. Accuracy of Pose to Shape Mapping.

15 -10 5 0 +5 +10 +15
Aoetracy of Pose o Snape to Texture Mapping in Average Jet Simiarics (SPCe = 10 N (-‘“;_ B (;}\. (_-‘.;;;‘\. (.;_:.:\ /“;_';;; /:_:-
= =2 =2 = - = d

F=\ oy o~y ey £ 25 o
ng‘:afv : : Y .;-ig, ;_? t '_f:-' \ = = (.—:.\ (—__,‘\ (. £
Y ] . . P .
~ — v ey ey =
L 1 z 5= (= (=) £ e ) {>a)

Figure 8. Synthesized Images with 10 Shape
PCs and 20 Texture PCs. The Results for

K P
Figure 6. Accuracy of Pose to Shape to Texture nown Foses

Mapping.

top 10 shape PCs in decreasing order of variances gave a
satisfactory accuracy for both the shape analysis and the

analysis process of a learned linear PCMAP model. Angu-synthesis processes. These 10 PCs also accounted for 98%
lar deviations in degrees between the test and estimated 3[3f the total variances in the training samples.
head angles are averaged over three rotational dimensions, a Figure 6 shows the average accuracy of the texture syn-
number of test samples, and three individuals. The averaggnesis with a combination of pose-to-shape and shape-to-
angular deviations are plotted against the number of shapgextyre mappings. A set of 20 jets of each test sample and
PCs used in the linear PCMAP model. The accuracy is lessgach synthesized sample are compared using normalized
than 1 degree when the pose range of test samples is withigiot-product of a pair of Gabor jet magnitudes averaged over
+15 and more than 10 shape PCs are used. 20 landmarks. These jet-based sample similarities, ranging

Figure 5 shows the average accuracy of the shape synbetween 0 and 1, are averaged over the test samples and
thesis with pose-to-shape mapping. We compared the faciathree individuals and plotted against the number of texture
landmark locations of each test sample to landmark loca-PCs in the linear PCMAP models. The number of shape
tions of a synthesized shape representation by using the syrPCs is fixed to 10 in these analyses. The figure shows that
thesis process of the learned linear PCMAP model. Pixelthe accuracy reaches a maximum for each testing case when
deviations of each facial landmark between the test and synmore than 20 texture PCs are included. These analyses also
thesized shape are averaged over 20 facial landmarks, testhdicate the generalization capability of our model when the
samples, and three individuals and plotted against the numpose range of test samples is limitectta5. In these con-
ber of shape PCs used in the linear PCMAP model. The ac-ditions, there are no significant differences between the test
curacy is less than 1 pixel when the pose range of test samresults of the test and training samples.
ples is within+15 and more than 10 shape PCs are used. Figure 7 displays examples of reconstructed images that
This condition is the same for the pose-to-shape mapping. are directly reconstructed from the training samples of vari-

The results of the two above analyses revealed that theous poses. The quality of this reconstruction cannot be per-
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Figure 9. Synthesized Images with 10 Shape
PCs and 20 Texture PCs. The Results for Un-
known Poses
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fect since the information of the gray level distribution is Person-1

only available at coarse sampling points (20 landmarks in
this case). These images, however, serve as references for
the irnages rraconstructed from synthesized rep.resentations. Figure 10. Pose-Invariant Recognition System
Flgurg 8 displays examples of recqnstructed images frorr1 with Linear PCMAP Models
synthesized shapes and textures using a shape model with
10 PCs and a texture model with 20 PCs. Each image in this
figure corresponds to one in the figure 7. In this condition, ) o
the rotation variations along three axes, as well as the faciaModel views of each known person whose pose is aligned to
appearance presented in the training samples, are accuratel)€ input. After this pose alignment, we perform a nearest
captured. neighbor classification of the input with these model views.
Next, in figure 9, we show examples of reconstructed Becauge of the pose'alignment, the rer:ognition performance
images from synthesized shapes and textureswikmown shoulq improve against the pose variations. Furthermore,
posesin order to evaluate the model's generalization capa-there is no systematic Irmrta_ltlon to particular discrete head
bility. The face is rotated by using a synthesis process ofP0Ses because of the continuous coverage of pose param-
our model along all three rotation axes simultaneously be-8t€r space by using the linear PCMAP model. As long as
tween -15 degrees to +15 degrees in two different ways (Athe Iearneq Imear_PCMAPs cover a sufficient range of her:td
and B). The results show that the given rotation variations, P0S€S, an input with arbitrary poses can be processed with-

which are not present in training samples, are also capture@Ut any pose restrictions.

correctly. These results support the potential of our model

for generalizing unknown poses. Both the shape and textureé3-2 Data Set

of largely rotated faces in this figure, however, seem to be

more distorted. This suggests that the generalization capa- In this experiment, we use samples generated from

bility of our model might be restricted to a range of head 3D facial models recorded by a Cyberware 3030 scanner.
poses; the model does not seem to be able to extrapolate thEwventy models (10:female,10:male) are randomly picked

pose variations. from a 3D facial model database of Japanese faces devel-
oped at ATR. For each model, test and training samples in

the same format as the previous experiment (test samples:

3 Poseldnvariant Face Recognition System 186, training samples: 248 3) are generated by render-

using Linear PCMAP Model ing 2D view snapshots while explicitly rotating the 3D face
model [6]. Locations of facial landmarks in various poses
3.1 System Description are determined by explicitly rotating 3D reference coordi-

nates that are found manually for a frontal view of each

In this section, we present a novel face recognition sys-model. These test and training samples are appropriate for
tem using the linear PCMAP model as an entry to a known OUr system'’s evaluations since there are no measurement er-
person's gallery. rors of head pose angles and landmark locations.

Figure 10 shows an overview of this recognition system.

In this system, an arbitrary input is subjected to the analysis-3.3 Experiments
synthesis-chain process, described in section 2, with each
linear PCMAP model stored in the gallery. This results in ~ Table 1 shows the result of the performance analysis of



experimental results showed that our model is capable of
generalizing unknown poses from training samples with a
limited range of poses. The model is also compact: the
data compression ratio from a set of training samples to a
learned model is approximately 60. Computational costs of

Model | 10degs| 15degs| 20 degs| 25 degs| 30 degs the model is fair. The learning process of our model in-
L-PCMAP | 1000 | o998 916 83.7 744 cludes computationally intensive procedures such as PCA
and SVD. The time taken to learn a single face was 4 min-
utes on a Sun SPARC20 workstation. In contrast to learn-
ing, the matching process of our model is computationally
efficient. Only a fraction of a second is needed for pose
our system of recognizing faces with pose variations. Theestimation or transformation of a single face. Compared to
proposed system is compared with a simplified system, inlinear class systems, our compact and continuous model not
which each entry of a known person's database is repreonly provides a better overall fit for continuous pose vari-
sented by a single frontal view of the person (single-view ations in samples but also eliminates the requirement for
model). Each column of the table shows percentages ofoperator's assistance and subject's collaboration, which is
correct identifications by the two systems when the rangerequired when collecting samples with specific head poses.
of head angles in test samples is limited to 10, 15, 20, andThe generalization capability of our model is possibly due
30 degrees, respectively. Similar to the analyses for singleto our choice of simplified linear systems. However, there is
persons presented in the previous section, head poses of tretrade-off in that the effective range of pose variations be-
test samples are not present in training samples. The recogcomes limited. One idea for solving this problem is to patch
nition rates of our system when head angles of test samplethe whole parameter space with a set of local linear models.
are limited within 20, 25, and 30 degrees are approximatelyTherefore, a point in the parameter space can be interpo-
20 percent higher than those of a system with the single-lated with a number of neighboring local models. This is
view model. These results show that our system achievesne of our future topics.

h|gh recognition rates with a wider I’ange of head angleS in We also proposed a novel pose_invariant face recogni_

Table 1. Percentages of Correct Identifications
with 1) Linear PCMAP and 2) Single-View
Models as the Entry Format of a Database of
Known Persons

S-View 99.2 89.6 75.8 65.0 56.7

test samples than a simple single-view model. tion system using the linear PCMAP model as an entry for-
mat of a known person's gallery. Our recognition system
4 Discussions postulates that pose-invariance can be achieved by giving

a learning capability to the memory/knowledge systems, a
known person's gallery in this case, instead of trying to find

In this paper, we proposed a linear PCMAP model that : . S . o
pose-invariant properties in input representations within a

is a manifold representation of 2D facial images with an ex-
plicit interface of pose variations. This model was evaluated perceptual process.
by a number of error analyses. The experimental results in- The experimental results presented in this paper sug-
dicated high accuracy in approximation of the mapping be-gest that this system improves the recognition performance
tween shape and pose. In the literature, only a few studiegainst pose variations in comparison to a simplified mem-
have reported quantitative analyses of pose estimation acory model that represents a known person with a single
curacy. The stereo based System by Xu and Akatsuka [24Ir0ntal view of the person. These results also Imply that
resulted in an average angular error of 4.4 degrees when theur model provides the correctness (preserves innate facial
range of pose variation was withia20 degrees. Choi et appearances while accurately analyzing/synthesizing head
al [3] reported approximately 3 degrees average angular erPoses) of the texture synthesis process. A precise facial
ror within a range of:40 degrees in their 3D shape model landmark finding or tracking system is required for the au-
fitting system using an EM algorithm. Our pose estima- tomation of this recognition system. The Maurer's system
tion results (approx. 0.9 degrees4rl5 and 1.3 degrees Used in our experimentis one of the candidates for this task,
in +20) outperformed these previous reports in a limited but this front-end system should be improved.
range of pose variations. Our shape synthesis also achieved The parameterization of our model with physical head
sub-pixel accuracy on average when the pose range in thangles provides a compact interface for other perceptual
test samples was withif:15 degrees. These results indi- modules that is easy to interpret. This characteristic also
cate that our model correctly approximates the mappingsprovides a number of potential application scenarios for
between shape and pose. low-bandwidth visual communication systems, in which
An advantage of our model is that both the analysis andonly the head pose information is sent over a network, or
synthesis processes continuously and smoothly cover théor tele-conferencing systems, in which facial orientations
space of pose parameters by utilizing interpolation. Thein a virtual space can be corrected to maintain eye contact.
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