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Abstract

A method of manifold representation for human faces
with pose variations is proposed. Our model consists of
mappings between 3D head angles and facial images sepa-
rately represented in shape and texture, via sub-space mod-
els spanned by principal components (PCs). Explicit map-
pings to and from 3D head angles are used as processes
of pose estimation and transformation, respectively. Gen-
eralization capability to unknown head poses enables our
model to continuously cover pose parameter space, pro-
viding high approximation accuracy. The feasibility of this
model is evaluated in a number of experiments. We also pro-
pose a novel pose-invariant face recognition system using
our model as the entry format for a gallery of known per-
sons. Experimental results with 3D facial models recorded
by a Cyberware scanner show that our model provides a
superior recognition performance against pose variations,
and that texture synthesis process is carried out correctly.

1 Introduction

Images of objects vary in appearance due to changes in
image projection settings, background, object properties,
and other sources of variation. The fact that these varia-

tions are entangled with each other and encoded implicitly
in the image makes the task of object recognition difficult.
With faces, this problem becomes more complex because
the innate characteristics of faces, which distinguish one
face from another, do not vary greatly across different in-
dividuals: the magnitudes of the variations of the innate
characteristics in images are often much smaller than the
magnitudes of the common variations. For the task of facial
identification, analyses of innate facial characteristics are
possible only after making these implicitly encoded varia-
tionsexplicit in order to processonly the innate characteris-
tics. This general problem still remains unresolved [15, 13].

Another important question in this realm is the nature of
facial representation. Even for a single face, the number of
all possible views becomes prohibitively large because of a
combinatory explosion due to the number of dimensions of
variation. Since it is simply impossible to store all the pos-
sible views, the representation needs to possess a general-
ization capability to continuously cover the face space from
a limited number of observable samples. As a solution to
this problem, subspace methods based on Principal Com-
ponent Analysis (PCA), eigenface systems [18, 19], have
been widely used as a compact and continuous parameter-
ized model of faces. However, their model parameters are
often hard to interpret in relation to the observable phys-
ical parameters. Another approach for solving this prob-



lem is to treat it as a problem of learning nonlinear map-
pings between input representation and physical parame-
ter spaces. A number of systems based on a Radial Basis
Function (RBF) network have been proposed for this ap-
proach [5, 1, 8]. They showed successful learning capabil-
ity, and made these variations explicit. However, the gen-
eralization capabilities of such systems have not been fully
investigated yet.

In this study, we present a representation and process-
ing model of human faces with head pose variations. This
model attempts to findmappingsbetween facial images and
physical parameters, in our case 3D head angles, viapa-
rameterized manifold representationsof faces using the PC-
subspace method. For a better generalization capability, we
approximated these mappings by using a combination of
linear systems: 1) subspaces of input representation spaces
spanned by principal components (PC-subspace), and 2)
linear transfer matrices between these subspaces and a pose
parameter space. We call this model thelinear PCMAP
model[14]. When learned for an individual, the mappings
account for various poses of the individual's face (mani-
fold representation) and provide an explicit interface of the
model with physical pose parameters, enabling processes of
pose estimation and transformation. Since the mappings are
bidirectional, pose estimation and transformation can be re-
alized by face-to-pose and pose-to-face mappings, respec-
tively. We call these respective face-to-pose and pose-to-
face mappings: theanalysisandsynthesisprocesses.

It was Ullman and Basri [20] who first showed that ar-
bitrary objects in line drawings can be expressed with lin-
ear combinations of a small number of 2D templates of
the same objects, forming a foundation to a study of mani-
fold representation of objects.Linear class theoryproposed
by Poggio [17] extended this idea by connecting multiple
classes of objects. This framework was successfully ap-
plied by Beymer [2] and Vetter [21] to facial images. A
limitation in these studies is the use of discrete samplings
of parameter spaces of physical variations. This not only
prohibits smooth coverage of the (pose) parameter spaces
with a limited number of templates but also demands a col-
lection of many templates with pre-determined (pose) vari-
ations, which is often difficult in practice. Our model tries
to solve this problem by providing continuous coverage of
the pose parameter space from a limited number of training
samples.

Our work is related to a number of previous studies.
Maurer and von der Malsburg proposed an algorithm for
pose transformation that maps two jets sampled at two
different head poses [10]. This algorithm, however, re-
quires a priori knowledge of 3D facial structure and its ap-
plication has been limited to a small number of discrete
poses. Murase and Nayar presented an object representation
model using parametric eigenspace [12]. They utilized cu-

bic spline interpolation for computing continuous manifolds
in compact PC-based subspaces. Their study addressed the
same problem of parameterizing object views by pose pa-
rameters, however they applied it to only a few number
of generic objects and considered only one degree of free-
dom from the 3D rotations. Beymer et al. proposed analy-
sis and synthesis systems of pose and expression variations
based on RBF networks [1]. Although their framework is
similar to ours, they only exploited pixel-value based sin-
gle view representations and analyzed only one degree of
freedom from the 3D rotations of heads. Recently, Lanitis
et al. [9] presented a facial processing system using PCA
based manifold representations. They also used separate
shape and texture representations and proposed a pose es-
timation system similar to our model. Their texture repre-
sentation, however, was based on pixel values instead of our
Gabor jet based texture representation. Moreover, their pose
estimation did not include planar rotations and they did not
discuss pose transformation and generalization capability to
unknown head poses.

In this paper, the linear PCMAP model is first described.
We next analyze the model's performance when used as
a representation of single individuals. We also present
a novel pose-invariant face recognition system using the
linear PCMAP model as an entry to a known person's
database. Finally, we conclude this paper by discussing the
results of the analyses and our future work.

2 Linear PCMAP Model for Representing
Faces with Pose Variations2.1 Model Description

The learning and matching stages of the linear PCMAP
model are described in this section. In the learning stage
of this model, pairs of 2D facial images and their corre-
sponding 3D head angles are used as a training data set.
We employed separate representations for the shape and
texture of human faces. The benefits of separately repre-
senting shape and texture information for 2D facial images
have been shown in a number of studies [4, 22, 9]. Since
the head pose variation can be considered as a geometrical
problem, we designed our model such that pose variations
are only related to the shape information of faces. Texture
information is then related to shape information, exploit-
ing the correlation between the shapes and textures of faces.
The effective range of a model depends on the training data
set used for the learning stage of the model. In this section,
we treat these mappings as manifold representations ofin-
dividual faces with pose variations by using training data
sets consisting of facial images ofsingleindividuals.11however the model is not innately restricted to single individuals.



We denote a training data set by(~vm; ~�m)1;::;M , where~vm and~�m express them-th training facial image and its
3D head angles, respectively. In the first step,~vm is de-
composed to a pair of shape and texture representations,(~xm;~jm;n). Shape information is represented by a2N -
component vector~xm of object-centered image coordinates
of N facial landmarks. For each landmarkxmn , an L-
dimensional Gabor jet~jm;n is recorded from~vm as the
localized texture representation of the landmarkn in the
framem, wherejm;nl is the jet coefficient derived from thel-th Gabor filter.

Next (~xm)1;::;M and (~jm;n)1;::;M ;1;::;N are indepen-
dently subjected to PCA resulting in a set of PCs as or-
thonormal bases of shape and texture representation spaces,(~yp)1;::;P and (~bs;n)1;::;S;1;::;N , wheres andp are the in-
dices of PCs in decreasing order of their corresponding vari-
ances. Shape and texture subspaces are defined by select-
ing Po andSno as small as possible but still large enough
to have the subspaces(~yp)1;::;Po and (~bs;n)1;::;Sno cover a
large share of the data variance. We call the shape and tex-
ture subspacesshape and texture models, respectively. In
this study, for simplicity, we used the sameSo for all N
landmarks. The shape and texture models have an optimal
reconstruction property by a linear combination in the least
square sense, ~x � ~x0 + PoXp=1 qp~yp ; (1)

where~x0 = 1=MPMm=1 ~xm,andPo-componentshape pa-
rameters~q is defined as~q = h~x� ~x0j~ypi1�p�Po ;~jn � ~j0;n + SoXs=1 rns~bs;n ; (2)

where~j0;n = 1=MPMm=1~jm;n, andSo-componenttexture
parametersat n-th landmark~rn is defined as~rn = h~jn �~j0;nj~bs;ni1�s�So . Note that (1) and (2) become equations
whenPo = P = 2N andSo = S = L.

Next, we linearly relate model parameters~qm and~rm;n
and 3D head angles~�m. For face-to-pose mapping (analy-
sis), we relate only shape model parameters to 3D head an-
gles because shape parameters showed a higher correlation
to head angles than texture parameters in our pilot experi-
ments. For pose-to-face mapping (synthesis), we first relate
3D head angles to shape parameters. Texture parameters
are then related to shape parameters. In order to compen-
sate for obvious nonlinearity in mappings between shape
parameters and 3D head angles, we nonlinearly expand 3-
component head angle vectors~�m to 6-componentpose pa-
rameters ~'m by using a trigonometric functional transfor-
mationK,
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Figure 1. De�nition of Facial Landmarks.K : (�; �; 
) 7!(cos(�); sin(�); cos(�); sin(�); cos(
); sin(
)) : (3)

Thus, the shape model parameters are related to these
pose parameters instead of being directly related to 3D head
angles. Now we formulate these relations in matrix nota-
tions, � = Q �H ; (4)Q = � �G ; (5)Rn = Q � Fn ; (6)

whereRn = (~r1;n; ::; ~rM;n)t, Q = (~q1; ::; ~qM )t, � =(~'1; ::; ~'M )t = (K(~�1); ::;K(~�M ))t. The transfer matri-
cesH , G, andFn are computed by solving these equations
with the SVD algorithm.

After finding these mappings, we can estimate 3D head
angles from a given facial representation with arbitrary pose
(analysis) and can synthesize a facial image from given 3D
head angles (synthesis) using the learned model. These pro-
cesses are called the matching stage.

The face-to-pose mapping of the analysis process is writ-
ten as ~va L! ~xa Eq:(1)! ~qa Eq:(4)! ~'a arctan! ~�a ; (7)

and pose-to-face mapping of synthesis process is~�a K! ~'a Eq:(5)! ~qa Eq:(6)! ~ra;1; ::; ~ra;N#Eq:(1) #Eq:(2)~xa ~ja;1; ::;~ja;N&R .R~va :
(8)

To separate shape and texture information, we must find
facial landmarks in every sample. We used a facial land-
mark tracking system developed by Maurer et al. [11],
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3 Figure 2. Examples of Training Samples.
which assumes that training and test samples are given by
video sequences starting from a frontal view of faces. This
decomposition of shape and texture information is denoted
by an operatorL in formula 7. Figure 1 shows a definition
of the 20 facial landmarks used throughout this study.

An algorithm for a grey-level image reconstruction of a
Gabor jet based graph representation of faces [7, 23], which
was developed by Poetzsch et al. [16] performs a reverse
operation that reconstructs a facial image from synthesized
shape and texture representations. This operation is sym-
bolized by an operatorR in formula 8.

Connecting analysis and synthesis stages realizes a pro-
cess of model matching that allows us to synthesize, from
an arbitrary input face, a facial image whose pose is aligned
to the input and whose appearance is from one learned in
the matched model. We call this combination of processes
analysis-synthesis-chain. This process will be used in the
face recognition system described in the next section.2.2 Data Set

We first evaluate our model by training it with samples
from single individuals. In this case, the model can be con-
sidered as a manifold representation of individual faces with
an explicit interface of pose variations. Grey-level image
sequences of various head poses are recorded for three in-
dividuals in this analysis. Each sequence consists of 1200
frames and four different types of pose variations. For first
three types shown in figure 2, subjects are asked to rotate
their heads along only one axis at a time. 300 frames are
captured for each rotation: horizontal, vertical, and planar
rotation (denoted in the figure 2 and 3 as1,2,3, respec-
tively). The total of 900 frames of these three types are used
as training samples for our model. For the rest of the 300
frames, subjects are asked to move their heads freely. These
frames are used for test samples. During the acquisition of
these images, lighting conditions and the background are
unchanged and subjects are asked to not change their facial
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Figure 3. Variation of Head Pose in The Train-ing Samples.
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Figure 4. Accuracy of Shape to Pose Mapping.
expressions.

We also measure the physical head angles for each frame
by a magnetic sensor synchronized to a frame grabber for
the image acquisition. Horizontal, vertical, and planar ro-
tations of head are independently measured as a continu-
ous angular deviation from the frontal pose of the head, as
shown in figure 3. The range of rotation along each axis is
between -30 and +30 degrees.2.3 Experiments

In order to evaluate the accuracy of the linear PCMAP
model, we analyzed errors between test and synthesized
samples. For each individual, a linear PCMAP model is
trained with 900 training samples, as described in the previ-
ous section. Each learned linear PCMAP model is tested by
using a number of test sample sets: 1) 900 training samples,
2) test samples whose pose range is between�10, 3)�15,
4)�20, 5)�25, and 6)�30.

Figure 4 shows the average accuracy of a shape analy-
sis with shape-to-pose mapping. We compared the 3D head
angles of each test sample to estimated angles by using the
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analysis process of a learned linear PCMAP model. Angu-
lar deviations in degrees between the test and estimated 3D
head angles are averaged over three rotational dimensions, a
number of test samples, and three individuals. The average
angular deviations are plotted against the number of shape
PCs used in the linear PCMAP model. The accuracy is less
than 1 degree when the pose range of test samples is within�15 and more than 10 shape PCs are used.

Figure 5 shows the average accuracy of the shape syn-
thesis with pose-to-shape mapping. We compared the facial
landmark locations of each test sample to landmark loca-
tions of a synthesized shape representation by using the syn-
thesis process of the learned linear PCMAP model. Pixel
deviations of each facial landmark between the test and syn-
thesized shape are averaged over 20 facial landmarks, test
samples, and three individuals and plotted against the num-
ber of shape PCs used in the linear PCMAP model. The ac-
curacy is less than 1 pixel when the pose range of test sam-
ples is within�15 and more than 10 shape PCs are used.
This condition is the same for the pose-to-shape mapping.

The results of the two above analyses revealed that the
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Figure 8. Synthesized Images with 10 ShapePCs and 20 Texture PCs. The Results forKnown Poses
top 10 shape PCs in decreasing order of variances gave a
satisfactory accuracy for both the shape analysis and the
synthesis processes. These 10 PCs also accounted for 98%
of the total variances in the training samples.

Figure 6 shows the average accuracy of the texture syn-
thesis with a combination of pose-to-shape and shape-to-
texture mappings. A set of 20 jets of each test sample and
each synthesized sample are compared using normalized
dot-product of a pair of Gabor jet magnitudes averaged over
20 landmarks. These jet-based sample similarities, ranging
between 0 and 1, are averaged over the test samples and
three individuals and plotted against the number of texture
PCs in the linear PCMAP models. The number of shape
PCs is fixed to 10 in these analyses. The figure shows that
the accuracy reaches a maximum for each testing case when
more than 20 texture PCs are included. These analyses also
indicate the generalization capability of our model when the
pose range of test samples is limited to�15. In these con-
ditions, there are no significant differences between the test
results of the test and training samples.

Figure 7 displays examples of reconstructed images that
are directly reconstructed from the training samples of vari-
ous poses. The quality of this reconstruction cannot be per-
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B Figure 9. Synthesized Images with 10 ShapePCs and 20 Texture PCs. The Results for Un-known Poses
fect since the information of the gray level distribution is
only available at coarse sampling points (20 landmarks in
this case). These images, however, serve as references for
the images reconstructed from synthesized representations.

Figure 8 displays examples of reconstructed images from
synthesized shapes and textures using a shape model with
10 PCs and a texture model with 20 PCs. Each image in this
figure corresponds to one in the figure 7. In this condition,
the rotation variations along three axes, as well as the facial
appearance presented in the training samples, are accurately
captured.

Next, in figure 9, we show examples of reconstructed
images from synthesized shapes and textures withunknown
poses, in order to evaluate the model's generalization capa-
bility. The face is rotated by using a synthesis process of
our model along all three rotation axes simultaneously be-
tween -15 degrees to +15 degrees in two different ways (A
and B). The results show that the given rotation variations,
which are not present in training samples, are also captured
correctly. These results support the potential of our model
for generalizing unknown poses. Both the shape and texture
of largely rotated faces in this figure, however, seem to be
more distorted. This suggests that the generalization capa-
bility of our model might be restricted to a range of head
poses; the model does not seem to be able to extrapolate the
pose variations.

3 Pose-Invariant Face Recognition System
using Linear PCMAP Model3.1 System Description

In this section, we present a novel face recognition sys-
tem using the linear PCMAP model as an entry to a known
person's gallery.

Figure 10 shows an overview of this recognition system.
In this system, an arbitrary input is subjected to the analysis-
synthesis-chain process, described in section 2, with each
linear PCMAP model stored in the gallery. This results in

Figure 10. Pose-Invariant Recognition Systemwith Linear PCMAP Models
model views of each known person whose pose is aligned to
the input. After this pose alignment, we perform a nearest
neighbor classification of the input with these model views.
Because of the pose alignment, the recognition performance
should improve against the pose variations. Furthermore,
there is no systematic limitation to particular discrete head
poses because of the continuous coverage of pose param-
eter space by using the linear PCMAP model. As long as
the learned linear PCMAPs cover a sufficient range of head
poses, an input with arbitrary poses can be processed with-
out any pose restrictions.3.2 Data Set

In this experiment, we use samples generated from
3D facial models recorded by a Cyberware 3030 scanner.
Twenty models (10:female,10:male) are randomly picked
from a 3D facial model database of Japanese faces devel-
oped at ATR. For each model, test and training samples in
the same format as the previous experiment (test samples:
186, training samples: 248� 3) are generated by render-
ing 2D view snapshots while explicitly rotating the 3D face
model [6]. Locations of facial landmarks in various poses
are determined by explicitly rotating 3D reference coordi-
nates that are found manually for a frontal view of each
model. These test and training samples are appropriate for
our system's evaluations since there are no measurement er-
rors of head pose angles and landmark locations.3.3 Experiments

Table 1 shows the result of the performance analysis of



Table 1. Percentages of Correct Identi�cationswith 1) Linear PCMAP and 2) Single-ViewModels as the Entry Format of a Database ofKnown Persons
Model 10 degs 15 degs 20 degs 25 degs 30 degs

L-PCMAP 100.0 99.8 94.6 83.7 74.4

S-View 99.2 89.6 75.8 65.0 56.7

our system of recognizing faces with pose variations. The
proposed system is compared with a simplified system, in
which each entry of a known person's database is repre-
sented by a single frontal view of the person (single-view
model). Each column of the table shows percentages of
correct identifications by the two systems when the range
of head angles in test samples is limited to 10, 15, 20, and
30 degrees, respectively. Similar to the analyses for single
persons presented in the previous section, head poses of the
test samples are not present in training samples. The recog-
nition rates of our system when head angles of test samples
are limited within 20, 25, and 30 degrees are approximately
20 percent higher than those of a system with the single-
view model. These results show that our system achieves
high recognition rates with a wider range of head angles in
test samples than a simple single-view model.

4 Discussions

In this paper, we proposed a linear PCMAP model that
is a manifold representation of 2D facial images with an ex-
plicit interface of pose variations. This model was evaluated
by a number of error analyses. The experimental results in-
dicated high accuracy in approximation of the mapping be-
tween shape and pose. In the literature, only a few studies
have reported quantitative analyses of pose estimation ac-
curacy. The stereo based system by Xu and Akatsuka [24]
resulted in an average angular error of 4.4 degrees when the
range of pose variation was within�20 degrees. Choi et
al [3] reported approximately 3 degrees average angular er-
ror within a range of�40 degrees in their 3D shape model
fitting system using an EM algorithm. Our pose estima-
tion results (approx. 0.9 degrees in�15 and 1.3 degrees
in �20) outperformed these previous reports in a limited
range of pose variations. Our shape synthesis also achieved
sub-pixel accuracy on average when the pose range in the
test samples was within�15 degrees. These results indi-
cate that our model correctly approximates the mappings
between shape and pose.

An advantage of our model is that both the analysis and
synthesis processes continuously and smoothly cover the
space of pose parameters by utilizing interpolation. The

experimental results showed that our model is capable of
generalizing unknown poses from training samples with a
limited range of poses. The model is also compact: the
data compression ratio from a set of training samples to a
learned model is approximately 60. Computational costs of
the model is fair. The learning process of our model in-
cludes computationally intensive procedures such as PCA
and SVD. The time taken to learn a single face was 4 min-
utes on a Sun SPARC20 workstation. In contrast to learn-
ing, the matching process of our model is computationally
efficient. Only a fraction of a second is needed for pose
estimation or transformation of a single face. Compared to
linear class systems, our compact and continuous model not
only provides a better overall fit for continuous pose vari-
ations in samples but also eliminates the requirement for
operator's assistance and subject's collaboration, which is
required when collecting samples with specific head poses.
The generalization capability of our model is possibly due
to our choice of simplified linear systems. However, there is
a trade-off in that the effective range of pose variations be-
comes limited. One idea for solving this problem is to patch
the whole parameter space with a set of local linear models.
Therefore, a point in the parameter space can be interpo-
lated with a number of neighboring local models. This is
one of our future topics.

We also proposed a novel pose-invariant face recogni-
tion system using the linear PCMAP model as an entry for-
mat of a known person's gallery. Our recognition system
postulates that pose-invariance can be achieved by giving
a learning capability to the memory/knowledge systems, a
known person's gallery in this case, instead of trying to find
pose-invariant properties in input representations within a
perceptual process.

The experimental results presented in this paper sug-
gest that this system improves the recognition performance
against pose variations in comparison to a simplified mem-
ory model that represents a known person with a single
frontal view of the person. These results also imply that
our model provides the correctness (preserves innate facial
appearances while accurately analyzing/synthesizing head
poses) of the texture synthesis process. A precise facial
landmark finding or tracking system is required for the au-
tomation of this recognition system. The Maurer's system
used in our experiment is one of the candidates for this task,
but this front-end system should be improved.

The parameterization of our model with physical head
angles provides a compact interface for other perceptual
modules that is easy to interpret. This characteristic also
provides a number of potential application scenarios for
low-bandwidth visual communication systems, in which
only the head pose information is sent over a network, or
for tele-conferencing systems, in which facial orientations
in a virtual space can be corrected to maintain eye contact.



Acknowledgments
The authors wish to thank Jan Wieghardt and Junmei Zhu
for helpful discussions and Katsunori Isono for making his
3D facial model rendering system available for this study.
This work has been supported by ONR grant N00014-98-1-
0242.

References

[1] D. Beymer, A. Shashua, and T. Poggio. Example based im-
age analysis and synthesis. Technical Report A.I. Memo,
No. 1431, Artificial Intelligence Laboratory, M.I.T., 1993.

[2] D. J. Beymer and T. Poggio. Face recognition from one ex-
ample view. Technical Report A.I. Memo, No. 1536, Artifi-
cial Intelligence Laboratory, M.I.T., 1995.

[3] K. N. Choi, M. Carcassoni, and E. R. Hancock. Esti-
mating 3d facial pose using the em algorithm. InFace
Recognition: From Theory to Applications, pages 412–423.
Springer-Verlag, Sterling, UK, 1998.

[4] I. Craw, N. Costen, T. Kato, G. Robertson, and S. Aka-
matsu. Automatic face recognition: Combining configura-
tion and texture. InProceedings of the International Work-
shop on Automatic Face and Gesture Recognition, pages 53–
58, Zurich, 1995.

[5] S. Edelman, D. Weinshall, and Y. Yeshurun. Learning to rec-
ognize faces from examples. InProceedings of the 2nd Eu-
ropean Conference on Computer Vision, volume 588, pages
787–791, 1992.

[6] K. Isono and S. Akamatsu. A representation for 3d faces
with better feature correspondence for image generation us-
ing pca. Technical Report HIP96-17, The Institute of Elec-
tronics, Information and Communication Engineers, 1996.

[7] M. Lades, J. C. Vorbrueggen, J. Buhmann, J. Lange,
C. von der Malsburg, R. P. Wuertz, and W. Konen. Distortion
invariant object recognition in the dynamic link architecture.
IEEE transactions on Computers, 42:300–311, 1993.

[8] M. Lando and S. Edelman. Generalization from a single
view in face recognition. InProceedings of the Interna-
tional Workshop on Automatic Face and Ges ture Recogni-
tion, pages 80–85, Zurich, 1995.

[9] A. Lanitis, C. J. Taylor, and T. F. Cootes. Automatic inter-
pretation and coding of face images using flexible models.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 19:743–755, 1997.

[10] T. Maurer and C. von der Malsburg. Single-view based
recognition of faces rotated in depth. InProceedings of
the International Workshop on Automatic Face and Gesture
Recognition, pages 248–253, Zurich, 1995.

[11] T. Maurer and C. von der Malsburg. Tracking and learn-
ing graphs and pose on image sequences. InProceedings of
the International Workshop on Automatic Face and Gesture
Recognition, pages 176–181, Vermont, 1996.

[12] H. Murase and S. K. Nayar. Visual learning and recogni-
tion of 3d objects from appearance.International Journal of
Computer Vision, 14:5–24, 1995.

[13] K. Okada, J. Steffens, T. Maurer, H. Hong, E. Elagin,
H. Neven, and C. von der Malsburg. The bochum/usc face
recognition system: And how it fared in the feret phase iii

test. In Face Recognition: From Theory to Applications,
pages 186–205. Springer-Verlag, Sterling, UK, 1998.

[14] K. Okada, C. von der Malsburg, and S. Akamatsu. A pose-
invariant face recognition system using linear pcmap model.
Technical Report HIP99-48, The Institute of Electronics, In-
formation and Communication Engineers, 1999.

[15] P. J. Phillips, H. Moon, S. Rizvi, and P. Rauss. The feret
evaluation. InFace Recognition: From Theory to Applica-
tions, pages 244–261. Springer-Verlag, Sterling, UK, 1998.

[16] M. Poetzsch, T. Maurer, L. Wiskott, and C. von der Mals-
burg. Reconstruction from graphs labeled with responses of
gabor filters. InProceedings of the Internatinal Conference
of Artificial Neural Networks, pages 845–850, Bochum,
1996.

[17] T. Poggio and T. Vetter. Recognition and structure fromone
2d model view: Observations on prototypes, object classes
and symmetries. Technical Report A.I. Memo, No. 1347,
Artificial Intelligence Laboratory, M.I.T., 1992.

[18] L. Sirovich and M. Kirby. Low dimensional procedure for
the characterisation of human faces.Journal of the Optical
Society of America, 4:519–525, 1987.

[19] M. Turk and A. Pentland. Eigenfaces for recognition.Jour-
nal of Cognitive Neuroscience, 3:71–86, 1991.

[20] S. Ullman and R. Basri. Recognition by linear combinations
of models.IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 13:992–1006, 1991.

[21] T. Vetter and T. Poggio. Linear object classes and image
synthesis from a single example image.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19:733–742,
1997.

[22] T. Vetter and N. Troje. A separated linear shape and texture
space for modeling two-dimensional images of human faces.
Technical Report TR15, Max-Plank-Institut fur biologische
Kybernetik, 1995.

[23] L. Wiskott, J.-M. Fellous, N. Krueger, and C. von der Mals-
burg. Face recognition by elastic bunch graph matching.
IEEE transactions on Pattern Analysis and Machine Intel-
ligence, 19:775–779, 1997.

[24] M. Xu and T. Akatsuka. Detecting head pose from stereo
image sequence for active face recognition. InProceedings
of the International Workshop on Automatic Face and Ges-
ture Recognition, pages 82–87, Nara, 1998.


