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Abstract—In recent years, low-cost, low-power myoelectric 

control systems such as the Myo armband from Thalmic Labs 

have become available and unlocked tremendous possibilities 

for myoelectric controlled applications. However, due to the 

embedded system constraints, such sEMG control devices 

typically samples sEMG signals at a lower frequency. It is in 

doubt whether existing sEMG feature extraction methods are 

still valid on such low-resolution sEMG data. In addition, the 

feature extraction algorithms implemented on embedded 

devices must have low computational complexity in order to 

meet the real-time requirement. This paper aims to investigate 

effective features for low-resolution EMG pattern recognition. 

In particular, a set of novel computational efficient 

space-domain (SD) features (referred to as simple SD (SSD) 

features) have been developed to exploit the spatial relationships 

of sEMG signals recorded from the sensor array on the Myo 

armband. The proposed SSD feature set was evaluated with a 

linear discriminant analysis (LDA)-based classifier on a 

9-gesture dataset. The experimental results indicate that using 

the SSD features increased the classification accuracy by 5% 

compared to using Hudgins’ time-domain features. 

I. INTRODUCTION 

Surface electromyogram (sEMG) pattern recognition (PR) 

has been widely studied for identifying human movement 

intent in a large variety of applications, such as 

myoeletric-controlled prostheses [1-3], rehabilitation robotics 

[4], and gesture control interfaces [5]. Majority of these PR 

methods employ a similar processing sequence, which first 

segments raw signals into continuous analysis windows; then 

extracts characteristic features from each window; and finally 

concatenates features from individual channels into a feature 

vector and employs a classification method to classify the 

data. Common features used for sEMG characterization can 

be generally categorized into time-domain (TD) features (e.g. 

Hudgins’ TD features [6]), frequency-domain features (e.g. 

autoregressive (AR)-based features), and time-frequency 

domain features (e.g. wavelet-derived features) [7]. TD 

features have been the most popular in real-time sEMG 

PR-controlled applications because of their relatively low 

computational requirements. Most of these feature extraction 

methods were developed based on high-quality sEMG signals 

sampled at a frequency of at least 1000 Hz. In addition, these 
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existing methods mainly focus on extracting sEMG 

characteristics from individual sEMG channels without 

exploiting the relations between different channels, which are 

referred to as space-domain (SD) features.   

The investigation on SD sEMG features has become more 

prevalent in recent years [8], but primarily with high-density 

(HD) sEMG electrodes [9]. HD sEMG electrodes have been 

mainly used for clinical diagnosis of neuromuscular diseases 

[10] and offline analysis of motor unit activities [11] because 

of its high computational burden. 

With the advancement in embedded computer system 

design technology, low-cost, low-power sEMG control 

systems which seamlessly integrate sEMG sensing, 

embedded computing, and wireless communication into a 

small portable device have become available. One 

commercial solution is the Myo gesture control armband 

(Thalmic Labs) that integrates an ARM Cortex-M4 based 

microcontroller unit, eight sEMG sensors, an inertial 

measurement unit (IMU), and a Bluetooth Low Energy (BLE) 

module for wireless gesture control. Such EMG armband 

typically include multiple sEMG sensors arranged in a linear 

array on a flexible band which allows ease of wear in real life 

without the need of cumbersome anatomically targeted 

electrode placement. The emergence of these inexpensive, 

easy-to-wear devices has unlocked tremendous possibilities 

for myoelectric controlled applications. However, due to the 

embedded system constraints on data transmission bandwidth 

and power consumption, the Myo armband only samples 

sEMG signals at up to 200 Hz. It is in doubt whether existing 

sEMG feature extraction methods are still valid on such low 

resolution sEMG data. In addition, the feature extraction 

algorithms implemented on embedded devices must have low 

computational complexity in order to meet the real-time 

requirement.   
This paper aims to investigate effective features for low 

resolution sEMG PR. In particular, a set of novel 
computational efficient SD features (referred to as simple SD 
(SSD) features) have been developed to exploit the spatial 
relationships of sEMG signals recorded from sensors 
arranged in an array which encompasses user’s forearm with 
near equal spacing.  

II. METHODS 

A. Data Collection  

This study is conducted with Institutional Review Board 
(IRB) approval at San Francisco State University (SFSU) and 
informed consent of subjects. Our dataset includes sEMG data 
trials of nine complex hand gestures, including Fist Close, 
Hand Open, Index Point, Wave In, Wave Out, Thumb up, 
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Peace, Hang Loose, and Rock On (Figure 1), collected from 
17 subjects on multiple days. Data acquisition was conducted 
using a Myo Armband worn on the subject’s dominant 
forearm. Eight EMG signals were collected from the armband 
at the sampling rate of 200 Hz. The range of the digitized data 
is - 128 to +127 units with fidelity of 1 unit or approximately 
3.5 uV.  

The data was recorded using a software platform called 
MyoHMI [12] which facilitates the interface with a Myo 
armband and integrates a variety of signal processing modules 
as well as a graphic user interface. In the experiments, the 
MyoHMI prompts the subject with the gesture to perform. 
Each data trial consists of three repetitions of the gestures 
performed in sequence. Each gesture was performed for 2 
seconds with 5 seconds rest time in-between. Totally 35 data 
trials were collected for this study. This includes 21 trials from 
seven subjects with three trials from each subject recorded on 
three different days, eight trials from four subjects with two 
trials from each subject, and six trials from six subjects with 
one trial per subject.  

B. Feature Extraction 

The raw sEMG data is segmented by overlapped analysis 
windows for feature extraction and pattern classification. The 
length and increment of the analysis window were set to 
200ms (i.e. 40 samples) and 40ms (i.e. 8 samples) respectively 
as suggested in [13-14] for real-time control applications.  

TD Features 

The Hudgins' TD features [6] have been used extensively 
in real-time EMG PR for decades thus were used as a baseline 
in this study. Four TD features including mean absolute value 
(MAV), wavelength (Wave), zero crossings (Zeros), and sign 
slope changes (Turns) have been investigated. Due to the low 
sampling frequency of the sEMG signal, the fidelity of the two 
latter features are limited, as these features are the count of the 
number of times the signal crosses zero or the slope of the 
waveform changes sign. Also, a threshold of 3 units was used 
when calculating Zeros and Turns for all reported results to 
reduce the noise induced. This value was found to maximize 
classification accuracies for models based on these features 
alone in our experiments. 

SD Features 

The MAV is primarily affected by which muscles are 
contracted when a gesture is being performed as well as the 
force the subject is using to produce the gesture, or gesture 

intensity (i.e. weak fist verse strong fist). For each window, 
the MAV calculated from the thi channel can be expressed as 
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where wl  is the window length, or the number of raw data 

points in one window, and [ ]ix n  denotes the thn raw data point 

from  the thi channel. If it is assumed that the local intensity of 

an individual sEMG signal changes linearly proportional to 
the intensity of the gesture, then scaling the MAV of each 
channel by the average MAV across all channels should 
remove the dependency of gesture intensity. The averaged 
MAV across all channels is referred to as the Mean MAV 
(MMAV), which can be calculated as  
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The MAV scaled by the MMAV is referred to as Scaled MAV 
(SMAV).  For each window, the SMAV extracted from the 

thi channel is expressed as 

i
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The SMAV represents a non-dimensional relationship 
between the channels. For uses in LDA and similar classifiers, 
it should be noted that one independent variable is lost among 
the eight SMAVs extracted from individual channels because 
the sum of the SMAVs of all channels equals one by the 
definition. As all inputs to these classifiers need to be 
independent, the SMAV from one of channels was replaced by 
the MMAV in our experiments. 

Each sensor located around the perimeter of the arm 
represents a mixture of sources. Individual sources can affect 
multiple sensors depending on the size and location of the 
source. Sources affecting multiple sensors will increase the 
correlation across those sensors, whereas more focused 
sources primarily affecting only one sensor will decrease the 
correlation. Therefore, for each window the correlation 
coefficient (CC) between channel i  and its neighboring 

channel 1i   is calculated as 
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where [ ]iX n  is the thn data point from channel i  after the data 

in the window is normalized. For normalization, each window 
of data first has its mean value subtracted from each raw data 
point, and then the resulting values are divided by their 
standard deviation. 

To further decrease the computational complexity of the CC 
feature which involves a series of multiplication operations, 
mean absolute difference (MAD)-based features are proposed 
in this study, which also characterizes spatial relations 
between channels with lower computational complexities. The 

 
Figure 1. Classified nine gestures. Left to right, top to bottom: Fist 

Close, Hand Open, Index Point, Wave In, Wave Out, Thumb Up, 

Pease, Hang Loose, and Rock On 

 



  

MAD features include the mean absolute difference of the 
normalized values (MADN), which can be calculated as  
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Both CC and MADN require normalization of the windows 
before extraction. Instead, taking the MAD of the raw signal 
(MADR) eliminates this requirement. The MADR of channel 

i is calculated as 
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This value is affected by gesture intensity, so finally the MAD 
of the raw signal scaled by MMAV (referred to as scaled 
MADR (SMADR)) is proposed to remove the dependency of 
gesture intensity. The SMADR of channel i is expressed as 
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It is notable that MADN, MADR, and SMADR are 
inversely related to correlation, and can be instead viewed as a 
measure of uniqueness.  

SSD Feature Set 

In this paper, the combination of the SMAV feature as well 
as the MAD features is referred to as the SSD feature set 
because of their spatial characteristics as well as mathematical 
simplicity. 

C. Validation and Testing 

Evaluation of the effectiveness of these feature extraction 
methods was based on the resulting accuracies from 
classification. A simple LDA classifier was adopted in this 
study for pattern classification because of its previous success 
in EMG PR and its computational efficiency for real-time 
processing. For each data trial, the data was divided into six 
subsets. An LDA model was trained from each subset and then 
tested on the remaining five subsets, resulting in six 
classification accuracies. The average classification accuracy 
was then calculated for each data trial.   

III. RESULTS 

The tables in this section show the averaged classification 
accuracies (ACAs) and the standard deviations (STDs) across 
all 35 data trials.  

A.  Classification Results with Hudgins’ TD Features 

The four TD features have first been used separately for 

pattern classification in order to quantify their individual 

ability to discriminate gestures. As seen in Table I, the MAV 

has resulted in the highest ACA. Combinations of MAV with 

the other three features have also been analyzed, but using 

MAV alone still outperforms all investigated combinations. 

B.  Classification Results with SD Features 

As shown in Table II, using SMAV instead of MAV has 

boosted the ACA by more than 2%. Similarly, using SMAV 

alone has yielded better performance than combining it with 

other TD features.  

Table III shows the results of exploiting the SD features. 

The CC and MADN features alone have resulted in low 

ACAs similar to Zeros and Turns; however, instead of 

decreasing the ACAs when combined with SMAV like the 

TD features have done, the CC and MAD features have 

improved the ACAs.  

The MADN has resulted in slightly higher ACA than the 

CC feature while having lower computational requirement. 

As can be seen in the table, the combination of SMAV and 

MADN has resulted in the best ACA. The ACA provided by 

the SMAV and SMADR combination is only about 1% less 

accurate than the SMAV and MADN combination. But the 

SMADR feature is more computational efficient than the 

MADN as it does not require normalization.  

C. Confusion Matrices 

TABLE I. CLASSIFICATION RESULTS WITH HUDGINS’ TD FEATURES 

Features Used ACA STD 

MAV 77.52% 6.68% 

Wave 75.27% 7.07% 

Zeros 58.14% 11.91% 

Turns 50.24% 12.86% 

MAV, Wave 76.80% 6.70% 

MAV, Zeros 76.74% 6.97% 

MAV, Turns 76.84% 6.61% 

MAV, Wave, Zeros 76.24% 6.83% 

MAV, Zeros, Turns 75.88% 7.07% 

MAV, Wave, Turns 76.47% 6.66% 

MAV, Wave, Zeros, Turns 75.59% 6.84% 

 TABLE II. CLASSIFICATION RESULTS WITH THE SMAV FEATURE 

Features Used ACA STD 

MAV 77.52% 6.68% 

MAV, Wave, Zeros, Turns 75.59% 6.84% 

SMAV 79.70% 6.46% 

SMAV, Wave, Zeros, Turns 76.64% 6.56% 

 
TABLE III. CLASSIFICATION RESULTS WITH SD FEATURES 

Features Used ACA. STD 

SMAV 79.70% 6.46% 

CC 52.31% 10.90% 

MADN 53.47% 11.12% 

MADR 73.45% 7.59% 

SMADR 76.57% 7.81% 

SMAV, CC 82.03% 6.79% 

SMAV, MADN 82.43% 6.56% 

SMAV, MADR 80.20% 6.20% 

SMAV, SMADR 81.46% 6.47% 

 



  

Tables IV and V show the between-gesture confusion 

matrices of the ACAs derived from the TD features (MAV 

alone) and from the SSD features (SMAV+MADN), 

respectively. The rows are the true gestures being performed 

and the columns are the resulting classification decisions. 

Analyzing the confusion matrixes, the ‘Fist’ and ‘Thumb 

Up’ gestures have the highest confusion (~10%). ‘Point’ is 

also confused with both of these gestures (~5%). All three of 

these gestures include the flexing of the middle, ring, and 

pinky fingers. ‘Hand Open, ‘Peace’, ‘Hang Loose’ and ‘Rock 

On’ all involve the extension of fingers. ‘Thumb Up’ and 

‘Hang Loose’ are also similar only differing with a pinky 

extension. These groups of similar gestures corresponded to 

the highest confusion rates. As can be seen in the tables, the 

replacement of TD features with SSD features has decreased 

most of the confusion rates. 

IV. CONCLUSION 

This paper has investigated the effectiveness of two sets of 

features for low-resolution sEMG PR. The first set is the 

commonly used Hudgins’ TD features and the second set is 

the newly proposed SSD features. The experimental results 

have shown that not all four of the Hudgins’ TD features are 

effective for low-resolution sEMG PR. The inclusion of 

Zeros and Turns actually dropped the overall ACAs. This 

may be due to the low temporal resolution of the sEMG 

signals collected from the Myo Armband. Compared to the 

TD features, the use of the proposed SSD feature set that 

combines the SMAV and the MAD features has been shown 

to increase the ACAs by up to 5%. In addition, the SSD 

features are all mathematically simple, which are essential for 

real-time computing on embedded systems. The proposed 

SSD features have the potential of improving accuracies in 

other EMG PR-based applications as well. Future work 

includes evaluating the SSD features in real-time experiments 

and investigating the effectiveness of SSD features in HD 

sEMG systems. 

REFERENCES 

[1] Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield 

KA, Englehart KB: Targeted muscle reinnervation for real-time 

myoelectric control of multifunction artificial arms. Jama 2009, 
301:619-628. 

[2] Parker P, Englehart K, Hudgins B: Myoelectric signal processing for 

control of powered limb prostheses. Journal of electromyography 
and kinesiology: official journal of the International Society of 

Electrophysiological Kinesiology 2006, 16:541. 

[3] Zhang X, Liu Y, Zhang F, Ren J, Sun YL, Yang Q, Huang H: On 

Design and Implementation of Neural-Machine Interface for 

Artificial Legs. Industrial Informatics, IEEE Transactions on 2012, 

8:418-429. 
[4] Cesqui B, Tropea P, Micera S, Krebs HI: EMG-based pattern 

recognition approach in post stroke robot-aided rehabilitation: a 

feasibility study. Journal of neuroengineering and rehabilitation 
2013, 10:75. 

[5] Saponas TS, Tan DS, Morris D, Turner J, Landay JA: Making 

muscle-computer interfaces more practical. In Proceedings of the 
SIGCHI Conference on Human Factors in Computing Systems. ACM; 

2010: 851-854. 

[6] Hudgins B, Parker P, Scott RN: A new strategy for multifunction 

myoelectric control. Biomedical Engineering, IEEE Transactions on 

1993, 40:82-94. 

[7] Oskoei MA, Hu H: Myoelectric control systems—A survey. 
Biomedical Signal Processing and Control 2007, 2:275-294. 

[8] Rahimi A, Benatti S, Kanerva P, Benini L, Rabaey JM: 

Hyperdimensional biosignal processing: A case study for 

EMG-based hand gesture recognition. In Rebooting Computing 

(ICRC), IEEE International Conference on. IEEE; 2016: 1-8. 

[9] Stango A, Negro F, Farina D: Spatial correlation of high density 

EMG signals provides features robust to electrode number and 

shift in pattern recognition for myocontrol. IEEE Transactions on 

Neural Systems and Rehabilitation Engineering 2015, 23:189-198. 

[10] Drost G, Stegeman DF, van Engelen BG, Zwarts MJ: Clinical 

applications of high-density surface EMG: a systematic review. 
Journal of Electromyography and Kinesiology 2006, 16:586-602. 

[11] Merletti R, Holobar A, Farina D: Analysis of motor units with 

high-density surface electromyography. Journal of 
Electromyography and Kinesiology 2008, 18:879-890. 

[12] Donovan I, Valenzuela K, Ortiz A, Dusheyko S, Jiang H, Okada K, 

Zhang X: MyoHMI: A low-cost and flexible platform for 

developing real-time human machine interface for myoelectric 

controlled applications. In Systems, Man, and Cybernetics (SMC), 

2016 IEEE International Conference on. IEEE; 2016: 004495-004500. 
[13] Smith LH, Hargrove LJ, Lock BA, Kuiken TA: Determining the 

optimal window length for pattern recognition-based myoelectric 

control: balancing the competing effects of classification error and 

controller delay. Neural Systems and Rehabilitation Engineering, 

IEEE Transactions on 2011, 19:186-192. 

[14] Farrell TR, Weir RF: The optimal controller delay for myoelectric 

prostheses. IEEE Transactions on Neural Systems and Rehabilitation 

Engineering 2007, 15:111-118. 

 

TABLE IV. CONFUSION MATRIX OF ACAS (%) DERIVED FROM TD 

FEATURES 

 Fist Open Point W I W O T Up Peace H L R O 

Fist 74.4 0.9 7.7 0.9 1.0 12.6 1.2 0.4 1.0 

Open 1.0 69.7 3.4 0.7 3.3 3.0 5.6 7.1 6.2 

Point 4.9 3.0 68.0 1.4 0.0 9.1 4.5 2.6 6.4 

W I 1.3 1.7 3.3 84.9 0.8 2.2 2.5 2.3 1.0 

W O 0.6 3.6 0.0 0.7 88.0 0.1 3.6 1.9 1.4 

T Up 7.3 1.7 8.3 0.7 0.1 74.9 1.2 5.3 0.6 

Peace 0.6 4.2 4.4 1.0 3.0 1.1 66.8 10.7 8.2 

H L 0.4 4.8 2.2 0.5 0.9 4.8 8.7 75.3 2.5 

R O 0.5 4.4 6.1 0.4 1.4 0.4 6.8 1.7 78.3 

 
TABLE V. CONFUSION MATRIX OF ACAS (%) DERIVED FROM SSD 

FEATURES 

 Fist Open Point W I W O T Up Peace H L R O 

Fist 82.1 1.1 3.7 0.8 0.6 9.5 1.5 0.4 0.3 

Open 1.1 76.8 2.0 0.6 2.3 2.5 5.3 4.0 5.5 

Point 4.2 2.3 76.4 1.5 0.0 6.8 2.7 1.9 4.2 

W I 0.9 1.3 2.2 89.6 0.5 1.2 2.4 1.5 0.4 

W O 0.3 1.9 0.0 0.4 95.0 0.0 1.2 0.6 0.5 

T Up 8.6 1.0 4.1 0.3 0.1 80.4 0.5 4.3 0.5 

Peace 0.4 3.7 2.7 0.7 2.3 0.1 74.3 8.8 7.0 

H L 0.1 3.5 1.2 0.2 0.7 2.9 7.3 82.7 1.4 

R O 0.2 3.8 3.5 0.2 1.4 0.2 4.7 1.5 84.5 

 


