
  

  

Abstract—Down syndrome is the most common chromosomal 
condition that presents characteristic facial morphology and 
texture patterns. The early detection of Down syndrome 
through an automatic, non-invasive and simple way is desirable 
and critical to provide the best health management to newborns. 
In this study, we propose such a computer-aided diagnosis 
system for Down syndrome from photography based on facial 
analysis with ensemble learning. First, geometric and texture 
facial features are extracted based on automatically located 
facial landmarks, followed by feature fusion and selection. Then 
multiple classifiers (i.e. support vector machines, random 
forests and linear discriminant analysis) are adopted to identify 
patients with Down syndrome. An accurate and reliable decision 
is finally achieved by optimally combining the outputs of these 
individual classifiers via ensemble learning that captures both 
the shared and complementary information from different 
classifiers. The best performance was achieved by using the 
median ensemble rule with 0.967 accuracy, 0.977 precision and 
0.933 recall.  
 

I. INTRODUCTION 

Down syndrome (DS), caused by trisomy of chromosome 
21, is the most common chromosomal condition. The 
incidence rate varies from 1:319 to 1:1000 worldwide [1]; in 
the United States, one out of 691 infants is born with DS and 
over 400,000 people are living with it, while the rate is as high 
as 1:350 in UAE [2, 3]. Patients with DS have a high incidence 
of serious medical complications (e.g. cardiac, respiratory and 
hearing problems) and intellectual disability that require 
treatment. Thus, the early detection of DS is fundamental for 
providing patients with lifelong medical care that may involve 
specialists in many fields.  

Prenatal screening for DS based on ultrasound has an 
accuracy rate as low as 79% [4]. If a screening test is positive, 
a more invasive test may be used to confirm the diagnosis. 
More recently, the non-invasive prenatal test (NIPT) which 
requires samples of maternal blood has been introduced with 
very high accuracy and no miscarriage risk [5]. However, 
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access to specialized genetic clinics is limited especially for 
non-academic centers in rural settings. Moreover, the genetic 
tests are expensive and associated medical costs are high.  

After birth, the diagnosis of DS is often based on a number 
of physical variations and dysmorphology [6]. These 
differences may be subtle and influenced by the length of 
gestation, the effects of labor and delivery and the ethnical 
backgrounds of the family, making the diagnostic rate as low 
as 50% - 60% for pediatricians prior to cytogenetic tests [7]. 
Therefore, the development of an automated, non-invasive 
and reliable assessment system to detect DS in newborns 
could increase the diagnostic accuracy and reduce the cost and 
time associated with genetic tests.  

The symptoms of DS mainly present as facial morphology 
(or geometry) and appearance (or texture) patterns, which 
pave a way for developing a computer-aided diagnosis system 
for DS based on photogrammetry. For DS identification, 
different facial geometric and texture features have been 
investigated. Gabor wavelet transformation was applied to 
manually cropped facial image and manually labeled 
landmarks to discriminate DS from other disorders in [8, 9]. 
Burçin et al. investigated local pattern patterns (LBP) on 
non-overlapped blocks covering the entire face [10], which 
also required manual cropping and pre-processing. In our prior 
work, we proposed to combine the geometric and local texture 
features based on facial landmarks to identify DS from a 
non-syndrome group [11-13], which outperformed methods 
using geometric or texture features alone. For classification, 
support vector machines (SVM), k-nearest neighbor (k-NN), 
random forest (RF), linear discriminant analysis (LDA) and 
simple template matching have been investigated individually 
and separately [8-13]. 

In this study, we propose an automated and boosted 
classifier for the non-invasive and accurate detection of DS 
from facial photography based on ensemble learning. After 
locating the facial landmarks based on a constrained local 
model, geometric and texture features are extracted and 
selected following the method in [11]. Then SVM, RF and 
LDA are performed separately to discriminate between DS 
and non-syndrome groups. Finally, we boost the performance 
of these individual classifiers via ensemble learning, which 
integrates the shared and complementary information of 
individual classifiers. Ensemble learning is a machine learning 
paradigm that combines multiple hypotheses and it has widely 
applied to classification [14], segmentation [15]  and 
registration [16].   In this study, multiple decision fusion 
methods are compared and evaluated in terms of accuracy, 
precision and recall.   

II. METHODS 

The DS dataset consists of 130 frontal facial images (one 
image per subject) including 50 DS patients and 80 

Ensemble Learning for the Detection of Facial Dysmorphology 
Qian Zhao, Naoufel Werghi, Kazunori Okada, Kenneth Rosenbaum, Marshall Summar,  

and Marius George Linguraru 
 

978-1-4244-7929-0/14/$26.00 ©2014 IEEE 754



  

non-syndrome subjects. Photographic data acquisition and 
processing with a variety of cameras and under variable 
illumination, expression and poses was approved by the 
Institutional Review Board (IRB) and Children’s National 
Medical Center. The subjects are from multiple ethnicities 
including 98 Caucasian, 20 African American and 12 Asian 
and both genders (86 males and 44 females). The age of 
patients varies from 0 to 36 month.  

Forty-four anatomical landmarks covering the eyes (10), 
nose (14), mouth (9) and along the contour of the face (11) are 
first located automatically by using a constrained local model 
(CLM) with independent component analysis (ICA) described 
in [11]. 

A. Feature Extraction and Selection 
    To characterize the characteristic facial geometry and 

texture of DS patients, we extract and combine geometric and 
local texture features based on the facial landmarks after 
aligning the patient image with a reference image. The 
alignment is performed using Procrustes analysis to remove 
the translation, in-plane rotation and scaling [17].  

The geometric features are defined via interrelationships 
among the facial landmarks to incorporate the clinical criteria 
of DS diagnosis. We extract 27 geometric features including 
13 corner angles and 4 horizontal and 10 vertical Euclidean 
distances, shown in Fig. 1 (a). All angles are acute (<90°) 
according to their definitions, therefore monotonic in our 
application. The horizontal and vertical Euclidean distances 
are normalized by their baselines. The horizontal baseline is 
the distance between the left corner of left eye and the right 
corner of right eye (the width of the face), and the vertical 
baseline is the vertical distance between the eyes and the lower 
lip (the height of the face). The normalized geometric features 
are invariant to scale, translation and rotation. 

The local texture features are extracted from the square 
blocks centered at each inner facial landmark (Fig. 1 (b)) 
based on LBP histogram statistics. For each square block, a 
uniform LBP histogram [18] is computed in which the number 
of neighboring sample points is not limited 
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where   is a sign function,  corresponds to the grey 
values of  equally spaced pixels on a circle of radius , and 

 is the grey value of the central pixel. In this study, we set 
 and  based on experimental results from testing 

performance with varying settings of  and . 

The LBP histogram represents the distribution of the local 
micro-patterns, such as lines, ridges, spots and flat regions, 
which is suitable to delineate facial texture patterns (e.g. 
epicanthic folds and flattened philtrum for DS). To obtain a 
compact expression of texture information, six first-order 
statistical measurements of the LBP histogram are computed 
including the mean, variance, skewness, kurtosis, energy and 

entropy. Finally, the feature vectors in all square blocks are 
concatenated to form the LBP-based local texture features for 
the facial image. Therefore, the 132 LBP-based local texture 
features also contain the spatial information of the texture. 

To obtain a more comprehensive representation of facial 
features, geometric and texture features are concatenated to 
159 combined features. Feature selection is performed using 
the method in [19], which is based on manifold learning and 

 regularized models for subset selection. The selected 
features preserve the multi-cluster structure of the data. 
Specifically, the feature selection method measures the 
correlations among different features by using spectral 
analysis techniques [20]. The corresponding optimization 
problem only involves a sparse eigen-problem and a 
-regularized least square problem, thus can be solved easily. 
The optimal dimension for feature space is found based on 
maximizing the area under the receiver operating 
characteristic (AUROC) curves by empirical exhaustive 
search. 

 
Figure 1. Feature extraction: (a) The graphic definition of geometric features; 
the blue lines are normalized by the vertical or horizontal baseline and the 
green circles illustrate the location of corners; (b) shows the 22 square blocks 
of inner face landmarks for local texture feature extraction. 

B. DS Detection via Individual Classifiers 
After feature extraction and selection, we identify DS from 

a non-syndrome group by using four individual classifiers 
separately, including SVM with radial basis function kernel 
(SVM-RBF), SVM with linear kernel (SVM-linear), RF and 
LDA.  

SVM is a robust and powerful classifier [21], which uses a 
kernel function to map the data into a high-dimensional 
feature space. The kernel functions, such as the linear 
first-order polynomial and the non-linear RBF, have an impact 
on the classifier performance depending on the distribution of 
the analyzed data. The random forest is a state-of-the-art  
robust ensemble non-linear classifier that consists of multitude 
decision trees [22]. Each tree is trained independently and the 
forest output is the mode of the classes output by individual 
trees. LDA is another commonly used classifier, this time a 
linear classifier, that maximizes the ratio of between-class 
variance to within-class variance in the data, thereby 
maximizing separability [23]. LDA is suitable for cases where 
the within-class frequencies are unequal. The parameters for 
the SVM (C, σ) are found optimally by grid search [24], and 
the number of trees in RF is set experimentally to 150.  

The performance of these individual classifiers dependents 
on both the distribution of the data and the classifier 
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properties. To make a more accurate and reliable diagnosis 
decision for DS, we adopt an ensemble learning system to 
boost the individual decisions of multiple classifiers via 
information fusion in the boosted decision level.  

C. DS Detection via Ensemble Learning 
The outputs of the individual classifiers are regarded as 

conditionally-independent belief vectors that can be either 
identity vectors or probabilities. Given multiple classifiers 

1, 2, ,mS ,m = M… , we suppose each of them classifies an 
unknown object into one of K  classes kc  1, 2, ,k K=  (

2K =  here, DS or non-syndrome) with a probability 
( | , )k mp C = c S I , where C is the classifier output and I the 

image information. In a general Bayesian framework, the a 
posteriori class probability of the ensemble classifier can be 
written as 
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which are less sensitive to noise and outliers.  
For the binary identity belief vectors, the ensemble 

learning is achieved by majority vote (MV) or pairwise fusion 
matrix (PFM) [14]. Majority vote outputs the mode of classes 
output by individual classifiers. In the pairwise fusion matrix 
we divide the M classifiers into an ensemble 

1 2(P ,P , ,P )T
N= P  of all possible pairs of classifiers, where

1 1 2(S ,S ),P =  2 1 3(S ,S ), ,P =   1(S ,S )N M MP −=  and 
( )1 / 2.N M M= −  For each pair of classifiers, we record the 

occurrence of the 2K  class label combinations
2, {1,2, ,K }l lω ∈  for the training data. Suppose the 

unknown object belongs to a certain combination lω classified 
by the paired classifiers of iP , the output of the pair classifier

,iP *,c  is computed as 

 ( )( )* arg max , ,
k

c n k l=   (5) 

where ( ),n k l is the number of training samples that belong to 
class kC c=  and that have the lth combination of class labels 

.lω  Finally the set of N classifications are fused together by 
using majority vote.  

III. EXPERIMENTS 

Leave-one-subject-out cross validation was performed and 
evaluated in terms of accuracy, precision and recall. Accuracy 
is the overall correctness of the method that is the proportion 
of true results (both true positives and true negatives) in the 
population. Precision measures the proportion of the true 
positives against all the positive results, while recall measures 
the proportion of true positives which are correctly identified 
as such. 

A. Feature Selection 
For combined features, there were 24, 97, 78, and 32 

features selected for SVM-RBF, linear SVM, RF and LDA, 
respectively. We show the top ten selected geometric features 
for linear SVM as examples in Table I; linear SVM methods 
(both linear and RBF bases) had the best performance of the 
individual classifiers (Table II). The top ranked geometric 
features included the orientation of the eyes, palpebral fissures 
and length of nose, which are consistent with the clinical 
findings of DS (upward slating eyes, narrow palpebral fissure 
and small nose). The top ranked texture features mainly lay in 
the eyes and mouth corners, which had more discriminative 
powers and mirrored the clinical criteria for DS diagnosis. In 
particular, the texture around inner eye corners describes the 
epicanthic folds that are clinically relevant for the diagnosis of 
Down syndrome. 

TABLE I.  THE SELECTED TOP RANKED GEOMETRIC FEATURES AND 
THEIR CLINICAL RELEVANCEA BY USING [19] 

Feature Ranking Geometric Features 
1 Orientation of right eye 
2 Length of upper part of nose 
3 Length of Right palpebral fissure 
4 Length of lower nose 
5 Thickness of upper lip 
6 Orientation of left eye 
7 Length of philtrum 
8 Distance between inner corners of eyes  
9 Angle of outer left corner of mouth 

10 Angle of left corner of right eye 

B. Down Syndrome Detection 
For DS detection, we compared the performance of 

individual classifiers and different ensemble learning method 
including majority vote, PFM, mean rule, median rule and 
maximum rule. The experimental results are shown in Table 
II. The best performance of individual classifiers was 
obtained by SVM with either RBF or linear kernel, as shown 
by accuracy and AUROC. The ensemble classifiers PFM, 
Mean and Median outperformed the best individual classifier 
by decreasing the misclassification rate by 19.5%. This is 
equivalent to 0.08 increase in accuracy in the tight space 
allowed for improvement. The largest AUROC 0.996 was 
achieved by the ensemble classifier with median rule, shown 
in Fig.2. As MV and PFM generate binary identity output 
instead of probabilities, their AUROC values are not 
computable.  

TABLE II.  THE PERFORMANCE OF DS DETECTION USING DIFFERENT 
INDIVIDUAL AND ENSEMBLE CLASSIFIERS. 

 Accuracy Precision Recall AUROC 
SVM-RBF 0.959 0.932 0.953 0.994 
linear SVM 0.959 0.932 0.953 0.994 

RF 0.909 0.900 0.837 0.966 
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LDA 0.959 0.896 1.000 0.990 
MV 0.959 0.954 0.932 - 
PFM 0.967 0.977 0.933 - 
Mean 0.967 0.977 0.933 0.995 

Median 0.967 0.977 0.933 0.996 
Max 0.926 1.000 0.827 0.990 

Prod (3) 0.956 0.954 0.932 - 
 

 
Fig. 2 Comparative ROC curves for Down syndrome detection. 

 

IV. CONCLUSION 

We proposed an automated, non-invasive and accurate 
system for Down syndrome detection based on facial analysis 
and ensemble learning. Geometric and texture features were 
extracted based on the automatically located facial landmarks, 
followed by feature combination and selection. Then multiple 
linear and non-linear classifiers were trained to identify Down 
syndrome cases from a non-syndrome group. The final 
decision was achieved by fusing these individual classifiers 
via ensemble learning in the boosted decision level. The 
ensemble classifier outperformed the individual classifiers by 
decreasing the misclassification rate by 19.5%. The best 
performance was achieved by the median ensemble rule with 
0.967 accuracy and 0.996 AUROC. These promising results 
encourage us to further investigate the detection of other types 
of genetic syndromes associated with facial dysmorphology. 
Future work will also include the investigation of more 
advanced ensemble learning methods for decision fusion.  
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