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Abstract. This paper proposes a robust estimation and validation frame-
work for characterizing local structures in a positive multi-variate con-
tinuous function approximated by a Gaussian-based model. The new
solution is robust against data with large deviations from the model
and margin-truncations induced by neighboring structures. To this goal,
it unifies robust statistical estimation for parametric model fitting and
multi-scale analysis based on continuous scale-space theory. The unifica-
tion is realized by formally extending the mean shift-based density anal-
ysis towards continuous signals whose local structure is characterized by
an anisotropic fully-parameterized covariance matrix. A statistical vali-
dation method based on analyzing residual error of the chi-square fitting
is also proposed to complement this estimation framework. The strength
of our solution is the aforementioned robustness. Experiments with syn-
thetic 1D and 2D data clearly demonstrate this advantage in comparison
with the γ-normalized Laplacian approach [12] and the standard sample
estimation approach [13, p.179]. The new framework is applied to 3D
volumetric analysis of lung tumors. A 3D implementation is evaluated
with high-resolution CT images of 14 patients with 77 tumors, includ-
ing 6 part-solid or ground-glass opacity nodules that are highly non-
Gaussian and clinically significant. Our system accurately estimated 3D
anisotropic spread and orientation for 82% of the total tumors and also
correctly rejected all the failures without any false rejection and false
acceptance. This system processes each 32-voxel volume-of-interest by
an average of two seconds with a 2.4GHz Intel CPU. Our framework
is generic and can be applied for the analysis of blob-like structures in
various other applications.

1 Introduction

This paper presents a robust estimation and validation framework for charac-
terizing a d-variate positive function that can be locally approximated by a
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Gaussian-based model. Gaussian model fitting is a well-studied standard tech-
nique [4, ch.2]. However, it is not trivial to fit such a model to data with outliers
and margin-truncation induced by neighboring structures. For example, mini-
mum volume ellipsoid covariance estimator [17] addresses the robustness to the
outliers however its effectiveness is limited regarding the truncation issue. Fig.1
illustrates our problem with some real medical imaging examples of lung tumors
in 3D CT data. The figure shows 2D dissections and 1D profiles of two tumors.
The symbol x and solid-line ellipses denote our method’s estimates. In develop-
ing an algorithm to describe the tumors, our solution must be robust against
1) influences from surrounding structures (i.e., margin-truncation: Fig.1a,b), 2)
deviation of the signal from a Gaussian model (i.e., non-Gaussianity: Fig.1c,d),
and 3) uncertainty in the given marker location (i.e., initialization: Fig.1a,c).

Our proposed solution unifies robust statistical methods for density gradient
estimation [3] and continuous linear scale-space theory [21, 9, 12]. By likening
the arbitrary positive function describing an image signal to the probability
density function, the mean shift-based analysis is further developed towards
1) Gaussian model fitting to a continuous positive function and 2) anisotropic
fully-parameterized covariance estimation. Its robustness is due to the multi-
scale nature of this framework that implicitly exploits the scale-space function.
A statistical validation method based on chi-square analysis is also proposed to
complement this robust estimation framework. Sections 2 and 3 formally describe
our solution. The robustness is empirically studied with synthetic data and the
results are described in Section 4.1.

1.1 Medical Imaging Applications

One of the key problems in the volumetric medical image analysis is to charac-
terize the 3D local structure of tumors across various scales. The size and shape
of tumors vary largely in practice. Such underlining scales of tumors also pro-
vide important clinical information, correlating highly with probability of malig-
nancy. A large number of studies have been accumulated for automatic detection
and characterization of lung nodules [19]. Several recent studies (e.g., [10, 18])
exploited 3D information of nodules provided in X-ray computed-tomography
(CT) images. However, these methods, based on the template matching tech-
nique, assumed the nodules to be spherical. Recent clinical studies suggested
that part- and non-solid or ground-glass opacity (GGO) nodules, whose shape
deviates largely from such a spherical model (Fig.1c,d), are more likely to be ma-
lignant than solid ones [6]. One of our motivations of this study is to address this
clinical demand by considering the robust estimation of 3D tumor spread and
orientation with non-spherical modeling. We evaluate the proposed framework
applied for the pulmonary CT data in Section 4.2.
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Fig. 1. An illustration of our problem with lung tumor examples captured in 3D CT
data. From left to right, (a): on-the-wall tumor in 2D dissection, (b): 1D horizontal
profile of (a) through the tumor center, (c): non-solid (GGO) tumor, and (d): 1D
vertical profile of (c). “+” denotes markers used as initialization points provided by
expert radiologists. Our method’s estimates of the tumor center and anisotropic spread
are shown by “x” and 50% confidence ellipses, respectively.

2 Multi-Scale Analysis of Local Structure

2.1 Signal Model

Given a d-dimensional continuous signal f(x) with non-negative values, we use
the symbol u for describing the location of a spatial local maximum of f (or
a mode in the sense of density estimation). Suppose that the local region of f
around u can be approximated by a product of a d-variate Gaussian function
and a positive multiplicative parameter,

f(x) � α × Φ(x;u,Σ)|x∈S (1)

Φ(x;u,Σ) = (2π)−d/2|Σ|−1/2 exp(−1
2
(x − u)tΣ−1(x − u)) (2)

where S is a set of data points in the neighborhood of u, belonging to the basin
of attraction of u. An alternative is to consider a model with a DC compo-
nent β ≥ 0 so that f � α × Φ + β. It is, however, straightforward to locally
offset the DC component. Thus we will not consider it within our estimation
framework favoring a simpler form. Later, we will revisit this extended model
for the statistical validation of the resulting estimates. The problem of our inter-
est can now be understood as the parametric model fitting and the estimation
of the model parameters: mean u, covariance Σ, and amplitude α. The mean
and covariance of Φ describe the spatial local maximum and spread of the local
structure, respectively. The anisotropy of such structure can be specified only
by a fully-parameterized covariance.

2.2 Scale-Space Representation

The scale-space theory [21, 9, 12] states that, given any d-dimensional continuous
signal f : Rd → R, the scale-space representation F : Rd × R+ → R of f is
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defined to be the solution of the diffusion equation, ∂hF = 1/2∇2F , or equiva-
lently the convolution of the signal with Gaussian kernels Φ(x;0,H) of various
bandwidths (or scales) H ∈ Rd×d,

F (x;H) = f(x) ∗ Φ(x;0,H). (3)

When H = hI (h > 0), F represents the solution of the isotropic diffusion
process [12] and also the Tikhonov regularized solution of a functional mini-
mization problem, assuming that scale invariance and semi-group constraints
are satisfied [14]. When H is allowed to be a fully parameterized symmetric pos-
itive definite matrix, F represents the solution of an anisotropic homogeneous
diffusion process ∂HF = 1/2∇∇tF that is related, but not equivalent, to the
well-known anisotropic diffusion [15].

2.3 Mean Shift Procedure for Continuous Scale-Space Signal

In this section, we further develop the fixed-bandwidth mean shift [2], introduced
previously for the non-parametric point density estimation, towards the analysis
of continuous signal evaluated in the linear scale-space.

The gradient of the scale-space representation F (x;H) can be written as
convolution of f with the DOG kernel ∇Φ, since the gradient operator commutes
across the convolution operation. Some algebra reveals that ∇F can be expressed
as a function of a vector whose form resembles the density mean shift,

∇F (x;H) = f(x) ∗ ∇Φ(x;H)

=
∫

f(x′)Φ(x − x′;H)H−1(x′ − x)dx′

= H−1F (x;H)m(x;H) (4)

m(x;H) ≡
∫

x′Φ(x − x′;H)f(x′)dx′∫
Φ(x − x′;H)f(x′)dx′ − x. (5)

Eq.(5) defines the extended fixed-bandwidth mean shift vector for f . Setting
f(x′) = 1 in Eq.(5) results in the same form as the density mean shift vector.
Note however that x in Eq.(5) is an ordinal variable while a random variable was
considered in [2]. Eq.(5) can be seen as introducing a weight variable w ≡ f(x′)
to the kernel Φ(x − x′). Therefore, an arithmetic mean of x′ in our case is not
weighted by the Gaussian kernel but by its product with the signal Φ(x−x′)f(x′).

The mean shift procedure [3] is defined as iterative updates of a data point
xi until its convergence at ym

i ,

yj+1 = m(yj ;H) + yj ; y0 = xi. (6)

Such iteration gives a robust and efficient algorithm of gradient-ascent, since
m(x;H) can be interpreted as a normalized gradient by rewriting Eq.(4); m(x;H)
= H∇F (x;H)/F (x;H). F is strictly non-negative valued since f is assumed to
be non-negative. Therefore, the direction of the mean shift vector aligns with
the exact gradient direction when H is isotropic with a positive scale.
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2.4 Finding Spatial Local Maxima

We assume that the signal is given with information of where the target struc-
ture is roughly located but we do not have explicit knowledge of its spread. The
marker point xp indicates such location information. We allow xp to be placed
anywhere within the basin of attraction S of the target structure. To increase
the robustness of this approach, we run N1 mean shift procedures initialized by
sampling the neighborhood of xp uniformly. The majority of the procedure’s con-
vergence at the same location indicates the location of the maximum. The point
proximity is defined by using the Mahalanobis distance with H. This approach
is efficient because it does not require the time-consuming explicit construction
of F (x;H) from f(x).

2.5 Robust Anisotropic Covariance Estimation by Constrained
Least-Squares in the Basin of Attraction

In the sequel we estimate the fully parameterized covariance matrix Σ in Eq.(1),
characterizing the d-dimensional anisotropic spread and orientation of the sig-
nal f around the local maximum u. Classical scale-space approaches relying on
the γ-normalized Laplacian [12] are limited to the isotropic case thus not ap-
plicable to this problem. Another approach is the standard sample estimation
of Σ by treating f as a density function [13, p.179]. However, this approach
becomes suboptimal in the presence of the margin-truncations. Addressing this
issue, we present a constrained least-squares framework for the estimation of the
anisotropic fully-parameterized covariance of interest based on the mean shift
vectors collected in the basin of attraction of u.

With the signal model of Eq.(1), the definition of the mean shift vector of
Eq.(5) can be rewritten as a function of Σ,

m(yj ;H) = H
∇F (yj ;H)
F (yj ;H)

� H
αΦ(yj ;u,Σ + H)(Σ + H)−1(u− yj)

αΦ(yj ;u,Σ + H)

= H(Σ + H)−1(u− yj). (7)

Further rewriting Eq.(7) results in a linear matrix equation of unknown Σ,

ΣH−1mj = bj (8)

where mj ≡ m(yj ;H) and bj ≡ u− yj − mj .
An over-complete set of the linear equations can be formed by using all the

trajectory points {yj |j = 1, .., tu} located within the basin of attraction S. For
efficiently collecting a sufficient number of samples {(yj ,mj)}, we run N2 mean
shift procedures initialized by sampling the neighborhood of u uniformly. This
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results in tu samples (tu =
∑N2

i=1 ti), where ti denotes the number of points
on the trajectory starting from xi. The system described in Eq.(8) is solved by
considering the following constrained least-squares problem [7, 5],

AΣ = B
Σ ∈ SPD
A = (m1, ..,mtu)tH−t

B = (b1, ..,btu)t

(9)

where SPD denotes a set of symmetric positive definite matrices in Rd×d.
Following [1], the unique solution Σ∗ of Eq.(9) is expressed by,

Σ∗ = UPΣ−1
P UQ̃ΣQ̃Ut

Q̃
Σ−1

P Ut
P (10)

which involves symmetric Schur decompositions [5, p.393] of the matrices P ≡
AtA and Q̃ ≡ ΣPUt

PQUP ΣP given Q ≡ BtB, i.e.,

P = UPΣ2
PUt

P

Q̃ = UQ̃Σ2
Q̃
Ut

Q̃
.

The solution Σ∗ is derived from finding Y∗ in the Cholesky factorization of
Σ = YYt. It can be shown that Σ∗ uniquely minimizes an area criterion ‖AY−
BY−t‖2

F where ‖.‖F denotes the Frobenius norm. This area criterion is related
to the total least-squares [20] since errors in both A and B are considered for
the minimization.

2.6 Scale Selection Criterion

The multi-scale analysis treats H as a variable parameter. It is supposed that a
set of analysis bandwidths {Hk|k = 1, .., K} is given a priori. Our scale selection
criterion is based on the stability test [2]. Given a set of estimates {(uk,Σk)}
for a series of the successive analysis bandwidths, a form of the Jensen-Shannon
divergence is defined by,

JS(k) =
1
2

log
| 1
2a+1

∑k+a
i=k−a Σi|

2a+1

√∏k+a
i=k−a |Σi|

+
1
2

k+a∑
i=k−a

(ui − u)t(
k+a∑

i=k−a

Σi)−1(ui − u) (11)

where u = 1
2a+1

∑k+a
k−a ui and a define the neighborhood width of the diver-

gence computation. The most stable estimate across the analysis bandwidths
provides a local minimum of the divergence profile. We treat this result as the
final estimation of our multi-scale analysis.
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3 Statistical Validation

In this section, we present a goodness-of-fit measure for validating the result-
ing estimates. Such statistical validation gives a principled means for rejecting
accidental ill-estimates. We treat this problem as analysis of chi-square fitting
residual errors. We employ a linear model with an additive parameter of the DC
component; f � α × Φ + β. Recall that our estimation model is without the
DC. The additional degree of freedom introduced serves as another goodness-of-
fit indicator. Given the estimate pair (u∗,Σ∗), the following defines the signal
response estimate f̂ with two unknowns,

f̂(x,u∗,Σ∗; α, β) = α × Φ(x;u∗,Σ∗) + β|x∈S . (12)

The chi-square statistic indicates the residual error of the fitted model f̂(x) [16,
p.660],

χ2 ≡
∑
i∈S

(
f(xi) − f̂(xi)

σi
)2 =

∑
i∈S

(
f(xi) − αΦ(xi) − β

σi
)2 (13)

where σi is local uncertainty of normally distributed error (f(xi) − f̂(xi))2.
Parameters α and β are estimated by chi-square fitting. Since both are non-

negative, we introduce parameters a and b such that α = a2 and β = b2. The
estimates α∗ and β∗ are given by solving ∂χ2/∂a = 0 and ∂χ2/∂b = 0,

(α∗, β∗) =




(p, q) if p > 0 and q > 0

(
∑

f(xi)Φ(xi)∑
Φ(xi)2

, 0) if p > 0 and q ≤ 0

(0,

∑
f(xi)

Ns
) if p ≤ 0 and q > 0

(0, 0) if p ≤ 0 and q ≤ 0

(14)

where σ = σi for all i,

p =
Ns

∑
f(xi)Φ(xi) −

∑
f(xi)

∑
Φ(xi)

Ns

∑
Φ(xi)2 − (

∑
Φ(xi))2

(15)

q =
∑

f(xi)
∑

Φ(xi)2 −
∑

Φ(xi)
∑

f(xi)Φ(xi)
Ns

∑
Φ(xi)2 − (

∑
Φ(xi))2

(16)

and Ns is the number of samples in S and all the summations are over i ∈ S.
Given the above parameter estimates, χ2 is computed by using Eq.(13). Chi-

square probability function Q [16, p.221] is employed to indicate an ill-fit of our
model to the given signal,

Q(χ2|ν) = Q(
Ns − M

2
,
χ2

2
) = g(

Ns − M

2
,
χ2

2
). (17)

In Eq.(17), g is the incomplete gamma function [16, ch.6.2] with the number of
degrees of freedom ν = (N − M)/2, and M is the number of parameters.
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Fig. 2. Comparison of our method (solid-line) with γ-normalized Laplacian (dashed-
line) and standard sample estimate (dot-dashed-line) using 1D synthetic data. The
ground-truth u = D/2 and σ = 1 are denoted by dotted-line. Test data is generated by
superimposing two Gaussians with a varying distance D for evaluating robustness of
estimates against biases caused by neighboring structures. (a): local maxima estimates,
(b): scale estimates, (c): our method’s break-point D = 0.8, below which estimations
are subjected to the bias. (c): γ-normalized Laplacian’s break-point D = 6.2.

Finally, we obtain the following rejection criterion,

Reject (u∗,Σ∗) if Q < th1 or β∗ > th2. (18)

The threshold for Q is set conservatively to the common confidence level th1 =
0.001 [16, p.664]. Having a large estimate for β also indicates an ill-fit with our
estimation model without the DC. The threshold th2 for β can be learned from
training samples for specific applications.

4 Experiments

4.1 Synthetic Data

The proposed framework is examined with 1D and 2D synthetic data. Fig.2
compares local maximum and scale estimates by a 1D implementation of our
algorithm with those by the γ-normalized Laplacian [12] and the standard sam-
ple estimation [13, p.179]. The test data is generated at each location by taking
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Fig. 3. Examples with 2D synthetic data. (a) and (b) illustrate the ground-truth and
our method’s estimate for an anisotropic Gaussian Σ=[2 -2;-2 5] with random additive
noise. (c) and (d) show those for two Gaussians with the noise. The center of the smaller
Gaussian is deviated by 4 Mahalanobis distance away from the target Gaussian. “+”
and dashed-ellipses indicate ground-truth local maximum and spread. “x” and solid-
ellipses display those estimated by our 2D algorithm.

the maximum of two superimposed 1D Gaussians offset by a varying distance D.
Each Gaussian has the same variance σ = 1 and hight α = 1. The 1D system em-
ploys all the available data points (N1 = N2 = NS) and 40 analysis scales with
0.05 interval (h = (0.12, 0.152, .., 22) for H = hI). For the sample variance esti-
mation, the densities p(xi) are approximated by f(xi) normalized by the proba-
bility mass within ±1σ around the true maximum. The results indicated that our
method achieved robust and accurate estimations even with the presence of the
severe margin-truncations, clearly demonstrating the advantage of our frame-
work. Fig.3 shows examples with 2D synthetic data. Estimates, shown as 50%
confidence ellipses, by a 2D implementation of our method are compared for two
types of test data in the presence of random noise. This 2D implementation uti-
lizes all available data points and 12 analysis scales (h = (0.52, 0.752, .., 3.252)).
The results are almost identical to the ground-truth despite the presence of the
random noise and the neighboring structure.

4.2 Lung HRCT Data

A 3D implementation of the proposed algorithm is evaluated with high-resolution
computed-tomography (HRCT) images of pulmonary tumors. Each volumetric
image consists of 12-bit positive values over an array of 512x512 lattices.

A straightforward implementation of our algorithm without any 3D specific
adaptation provides the 3D tumor analysis system. A set of analysis bandwidths
(18 scales with 0.25 interval h = (0.502, 0.752, .., 4.752)) and markers indicating
rough tumor locations are given to the system a priori. The marker locations
are provided by expert radiologists, however most of the markers deviate from
the tumor centers with a certain degree. We use uniform sampling in the 3-voxel
neighborhood of the marker (i.e., N1 = 7). The same strategy is employed for
initializing the mean shift trajectories around the local maximum (i.e., N2 = 7).
The neighborhood width of the divergence computation is set to a = 1 (con-
sidering only three adjacent scales). For the validation, all data points that lie
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Fig. 4. Examples of the estimation results with 3D HRCT data. The marker locations
are indicated by “+”. The estimated local maxima are indicated by “x”. The estimated
spread of the tumors are shown as 2D intersections of 50% confidence ellipsoids. Cases
(a) and (b) are GGO nodules identified by experts. Cases (c) to (f) are tumors with
irregular non-spherical shapes. Cases (g) and (h) illustrate tumors on the lung wall.
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Fig. 5. Experimental results for the validation process. The top plot illustrates the Q
probability (solid-line) and β estimate (dashed-line) for each test case. The symbols
“+”, “x”, and “o” indicate correct, failure, and GGO nodule cases, respectively. β values
are normalized to fit within the range of this plot. A horizontal dashed-line indicates
the β-threshold th2 = 400. The bottom images show examples of correctly rejected
failures. Legend of these images are the same as Fig.4. Cases (a) and (c) satisfied the
rejection conditions of both Q and β while Case (b) met only the Q condition and
Cases (d) and (e) met only the β condition.

within the 90% confidence ellipsoid of (u∗,Σ∗) are used. The degrees of freedom
in Eq.(17) are given by M = 3 + 6 + 2 = 11. The β threshold in Criterion(18) is
set to th2 = 400. The global uncertainty σ in Eq.(13) is estimated from the sam-
ple variance of 77 tumor data, resulting in σ = 356. This tumor analysis system
is implemented in C language and processes each 32-voxel volume-of-interest
(VOI) by an average of two seconds with a 2.4GHz Intel CPU.

HRCT data of 14 patients displaying the total of 77 pulmonary tumors were
used for this evaluation. 63 cases resulted in successful estimation confirmed by
expert inspection. All the solitary tumors were correctly estimated. Most of the
failures were due to small tumors whose shape was a partial ellipsoid located on
lung walls and near rib structures. All the 14 failures were successfully rejected
by the validation process without false rejection and false acceptance. The data
includes six cases of the part- and non-solid or ground-glass opacity nodules
(GGO nodules, see Fig.1c,d and Fig.4a,b). All GGO nodules were successfully
estimated and accepted.

Fig.4 shows examples of the resulting center and spread estimates. It illus-
trates cases with the irregular, GGO, and on-the-wall nodules whose geometrical
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shapes are largely deviated from the Gaussian structure. The correct estima-
tions for these difficult cases demonstrate the robustness and effectiveness of our
framework. Fig.5 shows the results of the statistical validation and examples of
the rejected cases. In order to evaluate the generalization capability, we apply
the same validation process to different lung HRCT data of 3 patients captured
in different settings. This preliminary study resulted in 96% correct validation
rate (4 false acceptances among 100 trials), similar to the results shown in Fig.5.

5 Conclusions

This paper proposed a robust estimation and validation framework for char-
acterizing the location and anisotropic spread of local data structure that is
approximated by a Gaussian-based model. The new framework unifies the mean
shift-based robust statistical estimation and the linear scale-space-based multi-
scale analysis. The unification is realized by formally extending the mean shift-
based analysis towards the evaluation of continuous positive function whose lo-
cal structure is characterized by an anisotropic fully-parameterized covariance
matrix. The proposed statistical validation method also complements this esti-
mation framework, providing an effective goodness-of-fit measure for rejecting
accidental ill-estimates. The strength of our solution is its robustness against the
margin-truncation and the non-Gaussianity effects. This advantage was demon-
strated by the experimental results with the 1D and 2D synthetic data and by
the 3D tumor analysis application.

Our proposed method can be interpreted as a multi-scale joint Gaussian fit-
ting and segmentation. The estimation scheme achieves fitting by using only
samples within the basin of attraction for characterizing the underlying struc-
ture. The importance of considering the anisotropic covariance was also sug-
gested by Lillholm et al. [11] in their image reconstruction analyses with various
local features defined as combinations of the first and second order derivatives
of the scale-space representations. Their results have direct implications to our
problem since the second order derivatives (or Hessian matrix) are explicitly
related to the covariance matrix [13, p.178][8].

The results with the real lung HRCT 3D data demonstrated a successful
application of our method to the volumetric tumor analysis, providing accurate
estimation of 3D location and anisotropic spread of the non-spherical pulmonary
tumors. The robustness and flexibility facilitates not only the medical applica-
tions sought in this paper but also various other applications involving with the
analysis of blob-like data structures. A natural continuation of this study is the
extension of our framework for the automatic tumor detection problem. This
remains as our future work.
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