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Abstract

We propose a novel semi-automatic figure-ground segmen-
tation solution for blob-like objects in multi-dimensional
images. The blob-like structure constitutes various objects
of interest that are hard to segment in many application do-
mains, such as tumor lesions in 3D medical data. The pro-
posed solution is motivated towards computer-aided diag-
nosis medical applications, justifying our semi-automatic
and figure-ground approach. The efficient segmentation
is realized by combining the robust anisotropic Gaussian
model fitting and the likelihood ratio test (LRT)-based non-
parametric segmentation in joint space-intensity domain.
The robustly fitted Gaussian is exploited to estimate the
foreground and background likelihoods for both spatial and
intensity variables. We demonstrate that the LRT with
the bootstrapped likelihoods is assured to be the optimal
Bayesian classification while automatically determining the
LRT threshold. A 3D implementation of the proposed algo-
rithm is applied to the lung nodule segmentation in CT data
and validated with 1310 cases. Our efficient solution seg-
ments a target nodule in less than 3 seconds in average.

1. Introduction
The wide variety of object appearance characteristics
and boundary geometry makes image segmentation a
very difficult task. In past decades, a number of
promising general-purpose approaches (e.g., classifica-
tion/labeling/clustering [4, 1, 18, 11, 2] and curve-
evolution [6, 20, 15]) have been proposed to solve this prob-
lem. In practice, however, structural assumptions of the
target objects are often available beforehand thus can be
exploited as a prior. The successful incorporation of such
prior information plays a key role for realizing efficient and
accurate segmentation solutions in general.

Our study focuses on developing an efficient segmenta-
tion solution for a class of blob-like structures captured in
multi-dimensional images. We define the blob-like struc-
tures as roughly convex local intensity distributions whose

iso-level contours are approximately ellipsoidal with some
irregularities that do not destroy the ellipsoidal topology.
The intensity distribution itself may be multi-modal but it is
assumed to be uni-modal under Gaussian blurring within an
appropriate upper-bound of the smoothing bandwidth (i.e.,
Folklore Theorem [10]). Such class of data structures repre-
sents various objects of interest that are hard to segment in
many application domains, such as CT lung tumor and PET
hot spot segmentation in medical imaging applications [8]
and mode analysis of multi-variate density estimation [2].

The presented work is motivated by the development
of medical data segmentation solutions towards computer-
aided diagnosis applications [17], where the overall sys-
tem performance, including user-interaction factors, is con-
cerned. In such context, semi-automatic solutions, requir-
ing minimal user interactions, can be preferred to fully au-
tomated solutions for achieving better overall performance.
For this reason, we choose a one-click figure-ground seg-
mentation approach where a user provides a data point
which roughly indicates a target/figure blob to be seg-
mented out of arbitrary background. A successful solution
to this problem depends on i) robustness against variation
of the user-given initialization and the different scan set-
tings in order to relieve the user’s labor, ii) run-time effi-
ciency, even with the high-dimensional data, in order to en-
hance the user-interactivity, and iii) high accuracy so that
the user-interaction results in better performance than fully-
automated solutions.

As a solution to the above depicted semi-automatic
figure-ground segmentation, this paper presents a novel sta-
tistical segmentation framework which combines i) the ro-
bust anisotropic Gaussian fitting algorithm (solution A) and
ii) a new non-parametric figure-ground segmentation algo-
rithm using joint space-intensity likelihood ratio test (solu-
tion B). We have previously proposed the multi-scale joint
segmentation and model fitting solutions for realizing the
anisotropic Gaussian fitting by using the scale space mean
shift [12] and the L-normalized scale space derivatives [14].
This provides robust and efficient characterization of the



target blob’s geometric structure, however such character-
ization remains as a parametric approximation of the true
non-parametric boundary.

On the other hand, the likelihood ratio test (LRT) [3,
pp.211-212] provides a basis for realizing an efficient non-
parametric figure-ground segmentation. This approach of-
fers the Bayesian optimal binary classification rule that is
used to assign either fore- or back-ground label to each data
point with a minimal Bayes error. It can describe irregu-
lar boundary accurately, given that likelihood functions for
both fore- and back-ground are estimated accurately.

The main idea of the presented work is to model these
likelihood functions used in the segmentation/classification
solution B as functions of the anisotropic Gaussian fitted
by the model fitting solution A. Due to the robustness of
the solution A, we consequently achieve accurate likelihood
estimation, resulting in robust and accurate non-parametric
segmentation by the solution B. The likelihoods are mod-
eled in the joint space-intensity domain for better accuracy.
They are also estimated for each data instance, providing
the robustness against different scan settings. The overall
system is also efficient since both solutions are efficient.

One of the novelties of the presented work is to use the
weighted likelihood model for the intensity likelihood esti-
mation. This enables to model both foreground and back-
ground intensity likelihoods without explicitly assigned la-
bels so that pre-segmentation and/or iteration is not re-
quired. This paper also contributes formal derivations, in
the Bayesian framework, of the likelihood functions and
analysis support which confines the sampling in the esti-
mation processes. Such data support is a necessary concept
for modeling the background probability distribution that is
not naturally bounded. By parameterizing the support as a
function of the fitted Gaussian, we show that the LRT with
the formally derived likelihoods and analysis support is as-
sured to be the optimal Bayesian classification while auto-
matically determining the LRT threshold.

A number of previous studies are related to the proposed
work. Leonaridis et al. [9] presented a range-data segmen-
tation method based on iterative polynomial regression with
model selection by winner-take-all. The combination of the
model fitting and model selection used in their approach
relates to the here proposed solution with the model fit-
ting followed by the LRT classification. However, the pro-
posed LRT classification approach offers a more theoret-
ically sound segmentation/model selection principle. We
have previously proposed a joint-domain mean shift-based
segmentation method which exploits the prior model fit-
ting process [13]. The runtime efficiency of this solution
is, however, reduced when the size of tumors to be analyzed
increases. The proposed method is more efficient than these
methods by avoiding expensive iterations. In their region
competition framework, Zhu and Yuille [20] demonstrated

that the motion equation of boundary points can be ex-
pressed as a function of a likelihood ratio test between two
adjacent regions. Since the proposed segmentation frame-
work follows the label classification approach, rather than
the curve evolution approach, the similarity is not directly
exploitable. Pastor et al. [16] presented a diesel spray im-
age segmentation method using a likelihood ratio test. Al-
though their LRT-based segmentation is motivated similarly
to ours, our method offers a more sophisticated likelihood
modeling.

This paper is organized as follows. Section 2 and 3 in-
troduce the two-step segmentation solution with the robust
anisotropic Gaussian model fitting and the joint likelihood
ratio test, respectively. Section 4 describes our likelihood
modeling solutions. The likelihood models and correspond-
ing analysis support are formally derived in this section. A
3D implementation of the solution is evaluated by using a
set of high resolution chest CT scan data. Section 6 de-
scribes the results of our experiments, followed by discus-
sions in Section 7.

2. Robust Anisotropic Gaussian Inten-
sity Model Fitting

The proposed semi-automatic (one-click) blob segmenta-
tion algorithm consists of two steps. The first step is
a pre-processing with robust anisotropic Gaussian fitting.
Readers are referred to [12, 14] for the details of this
procedure. The following briefly summarizes its main
ideas. Given an initial marker xp indicating a rough lo-
cation of the target structure (e.g., tumor), the procedure
provides the estimated target center u and the anisotropic
spread Σ in the form of Gaussian function: Φ(x;u,Σ) =
|2πΣ|−1/2 exp(−1/2(x − u)tΣ−1(x − u)). The volume
of interest (VOI) Ω is defined as the extent of our data
analysis given by a fixed-size N -D window centered at
xp. The data to be analyzed is expressed by I(x) ∈ R+

where x ∈ Ω ⊂ RN is N -D coordinate indicating data
(pixel/voxel) location. The multi-scale joint model fitting
and segmentation is realized by evaluating Gaussian scale
space of I(x) [19, 7]: L(x;hi) = I(x) ∗ Φ(x;0, hiI). For
a set of discrete analysis scales {hi}, the center ui and the
spread Σi are estimated, resulting in a set of estimate pairs
{(ui,Σi)}. The stability-based scale/bandwidth selection
using the Jensen-Shannon divergence [12] selects the most
stable estimate (u∗,Σ∗) among this set. At each analysis
scale hi, the mean ui is estimated by the convergence of
the majority of data points sampled around xp by using the
scale space mean shift [12]:

m(x, hi) =
∫ x′Φ(x−x′;hi)I(x′)dx′∫

Φ(x−x′;hi)I(x′)dx′ − x = hi
∇L(x;hi)
L(x;hi)

.
The anisotropic spread Σi is estimated by symmetric-
positive-definite-constrained least-squares solution of a set
of linear matrix equations consisting of L-normalized scale



space derivatives [14]. Such derivatives are sampled along
the convergent trajectories of the scale space mean shift ini-
tialized at points sampled around the estimated center ui.

The resulting multi-scale Gaussian model fitting solution
is robust against i) the influence from non-target neighbor-
ing structures by using the robust estimation technique to
remove outliers according to the mean shift convergence,
ii) the non-Gaussianity or misfit of the data by using the
stability-based scale selection criterion that is insensitive
to such modeling errors, and iii) the varying initialization
xp by using the robust extension of least-squares approach.
The solution is also efficient because it is based on a local
sampling, guided by the mean shift procedure, which avoids
the expensive construction of the scale space over the full
data space.

3. Figure-Ground Segmentation by
Likelihood Ratio Test

This section introduces the second step of our segmentation
solution. At each data point x ∈ Ω, we are given its cor-
responding intensity value α = I(x). Treating both x and
α as independent random variables, we assume that joint
likelihood functions of (x, α) can be estimated for the fore-
ground (inside or part of a target tumor) f(x, α|in) and for
the background (outside of the tumor) f(x, α|out). The
space-intensity joint likelihoods can be factorized for the
foreground as f(x, α|in) = f(x|in)f(α|x, in) and for the
background by replacing in by out. In order to bootstrap
the likelihood efficiently from a single data instance, we
approximate the conditional intensity likelihood f(α|x) by
f(α), assuming the independence,

f(x, α|in) = f(x|in)f(α|in) (1)

f(x, α|out) = f(x|out)f(α|out) (2)

where f(x|in) and f(α|in) (f(x|out) and f(α|out)) de-
note marginal foreground (background) spatial and inten-
sity likelihood functions, respectively. The two variables
are not independent in general, however our experimental
results shown later indicate that their dependence seems to
be weak, resulting in good segmentation results. The space-
intensity joint likelihood ratio r(x) is then defined by,

r(x) ≡ f(x, α|in)
f(x, α|out)

=
f(x|in)f(α|in)

f(x|out)f(α|out)
(3)

A generic figure-ground segmentation solution is real-
ized by determining the foreground-background member-
ship of (or binary classification of) each voxel data point
within the VOI by performing the likelihood ratio test,

x ∈ Ω←−
{

in if r(x) ≥ th
out otherwise

(4)

where th is a threshold which depends on the normaliza-
tion factors of the foreground and background likelihoods.
The solution provides the minimal-error Bayesian classifi-
cation given an appropriate threshold value [3]. In the fol-
lowing sections, we will show that modeling the likelihoods
within a specific support region assures the Bayesian opti-
mality at th = 1. Therefore, th = 1 will be used through-
out this paper. The overall framework provides a generic
and efficient segmentation principle which i) combines the
geometric and intensity information probabilistically and
ii) reduces the segmentation ambiguity at boundary region
by comparing explicit statistical models of foreground and
background statistics.

4. Modeling Likelihood Functions
In order to realize the segmentation outlined above in
Eq.(4), we must model four likelihood functions for spa-
tial and intensity factors and for inside and outside the tar-
get structure: f(x|in), f(x|out), f(α|in), and f(α|out).
The main idea exploited here is to derive these likelihoods
as functions of the outcome of the robust Gaussian model
fitting for efficient and accurate likelihood estimation. In-
stead of modeling these functions for a class of all possible
blobs (e.g., tumors), they are independently estimated for
each data instance.

4.1. Spatial Likelihood Functions
This section formally derives the definition of the fore-
ground and background spatial likelihoods in the Bayesian
framework. We assume the N -D Gaussian function
Φ(x;u,Σ), fitted by the procedure described in Section 2,
approximates a probability distribution of location x being
the blob center or mean u. Suppose that this probability
distribution can be interpreted as the conditional probabil-
ity distribution P (x|in) of x being part of the target blob
structure,

P (x|in) ≡ Φ(x;u,Σ) (5)

This holds true if surface geometry of the target structure
is approximately convex, which assures the mean is located
inside of the structure. In many applications, such as the
tumor segmentation, this is a reasonable assumption.

The conditional probability distribution for the back-
ground P (x|out) is ill-defined because the background ex-
tends to an infinite range of the data space x. In order to de-
fine such a pdf, a window that confines observations of the
random variable x has to be introduced so that a normaliza-
tion becomes possible. We call such a data space window
analysis support denoted by S ⊂ Ω. The modeling of such
support will be discussed later in Section 4.3.

We define a pair of conditional probability distribution
functions over the support, P̄ (x|in) and P̄ (x|out), which
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Figure 1: The likelihood estimation processes illustrated in
a 1D toy example. (a) 1D noisy data with a Gaussian fit-
ted by the pre-process (Sec. 2). (b) Foreground (solid) and
background (dash) spatial likelihoods and the analysis sup-
port (dot-dash), derived from the Gaussian. (c) The toy data,
showing a pair of pixel location and intensity value (xi, αi).
(d) The spatial likelihoods, showing the foreground and
background likelihoods at xi. (e) Foreground intensity like-
lihood, showing contribution from the data point (xi, αi).
(f) Background intensity likelihood, showing contribution
from (xi, αi).

are normalized to 1 within this range S,

P̄ (x|in) ≡ P (x|in)/
∫

S
P (x|in)dx

P̄ (x|out) ≡ P (x|out)/
∫

S
P (x|out)dx (6)

where P (x|in) is assumed to be known (as given in Eq.(5))
and P (x|out) is an unknown underlying background dis-
tribution function that is unnormalized over S. The total
probability theorem states that,

Px = P̄ (x|in)Pin + P̄ (x|out)Pout (7)

Pin + Pout = 1 (8)

where Px, Pin, and Pout are prior probabilities of the loca-
tion x and inside and outside labels in S. Px is supposed to

obey an independent uniform distribution. This yields,

Px = 1
|S|

|S| = ∫
S

dx
(9)

Substituting Eq.(8) and Eq.(9) to Eq.(7) yields,

P̄ (x|out) =
(1/|S|)− P̄ (x|in) ∗ Pin

(1− Pin)
(10)

This is a general form of the background spatial probability
distribution given the foreground model in S. It provides a
family of probability distributions that are parameterized by
the ratio of the prior probabilities and the support S. In the
following, we evaluate a special case in which the priors for
the inside and outside labels are equal so that Pin = Pout =
0.5. In this case, Eq.(10) reduces to,

P̄ (x|out) =
2
|S| − P̄ (x|in) =

2
|S| −

P (x|in)∫
S

P (x|in)dx
(11)

Suppose now that the background pdf over S assumes
the value zero at the mean location u where the Gaussian
Φ(x;u,Σ), modeling the foreground pdf, takes its maxi-
mum: P̄ (u|out) = 0. With this assumption, the normal-
ization factor of P̄ (x|in) can be written as a function of the
support’s volume |S|,

∫
S

P (x|in)dx = P (u|in)
|S|
2

=
|S|

2|2πΣ|1/2
(12)

Note that this equation can be interpreted as a constraint for
the unknown support S imposed by choosing a form of the
background pdf with the above assumption. In Section 4.3,
we will show that this constraint uniquely determines the
support S with a specific parameterization. Therefore, the
following derivations hold true only with a specific support
that is a solution to Eq.(12).

Substituting Eq.(12) to Eq.(6) and Eq.(11) yields,

P̄ (x|in) = 2
|S| |2πΣ|1/2P (x|in)

P̄ (x|out) = 2
|S| (1− |2πΣ|1/2P (x|in))

(13)

Finally, we define the foreground and background spatial
likelihood functions as the conditional pdfs over S scaled
by a fixed factor |S|/2 so that they depend only on P (x|in),

f(x|in) ≡ |S|
2

P̄ (x|in) = |2πΣ|1/2P (x|in) (14)

f(x|out) ≡ |S|
2

P̄ (x|out) = 1− |2πΣ|1/2P (x|in) (15)

Note that the background likelihood f(x|out) is a comple-
ment of the foreground likelihood. At the mean location u,
we have f(u|in) = 1 and f(u|out) = 0. At the infinity,
f(±∞|in) = 0 and f(±∞|out) = 1. Fig.1(a,b) illustrate



the resulting spatial likelihood functions in a 1D toy exam-
ple. Given the fitted Gaussian shown by a dash-curve in
Fig.1(a), the foreground (solid) and background (dash) like-
lihoods are analytically determined as shown in Fig.1(b).

Because both fore- and back-ground likelihoods share
the same scaling factor, the ratio of the likelihoods and that
of the pdfs become equivalent. Furthermore, the condi-
tional pdfs are also equivalent to the posterior distributions
P̄ (in|x) and P̄ (out|x) since Pin = Pout = 0.5,

f(x|in)
f(x|out)

=
P̄ (x|in)
P̄ (x|out)

=
P̄ (in|x)
P̄ (out|x)

(16)

4.2. Intensity Likelihood Functions
This section derives the intensity likelihood functions in the
Bayesian framework. Modeling the foreground and back-
ground intensity likelihoods f(α|in) and f(α|out) given a
VOI I(x ∈ Ω) is a chicken-and-egg problem; a segmenta-
tion result is required to estimate the fore- and back-ground
likelihoods that are necessary for the segmentation itself.
Instead of using the classical iterative approach, such as
EM algorithm, our solution is based on weighted likelihood
model approach avoiding the iterations. This approach ex-
ploits the spatial likelihoods, derived as functions of the fit-
ted Gaussian function, as weights for modeling the intensity
likelihoods without an explicit segmentation.

First we define the conditional intensity probability dis-
tributions as a function of intensity differences weighted by
the corresponding spatial probability distributions in Eq.(6)
and sampled within the analysis support S ⊂ Ω,

P̄ (α|in) ≡
∫

S

P̄ (x, α|in)dx

=
∫

S

P̄ (x|in)φ(I(x)− α)dx

P̄ (α|out) ≡
∫

S

P̄ (x, α|out)dx

=
∫

S

P̄ (x|out)φ(I(x)− α)dx (17)

where P̄ (α|x, {in/out}) is modeled by φ(I(x) − α). In
order to assure the unit-normalization over the support S,
the function φ can be set to the discrete Dirac delta func-
tion so as to construct a weighted histogram. For estimating
a continuous pdf from a small number of samples, Parzen
window with a uniform step kernel can be used as φ while
maintaining the unit-normalization. Substituting Eq.(13) to
Eq.(17) yields,

P̄ (α|in) = 2
|S|

∫
S

f(x|in)φ(I(x)− α)dx
P̄ (α|out) = 2

|S|
∫

S
f(x|out)φ(I(x)− α)dx (18)

We define the intensity likelihood functions as scaled con-
ditional pdfs with a fixed factor |S|/2 sampled over the sup-
port S,

f(α|in) ≡ |S|
2

P̄ (α|in) =
∫

S

f(x|in)φ(I(x)− α)dx (19)

f(α|out) ≡ |S|
2

P̄ (α|out) =
∫

S

f(x|out)φ(I(x)− α)dx (20)

Similar to the spatial likelihood case, the likelihood func-
tions, the conditional pdfs and the posterior pdfs for fore-
ground and background share the same scaling factor.
Moreover, the intensity pdfs are also proportional to ex-
pected values of the counts of data with a specific intensity
and a label. Therefore all these ratios become equivalent,

f(α|in)
f(α|out)

=
P̄ (α|in)
P̄ (α|out)

=
P̄ (in|α)
P̄ (out|α)

=
E[nα,in]
E[nα,out]

(21)

where E[nα,{in,out}] denotes the expectation of the num-
ber of data with the intensity α and inside or outside of the
target tumor.

The standard iterative approach for likelihood estima-
tion requires pre-assigned foreground and background la-
bels to each voxel during each iteration step. Our solution
utilizes the spatial likelihood functions in the place of the
pre-assigned labels, treating them as soft probabilistic seg-
mentation. Since the first fitting step in Section 2 already
provides robust and accurate target characterization, cap-
tured in f(x|in) and f(x|out), the iterative model updates
are not necessary for our solution.

Fig.1(c-f) illustrate the intensity likelihood estimation
processes. Using all data within the support (xi ∈ S, αi),
the foreground (Fig.1(e)) and background (Fig.1(f)) inten-
sity likelihoods are estimated by accumulating φ-smoothed
counts for each intensity value αi weighted by the corre-
sponding spatial likelihoods f(xi|in) and f(xi|out) shown
in Fig.1(d).

4.3. Analysis Support
The choice of the analysis support S is critical for the pro-
posed segmentation solution. The spatial extent of back-
ground covers an infinite range of the data space x. Thus a
background spatial likelihood function is not bounded and
cannot be normalized in the complete data space since the
normalization factor becomes infinity. For this reason, the
analysis support was introduced in Section 4.1 so that prob-
ability distributions can be defined within such a support.
However, the estimated background likelihood will be sen-
sitive to the varying range of S since such variation of the
support S would cause a large change to the normalization
factor. Determination of appropriate data space support is
therefore a general problem for modeling background prob-
ability distribution.



We suggest that the support S should be considered as
a function of the target scale. If a cup on a table is to be
segmented, for example, it is sensible to model the back-
ground using specific information of the table, not of the
house where the table is in nor of the city the house is in. In
our case, the Gaussian function fitted to the target structure
by the pre-process can provide such scale information in
the form of a confidence ellipsoid of N -D equal-probability
contour approximating the structure boundary. Utilizing
this, we parameterize the analysis support S as a function
of the ellipsoid,

S(c) ≡ {x|(x− u)tΣ−1(x− u) ≤ c} (22)

where the scalar c, the Mahalanobis distance of x from u
with covariance Σ, uniquely determines S. The remaining
task is to set the parameter c so that S covers all the ex-
tent of the target (e.g., cup) and a reasonable amount of the
background (e.g., table).

In Section 4.1, we formally derived the spatial likeli-
hood models in the Bayesian framework by assuming that
the prior of label distributions within S is unbiased (Pin =
Pout) and that the normalized background spatial likelihood
P̄ (x|out) assumes 0 at the mean u (P̄ (u|out)=0). These
two assumptions in fact uniquely determine S(c). In an-
other words, employing the form of the spatial likelihoods
in Eq.(5), Eq.(14) and Eq.(15) implicitly determines a spe-
cific S(c). An integral equation of unknown S(c) satisfy-
ing these conditions can be derived from Eq.(12), which de-
pends only on P (x|in),∫

S
P (x|in)dx = |S|

2|2πΣ|1/2

⇔ |S(c)| = ∫
S(c)

dx
= 2

∫
S(c)

exp(−1/2(x− u)tΣ−1(x− u))dx
(23)

The solution S(c) depends on the dimensionality N of the
data space x. For example, numerical solutions of Eq.(23)
for 1D, 2D and 3D cases are: c1 ≈ 6.1152, c2 ≈ 3.1871,
c3 ≈ 2.4931, respectively. Within this support, the proba-
bility mass of f(x|in) and f(x|out) over S are equivalent.

For the 3D segmentation, c3 = 2.4931 amounts to
roughly 52% confidence interval of the chi-square distribu-
tion with three degrees of freedom. Empirically, our pre-
vious studies for 3D tumor segmentation showed that the
equal-probability contour with c3 = 1.6416, derived from
35% confidence interval of the fitted Gaussian function, ap-
proximates the tumor boundary well. This suggests that
S(c3), resulted from our formal derivation, provides the
data range that includes only a thin layer of background re-
gion around the target, covering the complete foreground
and the background that only surrounds the target. This
is an appropriate analysis support for modeling the back-
ground because the background model estimated over this
support will not be strongly influenced by the non-target
neighboring structures that may appear within Ω.

4.4. Joint Likelihood Ratio
The joint likelihood ratio r(x) defined in Eq.(3) can be ex-
pressed as a function of the fitted Gaussian Φ(x;u,Σ) and
the input data I(x) by using the form of spatial and intensity
likelihood models derived in Sections 4.1 and 4.2,

r(x) =
|2πΣ|1/2Φ(x;u,Σ)

∫
S
|2πΣ|1/2Φ(x;u,Σ)φ(I(x)−α)dx

(1−|2πΣ|1/2Φ(x;u,Σ))
∫

S
(1−|2πΣ|1/2Φ(x;u,Σ))φ(I(x)−α)dx

(24)
This shows that the likelihood ratio at x with intensity value
α depends only on Φ(x;u,Σ) and I(x ∈ S).

The formal derivations presented in Sections 4.1 and 4.2
also assure that the ratios of the foreground and background
likelihoods are equivalent to the ratios of the posterior pdfs
normalized over the analysis support S(c). Thus we can
rewrite r(x) with such posterior pdfs given the indepen-
dence of x and α and Pin = Pout,

r(x) =
P̄ (in|x)P̄ (in|α)

P̄ (out|x)P̄ (out|α)
=

P̄ (in|(x, α))
P̄ (out|(x, α))

(25)

This justifies the joint likelihood ratio test segmentation in
Eq.(4) as the optimal Bayesian binary classification of each
voxel when the likelihoods defined in this section are used
and the LRT threshold th in Eq.(4) is set to one.

5. Algorithm Overview
The following summarizes the proposed semi-automatic N -
D figure-ground segmentation algorithm.

STEP1: Robust Anisotropic Gaussian Fitting [12, 14]:
Given a volumetric data I(x) and a marker xp

indicating rough location of the target blob structure,

1. Extract a volume of interest (VOI=I(x ∈ Ω))
centered at xp.

2. Perform the anisotropic Gaussian fitting, result-
ing in the robust estimate of target center u and
anisotropic spread Σ.

STEP2: Joint Likelihood Ratio Test Segmentation:
Given the estimated target center and spread (u,Σ)
and the VOI I(x ∈ Ω),

1. Estimate the foreground and background inten-
sity likelihoods f(α|in) and f(α|out) over the
analysis support S(cN ) using Eq.(14), Eq.(15),
Eq.(19), Eq.(20), and Eq.(22).

2. For each voxel (x ∈ S(cN ), α),
(a) Compute the likelihood ratio r(x) in Eq.(3)

using Eq.(14) and Eq.(15) and pre-computed
f(α|in) and f(α|out).

(b) Perform the likelihood ratio test in Eq.(4)
and assign the label ∈ {in, out} to (x, α).



Figure 2: 2D cross sections of 3D likelihood functions,
likelihood ratio, and segmentation results estimated for a
non-solid GGO nodule with a vessel. Top row (left to
right): input I(x), foreground spatial likelihood f(x|in),
foreground intensity likelihood f(α|in), joint foreground
likelihood f(x, α|in), joint likelihood ratio r(x). Bottom
row: FWHM segmentation result, background spatial like-
lihood f(x|out), background intensity likelihood f(α|out),
joint background likelihood f(x, α|out), segmentation re-
sult by the proposed method.

6. Experimental Results
A 3D implementation of the proposed method is applied to
volumetric lung tumor segmentation problem: delineating a
target lung nodule from background lung parenchyma with
the presence of other non-target structures such as vessels
and lung walls. Its performance is evaluated by using high
resolution chest CT images of 39 patients including 1310
lung nodules. The images are of size 512x512x400 voxels
(depth slightly varies across the patients) with 12 bit inten-
sity range. For each lung tumor, a rough location marker is
provided by an expert radiologist. The size of VOI is fixed
to 33x33x33 voxels. The width of the uniform kernel φ is
set to 512. The same parameter settings from [14] are used
for the robust Gaussian model fitting part.

Fig.2 shows 2D cross sections of various 3D likelihood
functions and resulting segmentations estimated for a non-
solid ground-glass opacity (GGO) nodules with an attached
vessel (top-left). The non-solid GGO nodules appear in
CT scans as small noisy (non-Gaussian) intensity distribu-
tions with relatively low intensity values. A recent clinical
study reported that this type of nodules have high likelihood
for developing into malignant tumors [5]. However, no
generic and effective solution to segment this type of tumors
has been proposed. It is difficult to segment such tumors
effectively by threshold-based methods such as [8]. The
bottom-left image in Fig.2 displays a segmentation result
by the conventional full-width-at-half-maximum (FWHM)
scheme, illustrating such a case. Our method provides cor-
rect segmentation (bottom-right) even with the presence of
the vessel acting as a non-target neighboring structure.

Fig. 3 shows examples of 2D views of 3D segmentation
results for five tumor cases. Results for both the anisotropic
Gaussian fitting and the joint LRT segmentation are shown
in the middle and right column of the figure, respectively.

Figure 3: Five examples of segmentation results shown in
2D cross section passing through the estimated tumor center
u. Left column: input data. Middle column: anisotropic
Gaussian fitted to the data by the method in Sec 2; ”+”:
marker xp, ”x”: estimated center u, ellipses: image-plane
intersection of 35% confidence ellipsoid of the estimated
Gaussian. Right column: segmentation results shown as
grayscale images with the segmented regions filled in with
white (255) value.

They illustrate the proposed method’s capability to han-
dle irregular 3D boundary geometries. The fourth row of
the figure also illustrates that the case with the presence of
neighboring lung wall was segmented correctly.

With the total of 1310 tumor cases, the Gaussian fitting
pre-process successfully approximated the tumor boundary
for 1139 cases. Our solution and the 4D space-intensity
joint-domain mean shift solution [13, 2] are compared us-
ing these 1139 cases. The error rates, confirmed manually
by expert’s eye-appraisal, were 5% (52 cases) for our so-
lution and 7% (77 cases) for the mean shift solution. The
most of failures by our solution were due to a few isolated
voxels near the target boundary being falsely segmented as



a part of the target when non-target structures were present
nearby. This can be mitigated by performing a connected
component analysis as a post-process. After such a post-
process, the error rate reduces to only 1% (11 cases). Also,
our solution significantly improves run-time efficiency. In
average, our solution runs in less than 3 seconds with a 2.4
GHz Pentium IV processor that is 3 times faster than the
mean shift solution.

7. Conclusion
This paper presented a robust, efficient, and accurate, semi-
automatic framework for segmenting the blob-like struc-
tures in multi-dimensional images. The solution is realized
by combining the robust anisotropic Gaussian model fitting
and the likelihood ratio test (LRT)-based non-parametric
segmentation in the joint space-intensity domain. The unifi-
cation is achieved by exploiting the fitted anisotropic Gaus-
sian as a spatial prior for modeling the likelihood functions
used in the latter non-parametric segmentation. We also
demonstrated that the LRT with its threshold set to one be-
comes equivalent to the optimal Bayesian binary classifica-
tion, when the likelihoods are estimated over the formally
derived analysis support. One of the advantages of our so-
lution is that the likelihood functions are estimated for each
data instance so that it provides robust segmentation results
regardless of different data acquisition settings without tun-
ing threshold parameters.

A 3D implementation of the proposed method is also
successfully applied to the problem of volumetric lung tu-
mor segmentation. Our experimental results demonstrated
that the proposed solution successfully and efficiently de-
lineates the irregular tumor boundary even for the difficult
non-solid GGO cases. Such technology can enhance the
accuracy and usability of the current stat-of-the-art volu-
metric tumor quantification and visualization methods for
computer-aided diagnosis applications, assisting to improve
overall medical diagnostic efficacy.

There are a number of open issues we plan to address
in near future. The final segmentation results of our solu-
tion depends on the correct model fitting by the first part.
In order to further improve the overall performance, there-
fore, we plan to improve the performance of the anisotropic
Gaussian model fitting by revising its automatic bandwidth
selection process. Furthermore, the proposed LRT-based
segmentation framework is not fundamentally restricted to
the Gaussian spatial prior used in this study. The extension
of our modeling solutions towards other types of functional
forms also remains as our future work.
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