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Purpose Despite tremendous advancements in tomographic imaging techniques, chest radiographs (CXR) 

remain the gold standard in pulmonary analysis mainly due to their low cost, low radiation dosage, and 

availability. Radiation dosage is of particular concern in pediatric applications [1]; accordingly, CXRs are 

still the preferred method of diagnosis in children. Therefore, there is a significant need for robust image 

analysis methods for pulmonary diagnosis that can yield clinical information from CXR thus avoiding high 

radiation dose associated with computed tomography images.  Lung field segmentation is the necessary 

initial step for any pulmonary analysis and diagnosis. Accurate delineation of lung field from CXR is 

challenging due to ambiguous boundaries of lung field, existence of pathologies, superposition of non-

target anatomical structures  e.g., rib bones and heart, anatomical variation of lung shapes and size 

across subjects, and technical variations (rotation, expiratory phase), especially in children. There have 

been previous attempts in the literature for the segmentation of lung field from CXR; however, most 

attempts struggle to accommodate large anatomical and pathological variations found in pediatric CXRs. 

In addition, state-of-the-art existing methods, such as [2], do not delineate parts of lung field behind 

aortic arch and apex of heart in CXR (Fig. 1) and therefore annotate the lung field only partially. To 

address these shortcomings, we aim to develop a method for accurate lung field segmentation to 

accommodate the local anatomical and pathological variations that occur especially for pediatric CXRs 

with viral infections. Furthermore, the proposed method aims to accurately delineate the lung field 

areas behind aortic arch and apex of heart (blue regions in Fig.1 (b)). 

Methods  Study subjects. 30 posterior-interior chest radiographs were collected at our institution from 

children between ages 0 to 2 years  including individuals with acute viral respiratory infections, chronic 

lung conditions, chest wall deformities, cardiovascular anomalies and healthy controls.  This study was 

approved by the Institutional Review Board at Children's National Health System. Lung segmentation 

model. We propose a weighted partitioned active shape model approach for the segmentation of lung 

fields. Traditional approaches of modeling the entire shape using one model are not optimal for 

structures with large shape and textural variability along their boundaries. In our proposed approach, 
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the lung field boundary is divided into several overlapping partitions to accommodate localized shape 

and appearance variations amongst subjects. Furthermore, the landmarks of training shapes are 

assigned weights according to their appearance confidence, thus using only reliable landmarks to 

deform the model. The method is divided into following main modules (Fig. 2(a)): (1) Shape 

Initialization: To infer initial lung shape, we adopt learning –based approach for landmark detection 

proposed in [2]; however, to increase robustness we also extract the ribcage as a contextual biomarker 

using a Hessian-based vessel enhancement filter. First, six manually annotated primary landmarks 

(shown in red in Fig. 2(b)) were obtained for each lung based on their distinctive anatomical appearance 

and ability to roughly define the shape of lung. Second, a feature set consisting of HOG and LBP [4] 

(31+58 features) are used in a cascade learning classifier for primary landmark detection. Finally, 

equidistant secondary landmarks (shown in green in Fig. 1(b)) are calculated along the lung contour 

using interpolation between the primary landmarks. (2) Shape Sparse Learning: To construct local 

partitions, the lung shape is divided into overlapping segments with consistent shape variations by 

performing soft-thresholding using fuzzy c-means clustering (Fig. 2(c)). The shape variation is 

determined based on the landmark position variation across training shapes and spatial distance. The 

optimal number of partitions is calculated based on the similarity matrix between position variation and 

spatial distance of landmarks. (3) Appearance Sparse Learning: A local appearance model consisting of 

three features is obtained to train local structure for each landmark: (i) normalized derivatives [3], (ii) 

tissue intensity probability (second class probability within three class fuzzy c-mean [3]), and (iii) 

elongated rib structure probability based on the vesselness filter (lungs are within the rig cage). 

Depending upon the image properties, presence of pathologies, and relevant discriminative information 

in the neighborhood, landmark locations may not be reliable; therefore, each landmark is assigned a 

weight based on a confidence metric. Landmarks with higher confidence weights have greater 

contribution in shape deformation.  Primary landmarks are assigned the maximum confidence weight. 

For secondary landmarks the confidence weight is assigned based on local covariance of the normalized 

derivatives, tissue intensity probability, and vesselness. The reason for using the covariance matrix as 

confidence metric is that it encodes the local discriminative appearance of shape landmark.  Lastly, the 

model fitting is performed individually for each partition and the optimal position of each landmark is 

determined by minimizing the Mahalanobis distance. The shape parameters of overlapping landmarks 

are calculated as mean shape parameters from the two overlapping partitions. 

Results The CXRs for testing range from normal to having severe abnormalities including bibasilar 

opacities and diffuse infiltrates having dimensions 1607×1320 pixels with 0.143 mm/pixel and 16-bit 

gray levels. For evaluation and training purposes, the manual segmentation of radiographs was 

performed under the supervision of two board certified pulmonologists. We used leave-one-out cross-

validation for evaluation purposes. Each lung in the CXR is divided into 6 partitions using inter- and intra-

fuzzy cluster fluctuations of fuzzy c-means clustering. Experimental results show the accuracy and 

performance potential of the proposed approach over conventional ASM. We obtained an average 

overlap score (True Positive/(True Positive + False Positive+ False Negative)) of 0.9091±0.068 compared 

to an overlap score of 0.8578±0.608 for mean shape + ASM (p-value<0.001). In addition, Euclidean 

distance between landmark positions obtained using the proposed method and manually annotated 

ground-truth was 1.8821±0.8612mm (4.8381±1.9126mm for mean shape + ASM, p-value<0.001). 



Conclusion We presented an accurate lung field segmentation method to overcome the challenge of 

large shape variations especially in pediatric subjects with large shape variations and lung pathologies. 

By using local appearance features, the proposed approach ensures that the areas behind aortic arch 

and apex of heart are included in the final segmentation. Future works includes individual co-

segmentation of red and blue regions (Fig. 1) for accurate comparison with state-of-the-art methods, as 

well as textural learning based analysis to extract biomarkers of pulmonary infection severity using chest 

radiographs. 
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