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Abstract

This paper presents robust click-point linking: a novel
localized registration framework that allows users to in-
teractively prescribe where the accuracy has to be high.
By emphasizing locality and interactivity, our solution is
faithful to how the registration results are used in practice.
Given a user-specified point, the click-point linking pro-
vides a single point-wise correspondence between a data
pair. In order to link visually dissimilar local regions, a
correspondence is sought by using only geometrical con-
text without comparing the local appearances. Our solution
is formulated as a maximum likelihood estimation (MLE)
without estimating a domain transformation explicitly. A
spatial likelihood of Gaussian mixture form is designed to
capture geometrical configurations between the point-of-
interest and a hierarchy of global-to-local 3D landmarks
that are detected using machine learning and entropy based
feature detectors. A closed-form formula is derived to spec-
ify each Gaussian component by exploiting geometric in-
variances under specific group of domain transformation
via RANSAC-like random sampling. A mean shift algo-
rithm is applied to robustly and efficiently solve the local
MLE problem, replacing the standard consensus step of the
RANSAC. Two transformation groups of pure translation
and scaling/translation are considered in this paper. We
test feasibility of the proposed approach with 16 pairs of
whole-body CT data, demonstrating the effectiveness.

1. Introduction

The main motivation of our work is to address clinical
demands forlocality andinteractivity in image registration,
which has not been well-addressed within traditional frame-
works. Given a pair of data to be compared, a domain regis-
tration is commonly performed for the data pair in order to
enable change analyses with necessary domain alignment.
Such a registration is often carried out as an offline pre-
process due to its high computational complexity. In prac-

tice, this high complexity prohibits us from using a registra-
tion solution interactively. On the other hand, the standard
(rigid) registration algorithms are of global nature, designed
to minimize an expert-designed error function which aver-
ages/integrates specific local errors over entire domain. Due
to this, it is often difficult to predict where accurate regis-
tration should occur. Moreover such globally averaged error
is hard to interpret toward specific clinical contexts by the
practitioners.

In many clinical settings, however, medical images are
only assessed locally at times but sequentially in an interac-
tive fashion. When evaluating a specific lesion or anatomy,
the registration accuracy atthe location must be high. Prac-
titioners are also not concerned if other non-target regions
are also correctly registered when they are not looking at
them. For example, in the longitudinal 3D data studies for
cancer therapy monitoring, a set of follow-up studies of a
patient with multiple lesions would be analyzed for each le-
sion and their potential metastases one by one sequentially.
These clinical demand and context have not been well ad-
dressed and cannot be exploited by the above global rigid
registration approach.

Addressing these issues, we proposerobust click-point
linking: a localized registration framework that allows users
to interactively prescribe a location where the accuracy has
to be high. Suppose that a user/practitioner specifies a 3D
data point location near a region of interest in one of the
data pair. We call such a user-provided data pointpoint of
interestor POI. The task of the interactive localized regis-
tration is then to find a single point-wise correspondence:
the point in the other data which corresponds to the given
POI in the original data.

This computational framework is designed to be faith-
ful to how the registration results are used for the longi-
tudinal study practice. In this scenario, practitioners may
specify a POI by a mouse-click in an arbitrary time-point
and mouse cursors for the other time-points are automati-
cally determined as the result of the linking. In comparison
to the common global registration frameworks, the local-



ity emphasis facilitates betteraccuracyandefficiencyby ig-
noring influences from, and avoiding computations of, the
non-target regions away from a POI. On the other hand, the
interactivity emphasis yields a tool with better user-centric
accuracy. Such a tool meets the above clinical demands by
providing practitioners a control for choosing locations at
which accuracy must be high.

The main technical challenge, however, ishow to link
corresponding regions that are changing or intrinsically
different. Suppose we are to study a follow-up data pair,
containing liver tumors imaged before and after a therapy.
For quantifying the therapy’s effectiveness, a registration of
the data pair would be required, followed by a change anal-
ysis. This is a classical circular problem. The registration
is required for analyzing interesting temporal changes but
the very changes make the registration difficult. The local-
ized registration, as we propose, makes the problem even
harder because it demands a harder task of finding acor-
respondence between visually very dissimilar local regions.
This consideration for matching visually dissimilar localre-
gions renders typical solutions ineffective. Template match-
ing [1] offers a natural solution to the click-point linking
problem by constructing a visual template centered at a POI
and search the other image with it. Although such a solu-
tion fits well to our aim, it should obviously fail to match
visually dissimilar local regions.

To address the above challenge, we propose a novel link-
ing solution which exploits geometrical context informa-
tion. We model the geometrical context as a set of rela-
tive configurations between a given POI to pre-computed
stable anchor feature points. By matching such geomet-
rical model, the proposed solution avoids matching an
appearance-based local feature that can be unreliable. The
stable anchor feature points are detected in a two-level pro-
cess. First, using a 3D object detection algorithm that stems
from real-time face detection [2], a classifier detector is
learned for each among a set of stable whole-body land-
marks, based on information from a large set of training
volumes. Hence given a reference and a floating volume
to match, the learned detectors are applied to extract global
whole-body landmarks on both volumes. Second, near the
POI, we also generate a number of local anchor points that
can be reliably matched between the two volumes. To this
end, we employ scale-invariant salient-region feature [3, 4]
for detecting the local anchors and exhaustive nearest neigh-
bor search for finding correspondences. In order to ro-
bustify against correspondence errors intrinsic to the sim-
ple matching technique above, we adopt RANSAC [5] ap-
proach. Our novel contribution is to extend the RANSAC
to our click-point linking context. Instead of explicitly es-
timating the underlying domain transform as in the origi-
nal RANSAC, our approach treats such transform as im-
plicit knowledge and estimates point-wise linking hypoth-

esis directly. Such a direct linking estimator is derived as
a closed-form formula by solving a set of equations rep-
resenting geometric invariances, under specific transforma-
tion group and data dimensionality, between a pair of poly-
hedra. This approach is efficient because it avoids estimat-
ing the transform which is unnecessary for our linking prob-
lem. The consensus among the multiple linking hypotheses
is achieved by using a mean shift algorithm. Together with
confidence measures, derived as a function of the saliency
scales, the set of multiple linking hypotheses are interpreted
as a spatial likelihood in a Gaussian mixture form whose
maximum likelihood estimate (MLE) corresponds to the de-
sired linking solution. We demonstrate that such local MLE
can be robustly and efficiently solved by using the variable
bandwidth mean shift method [6]. This paper presents two
instances of the proposed framework for 1) pure translation
and 2) scaling and translation. The effectiveness is evalu-
ated by using sixteen whole-body CT follow-up data that
are manually annotated.

1.1. Related Work

The recent development in the part-based object recog-
nition research [7, 8] has inspired our work. Epshtein and
Ullman [8] recently proposed an automatic algorithm for
detecting semantically equivalent but visually dissimilar ob-
ject parts. Our proposed solution can be interpreted as a
flexible online version of their batch learning-based frame-
work. The click-point linking concept has been previously
explored in some domain-specific cases e.g., lung nodule
detection [9]. Our aim is however to solve this problem in
a general setting with an emphasis of handling visually dis-
similar regions. The spatial likelihood formulation with its
mean shift solution is our unique contribution in this con-
text. Our idea to exploit the geometric invariance for ex-
tending RANSAC toward the mean shift-based MLE prob-
lem is new to our best knowledge and provides a generic
tool beyond the specific application focus of this article.
A previous work presented in [10] employed an entropy-
based salient region detector [3] to find anchor features, but
the method was sensitive to noise and anchor point corre-
spondence errors in one part of the volume could get prop-
agated to another part. In this paper we detect a hierarchy
of both global and local anchor points. The global anchors
include a sparse set of whole-body landmarks detected with
a machine learning approach, and on top of that, we use
salient region detector to extract more salient points as lo-
cal anchors near the POI. In more traditional setting, non-
rigid registration [11, 12, 13] aims to achieve locally ac-
curate global registration by allowing non-rigid transform
between the data domain pair. At a visually dissimilar
local region, however, this approach tends to be subopti-
mal because correspondence can be achieved only implic-
itly via smoothness assumption of neighboring transforma-



tion. Moreover typical iterative solution for this approach
tends to be time consuming due to the increased degrees
of freedom to be estimated. On the other hand, similar
to our approach, feature-based registration estimates a do-
main transform using a set of points [14] or curves/surface
patches [15, 16]. Both of these traditional approaches, how-
ever, focus on global domain registration and do not of-
fer simple ways to make the registration process interac-
tive and local. Finally, landmark-based registration [17] is
also related to our framework in the sense that both assume
user-provided landmarks specifying where the registration
must be accurate. However they aim at completely different
technical and application goals. The former finds a smooth
domain map from given correspondences while the latter
estimates a single correspondence given a POI.

2. Robust Click-Point Linking

This section formally introduces the robust click-point
linking problem. Suppose that a pair of images are given to
be registered. Without loss of generality, we call oneref-
erence imageIr(xr) and the otherfloating imageIf (xf )
wherexr ∈ R

3 andxf ∈ R
3 represent coordinate vari-

ables in their respective continuous domains. The pair of
the domains are assumed to be related by an unknown lin-
ear transformationTθ : R

3 7→ R
3 parameterized byθ so

thatxr
Tθ7−→ xf .

Now we suppose that an arbitrary click pointcr ∈ R
3 is

given as a POI in the reference domainxr. Then the task of
click-point linking is defined as the estimation of the point
cf ∈ R

3 in the floating domainxf which corresponds to
the POIcr in the reference domain. The true solutioncf

can be defined if we know the true domain transformation
Tθ such thatcf = Tθ(cr).

The standard registration solutions aim to estimate the
domain transformation̂Tθ̂ by solving a data-driven energy

minimization problemθ̂ = argminθE(θ, Ir, If ). Once
the domain transformation is estimated correctly, the click-
point linking becomes trivial aŝcf = T̂θ̂(cr). However,
estimating the transformation from noisy data is far from
trivial. The estimation accuracy is very sensitive to the er-
rors in correspondences in the feature-based framework, for
example. The iterative solutions can also be computation-
ally expensive.

In our approach, the linking problem is solved by directly
optimizing a spatial likelihood function over the location
variablexf without explicitly estimating the domain trans-
formation,

ĉf = argmaxxf
L(xf |cr, Q) (1)

whereL(xf |cr, Q) denotes a spatial likelihood function in
the domain of the floating image that is conditional to the
POI cr in the reference image and a set of corresponding
landmark featuresQ.

The setQ containsN correspondinglandmark features,
forming the geometrical context of the POIcr. We use the
machine learning and entropy-based approaches to detect a
hierarchy of global-to-local landmarks inIr andIf as de-
scribed in the next section, resulting in

Cr = {pr1, ..,prN}, Cf = {pf1, ..,pfN}

Then a set ofM corresponding feature pairs is constructed
from Cr andCf

Q = {q1, ..,qM}

whereqi = (qri,qfi), qri ∈ Cr, qfi ∈ Cf , andM ≤ N .
The above generic maximum likelihood formulation al-

lows us to exploit the mean shift algorithm which results
in computational efficiency and desired robustness against
false correspondences. The following describes details of
the solution in steps.

2.1. Global-to-local Landmark Detection and
Matching

In order to robustly detect a sufficiently number of an-
chor landmarks for constructing the geometric context in
3D CT volumes, we use a learning-based object detection
approach to detect a sparse set of whole-body landmarks
as stable global anchors, and near the POI, we apply an
entropy-based salient region detector to extract a denser set
of salient points as local anchors.

The whole-body landmark detection algorithm stems
from the real-time face detection algorithm [2] in computer
vision. It learns a classifier (or detector) for each land-
mark based on its neighborhood appearances in a large set
of training volumes. An intermediate representation,in-
tegral image, together with Cascaded AdaBoost Training
on simple 3D rectangular box features that are reminiscent
of Haar basis functions, allow rapid processing of images
while achieving high detection rate. For training purposes,
we collectedK(= 46) whole-body CT volumes from nor-
mal subjects, and in each volume, three experts are asked
to manually placeN(= 18) landmarks, as consistently as
possible. The landmarks are distributed in the head, neck,
chest, abdomen and pelvis regions. To deal with challenges
such as added computational complexity in 3D and the need
for reliably detecting multiple targets instead of one target,
we train a multi-resolution classifier in the scale space for
each landmark, have each classifier output several detection
candidates, learn a Point Distribution Model (PDM) [18] to
represent the probabilistic spatial distribution of landmarks,
and use the PDM model to assist in selecting the top can-
didate for each landmark so that both local appearance and
global context constraints are satisfied.

Let us denote the detected whole-body landmarks on the
reference imageIr asAr = {pr1, ..,prn}, and the land-
marks on the floating imageIf as Af = {pf1, ..,pfn},



then correspondences betweenAr and Af can be estab-
lished trivially since the identity of each landmark is known.
We letQA = {q1, ..,qn} denote the set of corresponding
landmark feature pairs constructed fromAr andAf , where
qi = (qri,qfi), qri ∈ Ar andqfi ∈ Af . These whole-
body landmarks and their correspondences provide global
geometric contexts in 3D CT volumes, and we also utilize
them to achieve a global rough alignment ofIr andIf using
the Least-squares weighted alignment algorithm [19].

We further establish local geometric context near the
POI, cr, using salient region features [3, 4]. Our imple-
mentation is similar to that described in [10]. Instead of
looking for salient points in the entire image however, we
only utilize salient points in a subvolume centered at the
POI, and with a radius defined by a few closest whole-body
landmarks. First, in the subvolume onIr, a set ofNr salient
region features,Br, are detected. Second, a corresponding
subvolume onIf is computed based on whole-body land-
mark correspondences, and in this subvolume, a set ofNf

salient region features,Bf , are detected. We then find a set
QB of corresponding salient region features by using the
following exhaustive search strategy.

Local Salient Region Feature Matching:

A1 Selectm < Nr features{or1, ..,orm} from Br which
are closest to the POI,cr, in terms of Euclidean dis-
tance.

A2 For each reference featureori,

A2a Exhaustively compute similarities against theNf

floating domain features{ofj}. The similarity
functions can be either geometry or appearance
based and/or a combination of both.

A2b Select the most similarofj and set it asofi.

A2c Add the correspondenceqi = (ori,ofi) to the
setQB .

Now putting global whole-body landmarks together with
local salient points, we have the complete set of anchor fea-
tures: Cr = {Ar, Br}, Cf = {Af , Bf}, and a set of
(n + m) corresponding feature pairs:Q = {QA, QB}.

The above global-to-local anchor feature detection
scheme is quite efficient for several reasons. First, the
whole-body landmark detectors are learned offline. Sec-
ond, whole-body landmark detection only needs to be run
once, and then the landmarks can be used for finding cor-
responding point for any POI clicked in the reference do-
main. Third, salient region features can be pre-computed in
the whole-body, so that those close to a POI can be iden-
tified quickly. It should be noted that the simple match-
ing algorithm between salient point features has very low
computational complexity and it is meant to provide only

rough results. It is thus likely thatQ contains non-negligible
number of false correspondences. The robust computational
steps that follow will allow us to remedy the effect of such
possible false correspondences.

2.2. Spatial Likelihood by Modeling Geometric
Contexts

We model the target spatial likelihood function
L(xf |cr, Q) of the link estimatecf as a L-component
Gaussian mixture. First we construct a set of allK-subsets
of Q. We denote such a set byP = {Pl|l = 1, .., L} where
L =

(
M
K

)
is cardinality ofP , Pl = {qk|k = 1, ..,K} is a

K-subset ofQ, andqk = (qrk,qfk) ∈ Q is thek-th cor-
respondence inPl. When the cardinality ofQ is large,P
can be randomly sampled, resulting inL <

(
M
K

)
. TheL-

component Gaussian mixture givencr andP is then defined
by

L(xf |cr, P ) =
L∑

l=1

p(xf |cr, Pl) (2)

p(xf |cr, Pl) = N (xf ;ml, σ
2
l I) (3)

ml = ft(cr, Pl) (4)

σl = gt(cr, Pl) (5)

whereft andgt are the estimator of the mean and the width
of thei-th Gaussian component given aK-subsetPl that is
randomly sampled fromQ. Through a geometrical inter-
pretation, we derive closed-form formulae offt andgt by
exploiting geometric invariance between a pair of polyhe-
dra under a specific group of domain transformation. The
form of ft andgt depends on the domain’s dimensionality
and the type of transformationTθ. In this paper, we con-
sider solutions inR3 for two transformation groups, i) pure
translation and ii) scaling and translation, although their ex-
tension to more complex projective transformation is also
possible using the same strategy.

First suppose that true domain transformTθ is an in-
stance of a specific linear transformation group. Then we
can choose the value ofK such that the correspondences in
a Pl can sufficiently constrain the full degrees of freedom
of the transformation, similar to the well-known RANSAC
setup [5]. Next suppose thatcr, Pl and unknowncf form
a pair of polyhedra withK + 1 corresponding vertices
(cr,qr1, ..,qrK) and (cf ,qf1, ..,qfK). By construction,
these polyhedra must satisfy certain geometric invariances
under the supposed transformation group, resulting in a set
of equations that must hold true.ft is then given by solving
such equations explicitly aboutcf . The following demon-
strates this procedure in some details.

Let us arbitrarily pick a vertex pair inPl and denote it
ql = (qrl,qfl). We define a pair of local coordinate frames
for both domains by setting their origin at(qrl,qfl). Then



Figure 1. A 2-subset inPl sampled randomly and interpreted ge-
ometrically as a pair of similar triangles. Circles, cross and ques-
tion mark denote anchor features, click-point and link point, re-
spectively. The triangles are uniquely represented by either three
vertices in a global frame, as shown in the light-color vectors, or
two vectors in the respective local frames centered at(qrl,qfl),
as shown in the dark-color vectors.

cr andcf can be described by position vectorscrl andcfl

in their respective local frame.

cr = crl + qrl

cf = cfl + qfl

Figure1 illustrates these position vectors and local frames.
cfl is the unknown that must be estimated givencr andPl.

WhenK = 1, we haveP = Q andL = M . This suffi-
ciently constrains only pure translation case. The derivation
of ft is straightforward. Vectors are invariant under the sup-
posed pure translation, resulting in an equationcfl = crl.
The solution immediately gives

ml,K=1 = ft,K=1(cr, Pl) = cr − qrl + qfl (6)

When K = 2, eachPl yields two correspondences
providing 6 constraints, which are interpreted as a pair
of geometrically similar triangles inR3 as shown in Fig-
ure1. These constraints are sufficient to determine scaling
and translation (4 DOF) and pure translation (3 DOF). Let
qla = (qrla,qfla) denote a single remainder after choos-
ing ql from Pl. The similar triangles are described by
two corresponding vectors(qrla − qrl, crl) and (qfla −
qfl, cfl). This transformation group assures invariance of
corresponding normalized vectors and ratio of correspond-
ing vector norms, resulting in

cfl

‖cfl‖
=

crl

‖crl‖
,

‖cfl‖

‖qfla − qfl‖
=

‖crl‖

‖qrla − qrl‖

where‖ · ‖ denote a vector norm. Simple algebra reveals
that the desired estimator of thel-th Gaussian component
mean withK = 2 is derived as follows.

ml,K=2 = ft,K=2(cr, Pl)

=
‖qfla − qfl‖

‖qrla − qrl‖
(cr − qrl) + qfl (7)

For modeling the Gaussian width, we can interpret scales
Sqrk

andSqfk
of the salient-region features inPl as statis-

tical uncertainty for localizing the feature points. In this
paper we assume that deformation due to the domain trans-
formation is not too large, allowing us to ignore the uncer-
tainty propagation factor. Therefore the uncertainties atthe
features can also be treated as uncertainties at the estimated
component mean.

σl = gt(cr, Pl) =

∑K
k=1 Sqrk

+
∑K

k=1 Sqfk

2K
(8)

Finally, given a sequence ofPl’s in P , the successive
application offt andgt results in a set ofL link estimates
forming the Gaussian mixture spatial likelihood. This link-
ing framework can be interpreted as an extension of the
well-known RANSAC. While the original RANSAC first
estimates a set of domain transformations via random sam-
pling, our solution computes a set of point-wise link es-
timates using the equivalent sampling scheme but implic-
itly using the knowledge of domain transformation as con-
straints. This is a natural extension because the goal of
click-point linking is to find a point-wise correspondence
rather than the domain transform that is the goal of the
RANSAC.

2.3. Mean Shift-based Robust Maximum Likeli-
hood Estimation

This section describes our robust and efficient solution
for the maximum likelihood estimation (MLE) problem in
(1) with the likelihood model (2-5), providing the final link-
ing estimate. Due to the feature matching errors discussed
in Sec.2.1, the likelihood function becomes multi-modal
with the false correspondences creating outlier (largely de-
viated) modes. Our task becomes estimating the mixture
mode due only to the correctly found correspondences.
We solve this task by using the variable-bandwidth mean
shift (VBMS) proposed in [6]. VBMS is an extension of
the original mean shift to spatially variant bandwidth case
where different data points may have different significance.
This extension allows its application to solve an informa-
tion fusion problem where the task is to estimate the most
plausible solution given a set of hypotheses described in a
Gaussian mixture model. In comparison the the original
RANSAC, this can be interpreted as an application of the
mean shift to the consensus step of the RANSAC.

Let xi ∈ R
3, i = 1, ..,M denote a set of 3D

data points, andHi is a 3D matrix indicating uncer-
tainty or significance associated with the pointxi. The
point density estimator with 3D normal kernel at the
point x is given by f̂v(x) =

∑M
i=1 N (x;xi,Hi) =

(2π)−3/2

M

∑M
i=1 |Hi|

−1/2 exp(− 1
2 (x − xi)

T H−1
i (x − xi)).



The VBMS vectormv(x) is then defined by

mv(x) = Hh(x)
M∑

i=1

wi(x)H−1
i xi − x (9)

where Hh(x) denotes the data-weighted harmonic mean
of the bandwidth matrices atx such thatH−1

h (x) =∑M
i=1 wi(x)H−1

i . The weightwi(x) represents the influ-
ence fromi-th component atx normalized over all the com-

ponentswi(x) =
|Hi|

−1/2 exp(− 1

2
(x−xi)

T H−1

i (x−xi))∑ M
i=1

|Hi|−1/2 exp(− 1

2
(x−xi)T H−1

i (x−xi))
.

It can be shown that the VBMS vector is an adaptive esti-
mator of normalized gradient of the underlying density such

that mv(x) = Hh(x) ∇̂fv(x)

f̂v(x)
. Then the following itera-

tive algorithm is provably convergent to a density mode in
the vicinity of the initializationxinit in the gradient-ascent
sense but without nuisance parameter tuning

y0 = xinit

yn+1 = mv(yn) + yn (10)

We denote the convergence of the iterator byy∗.
We apply VBMS to our problem by settingxi = ml and

Hi = σ2
l I as defined in (4) and (5), respectively. Our solu-

tion performs a single VBMS iteration from an initialization
xinit estimated fromCr andCf .

Local MLE by VBMS:

B1 Compute the meanszr andzf of salient-region feature
points inCr andCf , respectively.

B2 Compute the mean biasz = zf − zr betweenCr and
Cf .

B3 Set the initialization of a VBMS iterator by the mean
bias-corrected POI in the floating domain:xinit =
cr + z

B4 Perform the VBMS algorithm in (10), resulting in the
convergencey∗.

B5 Results in the linking estimatêcf = y∗.

3. Experimental Studies

We evaluate the proposed framework by testing our 3D
implementation with a set of 16 whole-body CT volume
pairs. Two volumes in each pair are scans taken at differ-
ent time-points of the same patient. The same scanner pro-
tocols were used between each pair. The original volume
with a stack of 512-by-512 axial slices are down-sampled
to 128-by-128 slices.

The following setting of the proposed algorithm was
used. For each volume, a number of18 whole-body land-
marks are detected. The two volumes are globally aligned

Figure 3. Experimental results. Top: average errors as a function
of 16 dierent patients. Bottom: average errors as a function of 14
dierent click points. For feature matching, an unbiased linear com-
bination of the geometric and appearance similarity (2 intensity
histogram distance) is used as similarity function. Left: with only
salient region features. Right: with global-to-local landmarks. All
the errors are calculated with the unit of voxels.

based on whole-body landmark correspondences. A num-
ber of50 salient region features are also pre-computed. For
each click-pointcr, besides5 nearest whole-body land-
mark correspondences, the salient region feature match-
ing algorithm is performed with10 nearest salient features:
n = 5,m = 10. For salient region feature matching,
two similarity functions are considered in this study: ge-
ometric Euclidean distances and theχ2 distance of inten-
sity histograms. A solution for scaling and translation with
K = 2 is considered. For testing, we used pre-recorded
3D point correspondences that are manually labeled by ex-
perts. There were 14 points for each volume distributed
in pelvis, lung, kidneys and collar bones. For each pair,
these 14 points in the reference image are used as POIs and
Euclidean errors are computed between the estimated links
cf and the ground-truth links in the floating domain ofR

3.
The total of 224 test cases (16 patients over 14 points) were
evaluated. We also consider a post-process for refining the
estimated click-point by using a template matching-based
refinement. The size of the spherical template around each
point was automatically estimated by using the maximum
entropy criterion [4].

Figure 2 shows some illustrative examples. For the
shoulder case, significant dissimilarity of central torso re-
gion indicates a body twist between the image pair. This ex-
emplifies the advantage of the click-point linking approach
over the rigid global registration which cannot assure spe-
cific locations to be accurate. In the follow-up settings, tu-
mor and heart are regions that often change in appearance
as are shown in the figure. Our results show successful link-
ing, indicating the effectiveness of this approach.

Fig. 3 shows the result of our experiments. The top



Figure 2. Three illustrative examples. Top: reference images with POI.Bottom: floating images with link estimates. Ellipses indicate
saliency feature scales shown with anisotropic voxels. Left: shoulder bones. Middle: liver tumor. Right: heart.

row shows the average errors plotted over different patients.
The bottom row shows those plotted over different click
points. For feature correspondence matching, we consider
a similarity function as a linear combination of geomet-
ric Euclidean distance with the mean bias adjustment and
an appearance-based distance usingχ2 distance of inten-
sity histograms. We compare the results of our system with
another system using only salient region features shown in
[10]. The left column shows the results with the system us-
ing 10 salient region features only. The total average and
median errors were 4.68 and 3.10 voxels, respectively. On
the other hand, the results with the proposed system us-
ing the global-to-local landmark hierarchy are shown in the
right column. The average and median errors were 3.78 and
2.70, respectively. For extracting 18 whole-body landmarks
and 50 salient region features in a 3D volume with 128 by
128 slices, it took roughly 2.8 minutes while it took only a
fraction of second for the rest of processing. Overall, the
average errors were in the range of 3 to 5 voxels, demon-
strating the feasibility of the proposed methods. The results
also show that the accuracy depends strongly on patients but
not as strongly on click points. Visual inspec- tion revealed
that higher errors (e.g, patient 7 and 14) were caused mainly
by the outlier failures due to lack of corresponding salient
region features between pairs. The usage of the appearance-
based similarity and post-refinement slightly improved ac-
curacy. However the improvement was small and made out-
lier errors actually worse. For the inliers, the average errors
were smaller than 3 voxels with the post-refinement.

4. Conclusion and Future Work

This article proposed a novel framework for robust click-
point linking. In order to derive a robust solution for link-
ing visually dissimilar local regions, such as changing tu-
mors, we proposed a framework that extends the RANSAC

to our linking problem. Given a set of corresponding fea-
tures found by the cascade and entropy-based detectors, the
geometrical context of arbitrary POI is modeled by a Gaus-
sian mixture spatial likelihood built by using a RANSAC-
type random sampling. Then variable bandwidth mean shift
is utilized for solving the MLE problem robustly and effi-
ciently. Our experimental study demonstrated the robust-
ness of the proposed approach using hand-labeled whole-
body CT data set. We are currently working on extending
our current solutions to account for uncertainty propagation
and similarity and affine transformation. We also plan to
further improve robustness and efficiency of feature extrac-
tion and matching parts.
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