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Abstract

This chapter presents the theory and design principles tselérive semi-automatic algorithms
for pulmonary nodule segmentation toward realizing a bédiaand reproducible clinical application
for nodule volumetry. The proposed algorithms are desigoele robust against the variabilities due
to 1) user-interactions for algorithm initialization, 2)tached or adjacent non-target structures, and
3) non-standard shape and appearance. The proposed tHisyam elegant framework to introduce
the robust data analysis techniques into a solution for lrodegmentation in chest X-ray computed
tomography (CT) scans. The theory combines two distinctepts for generic data analysis: automatic
scale selection and robust Gaussian model fitting. The atiific is achieved by 1) relating Lindeberg’s
scale selection theory in Gaussian scale-space [1], [2ptodDiciu’s robust feature space analyses with
mean shift in Gaussian kernel density estimation [3], [4] &) extending both approaches to consider
anisotropicscale from their original isotropic formulations. This ghier demonstrates how the resulting
novel concept ofanisotropic scale selectiogives a useful and robust solution to the Gaussian fitting

problem used as a part of our robust nodule segmentatioticgwsu

Keywords: segmentation, pulmonary nodules, chest CT, automatie széction, anisotropic
scale-space, Gaussian scale-space, Gaussian fittingst restimation, mean shift, scale-space
mean shift.



l. INTRODUCTION

Lung caner is the leading cause of cancer death in the U.$. avitestimated 219,440
new cases expected in 2009 [5]. Chest X-ray computed tombgrépT) scan offers one
of the most effective diagnostic tools for this cancer inhbprimary and metastatic cases.
Lung cancer in a CT scan commonly exhibits a focal conceontratif high-intensity values
inside lung parenchyma, known as pulmonary nodules. Punyonodules vary largely in
their geometry, topology, and pathology [6]. Nodules mapesgy solitary or attached to other
pulmonary structures, such as blood vessels and pleurfalceuf7]. The size of visible nodules
varies from 1 to 30 mm in diameter [8]. While many small nodylesg., < 10mm) are benign,
some of them can be malignant, whose correct diagnosis plagey role for early detection
of lung cancers [9]. Nodules can also appear solid, as wefaas or non-solid, known as
ground-glass opacity (GGO) nodules [10], [11]. The GGO eslare clinically significant due
to its link to aggressive adenocarcinoma [11], [12] and mexddly challenging to characterize

due to its ambiguous appearance [13], [14], [15].

A. The Problem: Pulmonary Nodule Segmentation

Pulmonary nodule segmentation aims to delineate the exgfetiitese nodules in CT, pro-
viding a critical foundation of computer-aided diagno€AD) for lung cancers [16], [17], [18].
Due to its increasing clinical significance, the pulmonaoglule segmentation has been actively
studied in recent years along with the rapid advances of itife fesolution thin-slice and multi-
detector CT technologies [19], [20], [21], [22], [7], [23R4], [25], [26], [14], [27], [28], [29],
[30], [31], [32], [15], [33], [34], [35].

Accurate nodule segmentation is a crucial prerequisiterfany diagnostic and treatment
procedures for lung cancer, such as studying tumor growfoliow-up [36], [37], monitoring
tumor response to therapy [38], [39], screening for earliecteon [40], [41], and classifying
tumor malignancy [42], [43]. Nodule volumetry, the measneat of 3D volume of a nodule,
requires accurate segmentation [36], [37], [38], [39],]{445], [46], [30], [31], [47], [48], [49],
[50], [51]. In a tumor follow-up or therapy monitoring studgumor growth/response can be
characterized by differentiating nodule’s volume meadwatedifferent time-points, replacing the
traditional 2D-based RECIST and WHO protocols [38]. The sedatem also defines a local

image area, from which image features can be extracted foreilucomputational analyses. For



example, lung cancer screening by computer-aided-dete@@ADe) often enhances the ovérall
detection accuracy by segmenting detected nodules as @apalysis to remove false-positive
cases [52]. Tumor malignancy classification in computdedi diagnosis (CADx) will also
rely on accurate segmentation for extracting image appearéeatures whose quality dictates
the overall classification performance [53]. Thus imprgvismccuracy of nodule segmentation
has direct impact to these clinical tasks. While segmentatiblarge solitary nodule can be
straightforward, small or GGO nodules cause difficulty hseaof the partial volume effect
(PVE) [13], [15], [30], [31].

B. The Motivation: Reproducibility in Nodule Volumetry

Beyond the demand for accuracy, the major technical chadléagng the pulmonary nodule
segmentation is reproducibility. Recent reports on noduinetry have revealed that there
are significant inter-scan and inter-observer variabilityvolume measurement by using the
segmentation solutions currently available at the clinmactice [39], [44], [46], [47], [48],
[49], [50]. This limits clinical applications of the segntation-based volumetry to characterize
tumor’s growth in a short time interval. The causes for theriscan variability include variations
in image acquisition and reconstruction settings [44]],[449], while those for inter-observer
variability include uncertainty in the results of segmdiotaalgorithm employed [47], [48], [50].
Pulmonary nodule segmentation is a semi-automatic preeethwolving user-determined seed
points to indicate a target nodule to be segmented. Difteesaders, or a single reader studying
the same scan more than once, may produce different seetd,pransing different segmentation
results of the same nodule. In percentage error of estinvatedhe, this inter-observer variability
can be as high as 20% [39]. Despite the increasing intenegialmonary nodule segmentation,
there is a general lack of studies that focus on designindiabke and robust segmentation
solution against such variabilities. This chapter corgtaimaterials previously published by the
author in [24], [25], [14]. The rest of chapter is organizedfive sections, each of which is
dedicated to describe our overall segmentation algoritesigth, the theory of anisotropic scale
selection, the robust anisotropic Gaussian fitting alporg, the results of our experimental
evaluations, and our conclusive remarks, respectively.

[l. OVERALL SEGMENTATION ALGORITHM DESIGN
We design reproducible nodule segmentation solutions dhyaiag inter-observer and inter-

scan variabilities in their results. Our approach cons$the three successive steps as follows:



1) Fit an anisotropic Gaussian model to an input image coimgia target nodule, giver‘}] a
single voxel seed located nearby the target,
2) Extract an ellipsoidal boundary approximation from théeéi Gaussian as a parametric
characterization of the target, and
3) Segment the target nodule more accurately by refiningdhenpetric characterization using
the fitted ellipsoid as an initialization of a further nonspetric segmentation procedure.
1) Gaussian model fittingplays a key role for designing our robust nodule segmemtatio
solution. Suppose that the intensity distributiffx) of nodule’s CT appearance can be approx-
imated by a product of a Gaussian function (i.e., multivariaormal distribution)®(x) and a
positive amplitude parameter.

9(x) = a X &(X)|xes (1)

where S is a set of data points in the neighborhood of the center imtat, in which the

Gaussian approximation is supposed to be valid such that

f(x) = g()|xes (@)

A d-variate isotropic Gaussia®;(x) is defined by

(x—w)'(x—u)
202

Such a Gaussian mode{x; u, o, «) with d = 3 can be fitted to the nodule’s CT appearance by

&;(x;u,0%) = (2m0?) "% exp(—

) 3)

estimating the centeu, width o, and heighin of the Gaussian that appears most similar to the
input.

In order to regularize this estimation process over disonep between the nodule’s true
appearance and the standard Gaussian model, we considethgmoimage data. Gaussian
scale-space [54], [55], [56], [1], [57], [58] provides susmoothed data in a series of images
blurred by Gaussian filters of increasing widths, Gaussaalesspace. : RY x R, — R is a
one-parameter family of d-variate continuous signaf : R? — R provided by a convolution

with isotropic Gaussian kernelg;(x; 0, k) with increasing (band)widths or scalés> 0.
L(x;h) = f(x) * &(x;0,h?) = f(y)®i(x — y; 0, h?)dy (4)
Rd

Such a linear scale-space is known to be a solution of thesiliffi equatio®, L = 1/2V?2L [54],
[55] initialized by L(x;0) = f(x).

Automatic scale selectiois an interesting problem defined over this scale-space:



Find the scale from a set of analysis scales (i.e., filter vajitinat provides the bsest
estimate of the local image structure’s size, known as chiarestic scale.
A well-known solution to this problem was first proposed bpdéeberg [1], [2]; The characteristic
scaleh* of a local image structure is defined by the local maximum ef tlormalized scale-
space derivatives over scalesand spacex. When blob-like nodular structures are considered,
the derived characteristic scalé and its locationc* can be treated as the widthand centem
of the Gaussian fitted to the underlying blob. In this sengajéberg’s scale selection solves the
Gaussian fitting problem. This concept with a Laplacian otiss&an (LoG) case has recently
been exploited for pulmonary nodule segmentation [59]].[Blowever, the major shortcoming
of this approach is that the isotropic Gaussian approxonas too restrictive to capture the true
appearance of nodules accurately. In the 3D domain, thisuatedo approximating a nodule
by a spherical blob. An obvious extension is to employediipsoid to approximate a nodule by

fitting an anisotropicGaussian®, (x),
1
Py (x;1, %) = |27%]/2 exp(—i(x —u)'E 7 (x—u)) (5)

where | - | denotes the matrix determinant abilis a d x d symmetric positive semi-definite
(SPSD) covariance matrix, which determines the shape ofithariate anisotropic Gaussian.
This chapter presents two approaches to address this mxtens

The first approach exploits the anisotropic scale seleclitve Lindeberg’s scale selection
principle can be extended to anisotropic scale-sgaee H) that consists of a group of images
blurred by Gaussian filters with varying scales and oriéonat[1], [60], [25]. Anisotropic scale
selection determines the covariance matixby finding a local maximum of the normalized
derivatives of the anisotropic scale-space a¥(@r+1)/2 free parameters forming the anisotropic
scaleH € SPSD(d), whereSPSD(d) denotes a set of allx d symmetric positive semi-definite
matrices. Various selection criteria have been proposeditgeberg, as well as by the author,
using the second moment matrix [1] and the Hessian matri, [@3]. More details of this
approach will be described in Section IIl.

The second approach is based on a stability-based scadicelmspired by the work by
Comaniciu on data-driven bandwidth selection for kernelstgrestimation (KDE) [3]. In this
work, mean shift [4] was used to define a basin of attracfiarf each mode in a KDE function.
An isotropic Gaussian was fitted to each mode by robust Egstres estimation of local mean

u and variances? using data statistics collected only from the baSinThis was iterated for



successively increasing analysis bandwidths, resulting set of fitted Gaussian models. 6The
stability-based selection chose the scale that producedethist change in the fitting results
when analysis bandwidth was perturbed. To apply this fos@npic Gaussian fitting, we have
translated this method to 1) Gaussian scale-space by &rpglais similarity to the KDE with
Gaussian kernel [24], [25] and to 2) anisotropic Gaussiandigg a total least-squares with the
SPSD constraint [61], [62], [24]. More details of this apgeb will be described in Section V.
2) Ellipsoidal boundary approximationis given by an equal-elevation contour of the fitted
anisotropic Gaussian model. Another definition of this kang is by a point set with equal

Mahalanobis distance from the ceniemf the fitted Gaussian,
dar(x0, %) = (x — u)' S (x — u) )

In 3D, this will form an ellipsoid whose principal axes c@apends to the eigen vectors of
the inverse of the estimated covarianEeand whose radii to the square root of their eigen
values. Deriving an ellipsoid from a Gaussian function meggia threshold parameter of the
fixed elevation or Mahalanobis distance. In our previouskwd?], we have experimentally
chosen this distance value as 1.6416, corresponding to5¥ec®nfidence limit of the normal
distribution in 3D.

3) Boundary refinementtakes the derived ellipsoidal boundafy|d,,(x;u,X) = 1.6416}
as an initialization to further refine the boundary segmenaAccurate volumetry requires this
process as the ellipsoidal approximation may cause a signtfbias to its volume estimate. Any
deformable surface methods, such as the level set methddcgg3 be used for this task. Other
approaches include spatiotemporal mean shift cluste@6y dnd likelihood ratio test [27].

This chapter focuses on the first of this three-step nodygmeatation framework. The two
proposed Gaussian fitting approaches will be revisited enrtbxt sections with their detailed

descriptions, as well as discussion on their robustnessstigaariability typical in our data set.

[1l. ANISOTROPICSCALE SELECTION
This section presents the theory for anisotropic scaletete The automatic scale selection
relates the characteristic scale of underlying object & ahalysis scale used for constructing
the scale-space. Extending this to anisotropic scaleds/@lparadigm to estimate the Gaussian
covariance matrix by evaluating data represented in arotofEc scale-space. It was Lindeberg

and Garding who pioneered this concept, calling it affine $S&n scale-space and affine shape



adaptation [1], [60]. Later Okada et al. [25] extended thasrfework as anisotropic scale seleétion

to include more scale selection criteria. This sectionofel the notations used in Okada et al.

A. Anisotropic Scale-Space and Its Derivatives

Anisotropic scale-space is a generalization of the isatrepale-space in Eq.(4) by consid-
ering an anisotropic Gaussian kernel characterized byla parameterized symmetric positive
semi-definiteanalysis scale matridl € SPSD(d) € R4, Anisotropic scale-spacé : R? x

R¥4 — R of a d-variate continuous signgi(x) is defined as:
L(x;H) = f(x) * 9,(x;0,H) = f(y)®,(x —y;0,H)dy (7)
R4

The analysis matriH hasd(d + 1)/2 free parameters and controls the shape of the Gaussian

kernel. The anisotropic scale-space is a solution to theotmoipic homogeneous diffusion:
ouL(x;H) = 1/2VV'L(x;H) (8)
L(x,0) = f(x) (9)

The nth-order derivatives of.(x; H) can be derived by convolving the signAlx) with
the nth-order Gaussian derivative kernels since the diffeabrdperators commute across the
convolution operations. Thus the first-order scale-spaedignt vectorG(x; H) € R¢ and the

second-order scale-space Hessian malrix; H) € R**? are defined by,

G(x;H) = VL(x;H) = f(x) * ¢(x; HH ' (—x) (10)
U(x;H) = VVL(x;H) = f(x)* ¢(x; HH (xx' — H)H™ (11)

Next we introducel.-normalized scale-space derivativésfined by the point-wise division
of the scale-space derivatives by the corresponding Sgelee as response-normalized deriva-
tives. L-normalized scale-space gradient veathrand Hessian matriXr; are defined by,

_ _ Gx:H)  f(x)* o(x;HH'(—x)
G, (X, H) = L(X; H) - f(X) * @(X; H) (12)
U(x;H)  f(x)* o H)H ! (xx' — H)H ! (13)
L(x; H) f(x) * &(x; H)

v, (x;H) =



B. Scale-Space Derivatives of Gaussian-Like Structures

Now we consider an analysis of local blob-like structuraagishe above anisotropic scale-
space derivatives. Suppose that the sigh@al) represents a volume-of-interest (VOI) in a 3D
CT image, containing a blob-like structure (e.g., nodul@)] #hat the blob’s CT appearance
can locally be approximated by the Gaussian madel u, ¥, ) in Eq.(1) with the anisotropic

Gaussiang,(x) in Eq.(5),
f(x)=g(x;u, X, a) =a x &,(x;u,X)|xes (14)

Note that the above modeling assumes the signal to be mosaived. Although a CT scan
typically comes in the Hounsfield unit that can take negatigkies, it is straightforward to
transform the intensity range so that this positive-valoastraint is readily met. With this
assumption, the anisotropic scale-space in Eq.(7) takesrra bf another Gaussian with a
covarianceX + H since a convolution of two Gaussians is another Gaussianilagsly, the

anisotropic scale-space derivatives in Eqs.(10,11) becantonvolution of a Gaussian with

Gaussian derivatives, resulting in,

L(x;H) ~ ad,(x;u, X+ H) (15)
Gx;H) ~ ad,(x;u,X+H)(Z+H) '(u—x) (16)
U(x;H) ~ ad(x;u, X +H)(Z+H) [(u-x)(u—x)

- E+H))(EZ+H) (17)

Plugging Eqgs.(15-17) to Egs.(12,13) yields two equatibias ére satisfied when thenormalized

scale-space derivatives are evaluated for a local blabdtkucture,
Gi(x;H) ~ (Z+H) '(u-x) (18)
U (x;H) ~ E+H) ' (u—x)(u—x)(S+H) ' - (Z+H)™ (19)
Notice that this response-normalization removes both tlétiplicative parameterx and the
Gaussian term®, from the derivative formulae. Both-normalized scale-space gradi&rtand

Hessian¥; are computable sincé(x; H) is non-zero within a finite range as long #&x) is

positive-valued.



C. Maximum-Over-Scales Criteria for Scale Selection

The maximum-over-scales criterion was first proposed bydélrerg [2] as a solution to
the isotropic scale selection problem. Scale-space deeganormalized by the analysis scéle
raised to the power of an upper-bounded real valusmre defined as-normalized derivatives
Lindeberg demonstrated that various functions ofthermalized derivatives assume their local
maximum at the characteristic scale of the target featwethe d-variate anisotropic Gaussian
structures, the-normalized Laplacian withy = (d +2)/4 evaluated at a spatial local maximum,
tr[H(@+2)/4¥ (u; H)), is locally maximized over scales when the analysis skEhis equal to the
signal’s covarianc&, where “tr” denotes the trace ofdx d matrix. Lindeberg and Garding [60]
have shown that this criterion can be extended to other skeocater cases using the trace and
determinant of second moment and Hessian matrices.

We developed novel anisotropic maximum-over-scales r@aiteonstructed with theorm
of the combinedy- and L-normalized scale-space derivatives [25]. The norm is ddfiooth in
vector and matrix while the trace and determinant used in_théeberg’s criteria are specific to
matrix. Therefore the choice of the norm makes it possibleotasider first-order scale selection
criteria and to unify them with the second-order criterismgghe same functional form. Note also
that values ofy in the Lindeberg’s scale selection criteria depend on theedsion of the signal
and the order of the differentiation for assuming the maxmraver-scales property. The proposed
criteria provide an elegant solution, in which a constant 1/2 gives rise to the maximum-
over-scales property regardless of the signal’s dimessard of the order of differentiation.
The spatial local maximum locatiam is assumed to be known hereafter. Such maximum can be
found by searching locations that satisfiéé (x; H) = 0. For notational simplicity, the function
arguments of7,(x; H) and ¥, (x; H) are omitted unless they are evaluated at a specific location.
Fig.1 illustrates the proposed criteria with a synthetic GBussian signal.

1) First-Order Criterion: Using Eq.(18), a-normalization of the_.-normalized scale-space

gradient vector withy=1/2 is expressed by
H'/?G, = H2(Z 4+ H) '(u—x) (20)

whereH'/? denotes the square root of the mafiix H = H'/?H'/2. This matrix square root can
be computed readily sincH € SPSD(d). The L, norm of they- and L-normalized gradient
is then given by,

Gyl = [HY2(S + H) ™ (u - x)|2 (21)
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Fig. 1. Examples of the maximum-over-scales criteria. A centered 1ls&an signal withv®> = 2 is used as target. (a)
the first-order method with Eq.(21), (b) thenormalized Laplacian in [2], (c) the second-order method with EQ,.(@8 the
second-order method with Eq.(28). Curved lines in each plot displagdh® computed at 21 locations=0, 0.1, ..., 2 over 291
analysis scales=0.1,0.11, .., 3. Dash lines denote the ground-truth scatg)™and “x” indicate the maximum-over-scales for

the spatial maximumx( = 0) and for the non-maximumx(# 0), respectively.

Using this, the following first-order maximum-over-scat@gerion is obtained:

Thml: TheL, norm of they- and L-normalized scale-space gradient veathrwith ~+ = 1/2
in Eq.(21) is maximized when the analysis scale mdtfix SPSD(d) is equal to the
characteristic covariancE of a local Gaussian-like structure and whers u.

Proof: Comaniciu [3] proved a theorem stating ttied magnitude of the bandwidth-normalized
mean shift vector with a Gaussian kernel is maximized when iagysis bandwidth

H is equal toX [3, p.287]. A proof of this theorem cites the Comaniciu’'s groy



showing that thelL-normalized scale-space gradieff is proportional to the mtlelan
shift vector defined over a scale-spaoe(x; H) = HG, [24]. This immediately leads
to |H'2Gy|, = ||[H '/?>ml]|, stating that theL, norm of the~- and L-normalized
scale-space gradient vector is equivalent to the magna@tee bandwidth-normalized
mean shift vector. Details of scale-space and mean shifbeitevisited in Section IV.
Whenx = u, GG; = 0 for all H, thus the norm does not hold the maximum-over-scales
property.
Note that this criterion holds at arbitrary locations S except at the centar as demonstrated
in Fig.1(a).
2) Second-Order Criteria:Two types of second-order scale selection criteria areveri
using the Frobenius matrix norm, which is a common extensiothe L, norm to a matrix.
First, a solution only with the second-order Hessian magigxamined. Using Eq.(19), the

and L-normalized scale-space Hessian matrix witfll/2 is expressed by,
H'/?W¥, = HY?G,G! —H*(Z + H) ! (22)

When evaluated at the spatial maximumthe normalized Hessian is reduced to the following

simple form becausé’; becomes zero,
H'/?¥,(u;H) = —H/*(Z + H)™! (23)
The Frobenius matrix norm of this derivative matrix funatiis then given by,
=@ (w; H) | = [H(S + H) ™| (24)

The following second-order maximum-over-scales criteli® obtained using Eq. (24),
Thm2: The Frobenius norm of the and L-normalized scale-space Hessian matrix witkr
1/2 in Eq.(24) is maximized when the analysis scale mdifix SPSD(d) is equal
to 3 and whenx = u.
Proof: We definey(H) = ||HY/?®¥;(u; H)||». The theorem must be trueif3)? — n(H)? is

greater or equal to zero with equalify H = X. Recall that¥ andH are symmetric



.. .. . 12
positive definite matrices. Thus we have,

n(X)? — n(H)?

= [Z2(E +2)7E - HYA(S + H)

= @12V —u[(E+H)'H(Z + H) Y

=X —4(Z+H)'H(Z + H)

= H[(Z+H)'(HZ ! - I)?2(Z + H) ]
SinceX andH are positive definite, all the matrices inside the trace #se positive
definite. Since the trace of a positive definite matrix is fpessivalued, we have(X)? —
n(H)? > 0. Trivially, the equality holds iffH = 3. O

The classiad-variatey-normalized Laplacian by Lindeberg can be expressed as axmaice,
tr[H2/4% (u; H)] = — L(uw; H)tr[HY2/4(Z 4+ H) Y (25)

Also the Frobenius norm in Eq.(24) can be expressed by,
| HY2, (0 H) |2 = tr](S + H) ' H(S + H) Y] (26)

As compared in Fig.1(b) and Fig.1(c), both methods behawdasly despite the difference in
their functional forms. Theorem 2 is true only at the spati@ximumu as shown in Fig.1(c)
as was also the case for the Lindeberg’s second-orderiariter

Second, both first-order gradient and second-order Hessiaramined together by con-
sidering a matrix function of the difference between th@ormalized second-moment matrix
G,G! and Hessian matri¥,. From Eqgs.(18,19), the-normalization of this matrix function with
~v=1/2 is given by,

H'/2(G,G —¥)=H"*(Z+H)! (27)

The Frobenius norm of this normalized derivative functien i
IH'(G\G} — )|l = [H*(S+H) ' |p (28)

Consequently, we obtain the following second-order maxinowear-scales criterion using Eq.(28),
Thm3: Consider a matrix function subtracting thenormalized scale-space Hessian matrix
from the L-normalized second moment matrix: the outer-product of theormalized
scale-space gradient vector. The Frobenius norm ofythermalization of this matrix
function with~ = 1/2 in Eq.(28) is maximized for alkk € S when the analysis scale
matrix H € SPSD(d) is equal toX.



Proof: For allx € S, [[HY2(G,G! — ®))||r = [HY2( + H)"|| = n(H). From the proof
of theorem 2, we have(X)? — n(H)? > 0 with equality atH = 3. O

As shown in Fig.1(d), the function value isvariant against the locatiox; the value does not
depend on the location, at which it is evaluated. Note a pmceluality of two scale space
derivative functions: thel-normalized scale-space Hessian evaluated at the spadiahmam
(¥,(u; H)) and the difference of thé-normalized second moment and Hessian matri€e&{(—
W,). Furthermore, unlike the other first- and second-ordeteca, the maximum-over-scales
property of this criterion holds at any locationsc S. This is a key property of this criterion
which allows us to collect the scale estimates from a numlbgromts rather than to have a
single point-estimate only at the spatial maximam= u. This property will be exploited in

another scale selection strategy which will be describethénnext section.

D. Related Work

The extension of the Gaussian scale-space to anisotroplesstias been explored in
past. They have been called in various terms, includingo#moigic scale-space [25], affine
scale-space [1], [60], and directional scale-space [6A¢ @nisotropic scale-space discussed in
this chapter models the anisotropic homogeneous diffusirocess while the traditional linear
Gaussian scale-space [54], [55] models the isotropic hemegus diffusion and the anisotropic
diffusion proposed by Perona and Malik [65] models the maitt inhomogeneous diffusion.

Lindeberg and Garding [1], [60] is the first to discuss thestgp anisotropic extension of the
Gaussian scale-space discussed in this chapter and appdidiehgerprint analysis [66]. The work
presented in this chapter complements Lindeberg’s work witifying scale selection criteria
and robust estimation techniques introduced to apply thempractical problems. Introduction
of robust estimation techniques to the scale-space has $mmoely studied in past. Robust
anisotropic diffusion proposed by Black et al. [67] is theyoather related work addressing this
issue to the best of our knowledge.

Automatic scale selection was pioneered by Lindeberg fatrapic scale [2] and later for
anisotropic scale [1], [60], [25]. This scale selection@gpt has played a major role in developing
the popular scale- and affine-invariant interest-poinedetr such as SIFT [68], Harris-Hessian
Affine feature detectors [69], and GRIF [64]. The proposedsderder criterion in Eq.(28)

has an interesting parallel to the affine-invariant featlggector proposed by Mikolajczyk and



Schmid [69]. The Harris-affine and Hessian-affine detecbhyrdMikolajczyk and Schmid gre
based respectively on the second moment matrix and Hessitiixpwhile the proposed second-
order criterion combines both second moment and Hessiaricesin a single scale selection
method.

The anisotropic extension for the Gaussian kernel has asa bxplored in the context of
convolution filter design in the orientation space. Freeraad Adelson proposed the oriented
steerable filter by a linear combination of basis filters [A®@hile Bigun et al. [71] presented
multi-dimensional directional estimation using the mateigenvalue problem. These classic
oriented filters have also been extended to 3D domain. Faésam Vliet [72] discussed an
extension of the steerable filter to the 3D orientation spaitle pseudo-regular 3D orientation
sampling using the icosahedron grid. On the other handspeanand Wirjadi [73] proposed a
method for separating an anisotropic Gaussian filter alohgrary oriented axes.

A number of previous works have also addressed applicatbbrtbe Gaussian intensity
model fitting using the anisotropic scale-space analysibal®#ao and Wilson [74] proposed an
intensity model fitting method for visualizing 3D vasculéiustures in MR images. They utilized
anisotropic model similar to ours, however their methodsdonet exploit the robust statistics
and involves an expensive EM algorithm-based iterativeitemi for the model fitting. Our
proposed method exploits a more efficient closed-form rolaast-squares method. Manmatha
and Srimal [75] developed a hand writing segmentation sysiélizing an anisotropic scale-
space-based blob detection technique. However, theydenesi anisotropy only up to a diagonal
covariance matrix. The extension to the full anisotropyngl@rbitrary axis is provided by our

solutions.

IV. ROBUST ANISOTROPICGAUSSIAN FITTING
Let us now revisit the problem of how to robustly fit an aniepic Gaussian modej(x)
in Eq.(1) to the appearance of pulmonary nodules shown in &30mage. One simple and
common approach is to treat the imagéx) as a 3D histogram then estimate the Gaussian
parameters as the expected mean and covariance matrix wathistogram. The underlying
probability distribution required to compute the expedotad is calculated by normalizing the
histogram. This is possible singéx) is assumed to be non-negative-valued. This naive method

fails when:

1) the intensity distribution in the imag&x) does not follow a Gaussian distribution closely,



. . 15
2) the target nodule is attached or adjacent to other n@etatructures, and

3) the user-specified voxel seed given to indicate a targetileas placed too far from the

target.

The first cause of failureyon-Gaussianityis relevant to some extent for all nodule cases because
there is no justification for nodules to have a Gaussian appea. Moreover, the GGO and
necrosis (i.e., cell deaths causing a hollow area in the midfl a nodule) cases will cause
larger deviation between the nodule appearance and Gaufistaibution. The second cause of
failure, juxtaposed non-target structyrenakes the image data fit to a Gaussian distribution only
within an unknown and irregular range of the image domaihmBoary nodules are commonly
attached to blood vessels and pleural surface (i.e., luily. \B&cause the degree of attachment
varies largely from peripheral to submersion, the domamgeaof which the data follows the
Gaussian appearance varies widely as a consequence. dabhspeaking, this introduces an
arbitrary truncation to a data model, making the model fittdifficult. Even when the target
nodule is not attached to other structures, there can be hetuhother structures located nearby.
A natural extension of the Gaussian fitting approach woulddbemploy a Gaussian mixture
model which can be fit to the multi-structured data by usirggEipectation-Maximization (EM)
algorithm [76]. However, this approach is not suitable far problem because many structures
do not follow the Gaussian appearance assumption (e.gseNeand the number of nearby
structures is arbitrary and unknown. The third cause ofifajlseed variability is a fundamental
limitation of a semi-automatic segmentation and the mairseaf the inter-observer variability
in volumetry. Together with the non-Gaussianity of date thaussian centroid estimate can
yield biased results depending on where the seed is placee.t® the non-target structures
located nearby, the model can be fit to a wrong structure wherséed is located too close to
the non-target structure.

Addressing these issues, we propose a semi-automaticaggbpiar fitting a single anisotropic
Gaussian model. We designed our model fitting algorithm tedbeist against the three afore-
mentioned factors common in nodule segmentation: non-$anisy, juxtaposed non-target struc-
tures, and seed variability. We first derived a convergeatesspace mode seeking algorithms,
scale-space mean shjit7], [24], by exploiting the similarity of Gaussian scalpace and kernel
density estimation. The results of the anisotropic scdkcten described in the previous section

will be reused with this scale-space mean shift to design as§&an fitting algorithm that is



robust against the juxtaposed non-target structures andded variability. To address thelﬁon-
Gaussianity issue, we propose a novel scale selection dhethost-stable-over-scaled his
method carries out the model fitting across the isotropitesspace then chooses the best fitted
model using a stability-based criterion.

The robustness plays a key role toward the goal of realizimgpsoducible volumetry.
The Gaussian approximation of the nodule appearance posadeaoff between accuracy and
robustness. The approximation causes unavoidable emovelime measurement of nodules.
On the other hand, the mathematical simplicity of the modlelns us to robustify the volume
estimation process so that the tumor growth rate estimatexith robust methods can be more
accurate than the rate estimated by more accurate but lesstreegmentation methods, as
discussed in [23]. In the following, the proposed robust €3gan model fitting algorithms will

be described.

A. Mean Shift and Anisotropic Scale-Space

Mean shift is a popular technique for analyzing the modecsire of kernel density
estimation (KDE) from discrete data samples. It is an agaepgradient-ascent algorithm with
automatic step-size selection and is provably convergeatrhode of the density function. This
data-driven framework provides an efficient solution togkeeeral non-parametric data clustering
problem in the Parzen windows setting [78], [79], [4]. Thedaeeeking property of the mean
shift algorithm has also been successfully applied to a wadgye of vision problems such as
tracking [80], [77] and segmentation [81], [4], [14].

Given a d-variate sample sBt= {x; € R%i = 1,..,n}, the KDE f(x) with a Gaussian
kernel ¢,(x) in Eq.(5) is defined by,

Fx) = 3 @, H) (29)

=1
where A is a normalizing factor that is a function of and H. Mean shift vector using the

Gaussian kernel is defined as the difference between thelkesighted sample mean and the

current location,
Zn—l X; ¢a <X7 X H)
= == — 30
m(x) Z?zl @a(X; Xi, H) * ( )

The gradient-ascent like mean shift procedure is then difiyea successive iteratign, of this

mean shift vectom(y;) from an initializationy, until convergence agy*,

Vit = Yi + m(yx) (31)



The mean shift formulan(x) can be derived by evaluating an estimator of the KDE's

spatial gradient,

V00 = 5D VadGxH) 32

H—I -
= Z(Xl —X) Py (x;x;, H)

=1

-1 n n
= A [ZX2¢G<X,X“H> _XZ ¢a(X7XIJH)]
i=1 i=1

H-! n Zn_ x; P (X'X' H)
— _— @ . . H =1 "a o -
- Z o(x; %, H) % { S Du(x; x4, H) X}

=1

T

= H'f(x)m(x)
This formulation also clarifies the relationship of the meaéift vector to the KDE'’s gradient as

oo Y f(x)
T

Beyond the KDE, the mean shift vector can also be derived frdmoad class of kernel-

(33)

smoothed functions [82], including the scale-space [7Z}].[ A naive discretization of the

Gaussian scale-space in Eq.(7) yields,
Zf (x;) Po(x;x;, H) (34)

wheren is the number of voxels in the imagg&x). Given that the imagef(x) is positive-
valued, this discretized Gaussian scale-space can bedeoedias a kernel-smoothed function
with positive weights after appropriate normalization. @id79] has shown that mean shift
derived from such a weighted KDE holds the desirable proggenf the original mean shift.
Evaluating the gradient of the discretized Gaussian ss@édee in Eq.(34) in the same way

demonstrated in Eq.(32) yields the scale-space mean shift,

m(x) = Yoy X f (%) Do (x; %, H) .
(x) = S F(%) P (x;x;, H) (35)

Applying this to the same means shift procedure in Eq.(3byiges a gradient-ascent like

iterative algorithm that is convergent to an intensity piarali(x; H) in the neighborhood of an

arbitrary initialization.



B. Most-Stable-Over-Scales Methods for Gaussian Fitting 1

As mentioned in Sec Il, we use the Gaussian scale-space utareg an image to handle
data irregularity. In constructing a scale-space, the anydg) is smoothed by Gaussian kernels,
modeling the continuous diffusion process. By increasimgkiérnel bandwidth, an initially noisy
image would increasingly become smoother. An importantstjoe in this set-up is when to
stop this diffusion. With too little smoothing, we have highariance in estimation due to the
remaining noise. With too much smoothing, we have a biasétha® causing inaccuracy but
with a low variance. This trade-off is known b&s-variance dilemmand motivates the problem
of automatic bandwidth selectian finding most accurate KDE of data samples.

The proposed anisotropic scale selection criteria digzluss Sec Il offers solutions to this
bandwidth selection problem because of the mathematieditgbetween the KDE and the scale-
space we have established in Sec IV-A. However, this apprpases two serious shortcomings.
First, seeking the scale-space maxima becomes impraegttoah high-dimensional anisotropic
structures are considered. Such cases require a densdrgpoiph multivariate product space,
resulting in prohibitively large search space, known asthese of dimensionalitysecond, what
the maximum-over-scales criteria select as the best ssaletithe scale that best regularizes the
signal but rather the scale that best matches the targediaderistics scale. When these two
scales, the characteristic and best regularizer scalegdifegeent, the anisotropic scale selection
in Sec Il would stop the diffusion at the wrong place.

Addressing these issues, we developediost-stable-over-scalesethod: a stability-based
scale selection thadlecouplesthe above two types of scales.In order to address the curse of
dimensionality in searching the anisotropic scale-spageemploy the isotropic scale-space in
Eq.(4) for regularizing the estimation process with linsealesH = hI (h € R > 0). At each
analysis scalé:, the anisotropic characteristic scalfh) is estimated by robustly fitting the
Gaussian modej(x) to f(x) by using the scale-space mean shift. The usage of the isotrop
scale-space in solving the anisotropic scale selectioblg@no is only possible because of this
decoupling. Given a set of analysis scale$hg|s = 1,..,.5, hs < hs1}, this process yields a
set of Gaussian estimaté®,(x; u(hs), X(hs))|s = 1,..,S}.

The most-stable-over-scales scale selection method ebdlos best Gaussiaki'(x; u*, )

among the sef &,} by selecting the best scal¢ with a divergence-based stability test:

(', 5) = (u(h*), Z(h*) | b* = argmindiv{ &(h(s))}) (36)



At each analysis scale,, the stability test perturbs the scale within a fixed intehat-a and fllt%

a Gaussian at every perturbed sclg(s)|i = 1, .., L} whereh,(s) = hy—a andh(s) = hs+a.

A divergence measure of these Gaussians represents hde gtabmodel fitting process is at
the analysis scalk,. The minimum of this divergence measure over all evaluatedyais scales
indicates the most stable Gaussian estimate. A form of theebeShannon divergence for normal
distributions proposed in [3] is employed as our measurerga set of ordered analysis scales
forming a geometric sequendé,|s = 1, .., S; hs11/hs = constang,

|57 221 2 (ha(9)))

1
JS(hy) = =1 37
Y )] &7
23 hl) — ) (3 B() (alhils) — w)
whereu = 55 >~ u(h,(s)). Jensen-Shannon divergence is a natural extension of theise

Kullback-Leibler divergence to describe similarity amamget of distributions [83]. In practice,
the indexi and the intervak can be set so that the stability test at each skalevaluates with
the three immediately neighboring scalgs_1, hs, hsi1).

The proposed automatic scale/bandwidth selection methadbust against the non-Gaussian-
ity of the nodule data because it does not analyze the rdstdiua of the model fitting, which
is a common bandwidth selection approach. Such residuatsefail to indicate the goodness
of fit when the data do not follow the Gaussian appearancergsgn.

Robust Gaussian fitting is performed as two successive stepstimating the Gaussian
mean and covariance at each analysis sealeAddressing the seed variability issue, we use
majority voting of the convergence points of the scale-spaean shift initialized by the seed.
Addressing the juxtaposed non-target structures, we gepaobust least-squares estimation of
the covariance matrix by a data-driven estimate of the domangesS in our model equation
Eq.(14). We defindasin of attractionas a set of all data points in the image domajrfrom

which the scale-space mean shift in Eq.(35) converges tadhee point,

S = {x)|Viye =y (%)} (38)

wherey*(x;) denotes a convergence of a scale-space means shift precedialized byx;.
This least-squares estimation is robust because the paanaee estimated only from statistics
sampled within this basin. The following two sections désxithese two estimation processes

in details.
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C. Mean Estimation

Suppose that the user-specified seed maxkes given inside the basi. We perform a
uniform sampling in the neighborhood =f, resulting inV; sample points. Using each sample as
an initialization, the scale-space means shift is perforoe L(x; h,), yielding NV; convergence
points {y;}. These convergence points are subjected to a clusteriftgasixed Mahalanobis
distance threshold then the location with the majority weii provide the final estimate of the
Gaussian centroid(h;).

Robustness against the seed variability is important ngt famlreducing the inter-observer
variability but also for enhancing the usability of the asérsemi-automatic segmentation by
relieving the user from the task of locating the seeds pedcist the nodule’s center. The voting
scheme will increase the robustness especially when thitis@daced at a peripheral area of the
basin. The bias-variance dilemma suffers this estimatisk.tWith too little smoothing, a nodule
can exhibit multiple peaks with zero gradient, resultindpigh variance in the convergence point
set{y;}. On the other hand, too much smoothing can assure a befteedéasin of attraction
with a single peak but with less accurate localization. Tdek tof finding the best estimate is

delegated to the most-stable-over-scales method in Eg34B

D. Covariance Estimation

Recall the anisotropic scale selection criteria discuseefiec Ill. While the Lindeberg’s
original Laplacian-based criterion is only valid at the tigdamaximum locationu, the proposed
first-order and second-order criteria in Eqs.(21,28) atel\& any other locations in the neigh-
borhood ofu(h,). Exploiting this property, we estimate the Gaussian cewvexe X (h,) from
L(x; hs) by first collecting a set of local linear constraints with tgknown covariance matrix
and next solving the set of linear equations to derive thd &stimate that minimizes the error
in the least-squares sense. Robustness against the juedlapos-target structures is achieved
by collecting local estimates only from the points withirethasin of attractiors of u(hs) so
the information that belongs to other non-target strustwvél be effectively ignored.

To this end, we perform another uniform sampling of data {soaround the estimated
centroid u(hy), resulting in N, seeds, each of which is used to initialize a scale-space mean
shift procedure. At each iteration of a mean shift procedardinear constraint equation is
computed and stored. The constraint equations collecmthahe path of the mean shift that

converged tou(h,) are retained while ignoring those by mean shift convergeelsewhere.



This framework provides aobust least-squaremethod, where the suppression of outliélrs is
given through the basin whose shape is determined from detaadapts to each case unlike
the common robust estimators, such as the m-estimator [zt also that our method does
not fit the Gaussian model directly to the scale-spaAte i) but estimates the true covariance
3.(hs) with L(x; hs). This is a key property since it allows a direct comparisothefcovariance
estimates from different bandwidth, in the proposed most-stable-over-scales. In the following
we describe the first- and second-order methods with drffdneear constraint equations derived
from the L-normalized scale-space derivatives in Egs.(18,19).
1) First-Order Method: A local covariance estimator with the normalized gradiéftis

derived by manipulating Eq.(18) while maintaining its elgya
26, =u-x—HG, (39)

where(G,; can be computed numerically by using Egs.(7,10). This éguatn also be expressed
as a function of the fixed-bandwidth mean shift veatofx; H) = HG,(x; H) proposed in [3],
[24], i.e., XH 'm = u — x — m. Both equations become singular whéfh goes to zero at
X =1u.
The resulting equation of an unknowa is under-complete, requiring at least two inde-
pendent samples for the unique solution. Note that Eq.(883fes with arbitraryH, allowing
to use the isotropic scale wheke = hI. Given a sufficient number of independent samples, an
over-complete set of linear equations can be formed andddly a least-squares method with
a constraint that the solution must be a symmetric positveisiefinite matrixt: € SPSD(d).
We adapt a closed-form constraint least-squares solutigmoged in [24] to solve this problem.
Given a set ofK’ measurement§(xy, G;(xx; hs))|k = 1,.., K} within S along the paths of

mean shift procedures convergentu(h,), we construct an over-complete normal equation,

AY = B (40)
A = (Glh ey G1K>t (41)
B = (u—x1 —hGll,..,u—xK—hGlK)t (42)

The constrained least-squares solution of this normaltequéor the unknown € SPSD(d)
is given by finding the minimizek* of an area criterioff AY — BY ~*||2 whereY is Cholesky

factorization of3 = YY"’ [62]. The closed-form of this solution is expressed by a fiamcof



symmetric Schur decompositions @ = A'A andQ = Xpu’QupXp given Q = B'B, 2

>(hy) = upz;u@zéugzglutp
U =upXiub, (43)
) — 4132
Q= uQEng
2) Second-Order MethodAnother covariance estimator with the normalized Hessian

is derived by manipulating Eqg.(19) while maintaining itsuatity,
Y= (GG -¥)' ' -H (44)

where G; can be computed numerically by using Eqgs.(7,10) @ndoy using Eqgs.(7,11). This
equation exploits both first- and second-order derivativéidike the first-order equation, the
equality holds at arbitrary locationse S.

At the spatial maximumu, Eq.(44) collapses into the form only with the Hessian matri
¥ = (-¥(wH) ' -H
= LwH)(-¥(wH))™" -H (45)

The resulting form is similar to the well-known Hessiandxgovariance estimator [85], except
the second negative term included due to its scale-spacgendtiote that, for the second-
order case, the magnitude parametecan be expressed analytically. The analytical form of
the scale-space Hessian matrix evaluated at the spatialhmiaxu is given by: ¥(u; H) =
—a(27)~%?|24+-H|~/2(Z+H)~'. This equation can be solved f&rsinceH+X € SPSD, i.e.,

> = a@2 |27 (— W (u; H))~!|"# (—¥(u; H))~! — H. Since this and Eq.(45) must be equivalent,
the following formula is obtained after some algebra,

a = /|2n(= ¥ (u; H)) ! L(u; H)2+2 (46)

The scale-space Hessialh(x; H) is symmetricnegativesemi-definite ifx is at a stable
critical point of —L(x; H). When ¥ (u; H) is numerically computed by using Eq.(11), it must
be assured thai satisfies this condition so that the estimadedby Eq.(45) satisfies the positive
definite constraint and Eq.(46) remains as real-valued.

Similar to the first-order method, a set &f measurement$(G;(xx; hs), Wi(xx; hs))|k =
1,.., K} are sampled withirS along the paths of convergent mean shift procedures. A tobus

least-squares covariance estimator is given by averapegetlocal estimates,

X (hs) = %Z{(Gz(xk; hs)Gi(xk; hs)' — @i (xx; hs))™H = T} (47)
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Examples of the most-stable-over-scales methods. A centBre8alissian signal of? = 2 with additive random

noise (andn x 0.01) is used as the target. At each analysis scale, the variance of the taegéitmated from a set of samples
within: (a) +0.10, (b) +1.00, and (c)43.00. Dash lines: the ground-truth scale. Dot lines: the first-order estimagt&s)l§39).
Solid lines: the second-order estimates by Eq.(44). “+” ard denote the most stable estimates by the first- and second-order

methods, respectively.

The second-order equation provides a full covariance eséirfor each sample location. Thus a
valid estimator with a single sample at the spatial local imaxn locationu can be obtained
by using Eq.(45).

Fig.2 compares the first- and second-order most-stablesmades methods with the 1D
synthetic Gaussian data with additive random noise. Thitfereht sampling rangesH0.1o,
+1.00, +3.0v) were evaluated. Both methods achieve accurate scale &sting@ven an appro-
priate choice of the sampling range. The results also sudigaisthe first-order method favors a
larger sampling range while the second-order method mefemaller one. When using the data
without the noise, both methods resulted in estimates watlemors. The additive noise causes
estimation errors that depend on sample locations. Fordbensl-order case, the estimates tend

to be more accurate when evaluated at a location closer tepihgal maximum.

V. EXPERIMENTAL EVALUATIONS
A. Synthetic Data with Noise

The proposed scale selection methods are studied with 1betyomdata with the presence
of noises. The target feature is the centered 1D Gaussidna#it= 2. As shown in Fig.3,
three types of additive noise are used: (a) neighboringctstre, (b) strong random noise, (c)
the combination of (a) and (b).

Fig.4 illustrates the results by the proposed maximum-geates criterion. In general, we

find that (i) the maximum-over-scales criterion is susd#etto the noises, (ii) the first-order
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Fig. 3. 1D synthetic data with noise. The target is the centered 1D Gausifaniv= 2. (a) a Gaussian centeredat= —5
with o2 = 0.5 superimposed to the target. (b) the target with additive random neiself = 0.04). (c) the data (a) with the

same additive noise in (b).
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Fig. 4. Variance estimation by the maximum-over-scales criterion forigmals shown in Fig.3. 1st row: the first-order method
with Eq.(21). 2nd row: the second-order method with Eq.(24). 3wt the second-order method with Eq.(28). The legend is

the same as Fig.1.
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Fig. 5. Variance estimation by the most-stable-over-scales methodsefsighals in Fig.3. At each analysis scale, the variance

of the target is estimated from samples within: 1st rav@.1o, 2nd row: +1.00, 3rd row: £2.00. The legend is the same as

Fig.2.

method is more sensitive to the random noise, (iii) the séemder methods are more sensitive
to the neighboring structure. These observations can blaiegg by the fact that the support of
the Gaussian derivative kernels is larger for the higheeodekrivatives. Thus the second-order
methods are naturally more sensitive to the neighboringcstre or the signal truncation than
the first-order method. The most accurate estimate wasnauotdiy the first-order method when
the data without the random noise were evaluated at pointisdian the non-target structure, as
shown in the top-left of Fig.4.
Fig.5 illustrates the results by the most-stable-ovelescariterion. The first-order (dotted

lines) and second-order (solid lines) methods are complayedsing the same data as Fig.4.
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Fig. 6. Average variance estimation errors of the most-stable-oedgssmethods over 100 independent tests. The same types

of data in Fig.3 with different random noise are used for each test. tbeseare plotted against varying sampling ranges. Dot

and solid lines denote errors by the first- and the second-order mettesgectively.

At each analysis scale, the target’s variance is estimated samples within three different
sampling rangest0.1s, +£1.00, and+2.0s. The crosses+” and “x” denote the estimates by
the first- and second-order methods, respectively. Thdtsedamonstrate that the most-stable-
over-scale criterion are more accurate than the maximuenssales criterion if the sampling
range is chosen correctly. For the data (a), both methode w&ecurate using only samples
within the basin of attraction. For the data (b), the firddesr(second-order) method gave better
results with a larger (smaller) range. For the data (c), du®@isd-order method with a very small
sampling range was most accurate. The first-order estimditgl) and the second-order estimates
in a(3) and c(3) were out of range. With the large samplingearthe scale estimates for data
(a) and (c) were corrupted because of the samples locatedheeadge of or out of the target’s
basin of attraction. The second-order method with the vergllssampling range resulted in the
overall best accuracy across the different types of noige6 Bhows average estimation errors of
the most-stable-over-scales methods over 100 tests. Tbes ere plotted against continuously
varying sampling ranges and compared with the aforemesdidiree data types. It demonstrates
that both the first- and second-order methods achieve mgttehaccuracy than the maximum-
over-scales criterion within the-2.20 sampling range that roughly corresponds to the target’s
basin of attraction. Also observed was a tendency that teedrder (second-order) method is
more accurate with a larger (smaller) sampling range.

Fig.7 illustrates 2D examples comparing the proposed s&déetion methods. The test data
consists of a centered target Gaussian with additive randoise and a neighboring structure

as shown in Fig.7(a). Fig.7(b-e) show results with the maxirover-scales methods. We use a
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Fig. 7. Examples with 2D synthetic data consisting of a target centeredsi@awsith a neighboring structure centered at (-3,3)
and additive random noise as shown in (a). From (b) to (e): the maxiouemscales methods. (b) first-order method evaluated
at (2,-2), (c) second-order method at the non-maximum locatignsgdond-order method evaluated at (0,0),~(e)ormalized

Laplacian at the maximum location. From (f) to (h): the most-stable-swales methods. (f) first-order method, (g) second-order

gradient and Hessian method, (h) second-order Hessian only mdthedyround-truth and scale estimates are denoted by 90%

confidence ellipses with dash and solid lines, respectively.



set of 144 analysis scale matrices sampled along the twoneigtors of the ground-truth mé%rix
by setting the corresponding eigenvalueg g2, .., 12). Fig.7(f-h) show results with the most-
stable-over-scales methods. We used a set of 26 isotroplgsis scales from 0.1 to 7.6 with a
constant geometric ratid!/4. The sampling range is set to one Mahalanobis distance.&gts
suggest that the most-stable-over-scales methods ootpetfie maximum-over-scales methods,
confirming the finding from the 1D case. The three most-staléz-scales methods resulted in
similar accuracy. The second-order case (g) with both gracdand Hessian, however, gave the

best accuracy in terms of the Frobenius norm of the erro9j0.6

B. Lung CT Data

3D implementations of the most-stable-over-scales matreré applied to the problem
of estimating anisotropic spreads of pulmonary nodulesvehim high-resolution computed-
tomography (HRCT) images. HRCT images of 14 patients displatjiagotal of 77 pulmonary
tumors were used for this evaluation. Each volumetric imegesists of 12-bit positive values
over an array of 512512 lattices. A marker indicating the rough tumor locatisrgiven by a
radiographic reader for each nodule. We compare the fidgraand the second-order (Hessian
only) methods. For both methods, a set of 14 isotropic aimlysalesh = (0.507,..,4.75%)
with a geometric rati®'/* are used. The system is implemented in C language and pracess
32x32x32-voxel volume-of-interest by an average of twoosels with a 2.4 GHz Intel CPU.

The second-order method resulted in less failures (10 rés®s the first-order method (14
cases). All the solitary tumors were correctly estimatedobth methods. Most of the failures
were due to small nodules that are attached to the lung well pn-the-wall cases).

Fig.8 shows examples of the estimation results. The lefiroak illustrate part- or non-solid
nodule cases which are more likely to become malignant tbka snes [10]. The right columns
show the cases attached to the pleural surface. Both metesdied in similar estimates for
many cases (e.g., (a)-(e) and (c)-(g)). However, the seocother method often provided more
accurate spread estimates (e.g., (b)-(f)). Furthermoragscases failed by the first-order method

were correctly estimated by the second-order method (@g(h)).

VI. CONCLUSIONS
This chapter presents a framework for robust pulmonary leodagmentation, focusing

on approximating the nodule’s appearance by robustly gittnGaussian model to CT data.
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(€) (f) (9) (h)
Fig. 8. Examples of the 3D spread estimation of lung tumors in 3D HRCT datasing the most-stable-over-scales scale

selection methods. “+” denotes the marker locations. The local spatihmasand 3D spread estimates are denoted bY “
and 2D intersections of 50% confidence ellipsoids, respectively. Gay€d) show the results by the first-order method. Cases

(e)-(h) show those by the second-order (Hessian only) method.



The framework unifies the concepts of automatic scale sete@nd robust Gaussian fitﬁ(l)’]g.
In particular, we investigated the theory of anisotropi@alscselection: scale selection in an
anisotropic scale-space. Furthermore, the popular ncempetric mean shift data analysis is
extended to the scale-space and we demonstrated the meldpdoetween the automatic scale
and bandwidth selection problems. As results, we offer teloteons for anisotropic Gaussian
model fitting: 1) anisotropic scale selection with variouaximum-over-scales criteria and 2)
robust anisotropic Gaussian fitting by various most-stabkr-scales methods.

Technically, the main conclusions of this chapter are @)ribrm of they- and L-normalized
anisotropic scale-space derivatives offers elegant smdéetion solutions with a constapt1/2
regardless of the signal’s dimension and of the order otwbffitiation and (ii) the most-stable-
over-scales criterion with scale-space mean shift outped the maximum-over-scales criterion
in the presence of noise. Experiments with 1D and 2D syrtlugtia were conducted to validate
these findings. Finally, we applied 3D implementations @f pnoposed methods to the problem
of estimating anisotropic spreads of pulmonary nodulesvehim HRCT images. Comparison
of the first- and second-order methods indicates the adyarté exploiting the second-order

information for realistic application scenarios with theegence of noise.
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