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Abstract

This chapter presents the theory and design principles usedto derive semi-automatic algorithms

for pulmonary nodule segmentation toward realizing a reliable and reproducible clinical application

for nodule volumetry. The proposed algorithms are designedto be robust against the variabilities due

to 1) user-interactions for algorithm initialization, 2) attached or adjacent non-target structures, and

3) non-standard shape and appearance. The proposed theory offers an elegant framework to introduce

the robust data analysis techniques into a solution for nodule segmentation in chest X-ray computed

tomography (CT) scans. The theory combines two distinct concepts for generic data analysis: automatic

scale selection and robust Gaussian model fitting. The unification is achieved by 1) relating Lindeberg’s

scale selection theory in Gaussian scale-space [1], [2] to Comaniciu’s robust feature space analyses with

mean shift in Gaussian kernel density estimation [3], [4] and 2) extending both approaches to consider

anisotropicscale from their original isotropic formulations. This chapter demonstrates how the resulting

novel concept ofanisotropic scale selectiongives a useful and robust solution to the Gaussian fitting

problem used as a part of our robust nodule segmentation solutions.

Keywords: segmentation, pulmonary nodules, chest CT, automatic scale selection, anisotropic

scale-space, Gaussian scale-space, Gaussian fitting, robust estimation, mean shift, scale-space

mean shift.
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I.. INTRODUCTION

Lung caner is the leading cause of cancer death in the U.S. with an estimated 219,440

new cases expected in 2009 [5]. Chest X-ray computed tomography (CT) scan offers one

of the most effective diagnostic tools for this cancer in both primary and metastatic cases.

Lung cancer in a CT scan commonly exhibits a focal concentration of high-intensity values

inside lung parenchyma, known as pulmonary nodules. Pulmonary nodules vary largely in

their geometry, topology, and pathology [6]. Nodules may appear solitary or attached to other

pulmonary structures, such as blood vessels and pleural surface [7]. The size of visible nodules

varies from 1 to 30 mm in diameter [8]. While many small nodules(e.g.,< 10mm) are benign,

some of them can be malignant, whose correct diagnosis playsa key role for early detection

of lung cancers [9]. Nodules can also appear solid, as well aspart- or non-solid, known as

ground-glass opacity (GGO) nodules [10], [11]. The GGO nodules are clinically significant due

to its link to aggressive adenocarcinoma [11], [12] and technically challenging to characterize

due to its ambiguous appearance [13], [14], [15].

A.. The Problem: Pulmonary Nodule Segmentation

Pulmonary nodule segmentation aims to delineate the extentof these nodules in CT, pro-

viding a critical foundation of computer-aided diagnosis (CAD) for lung cancers [16], [17], [18].

Due to its increasing clinical significance, the pulmonary nodule segmentation has been actively

studied in recent years along with the rapid advances of the high-resolution thin-slice and multi-

detector CT technologies [19], [20], [21], [22], [7], [23], [24], [25], [26], [14], [27], [28], [29],

[30], [31], [32], [15], [33], [34], [35].

Accurate nodule segmentation is a crucial prerequisite formany diagnostic and treatment

procedures for lung cancer, such as studying tumor growth infollow-up [36], [37], monitoring

tumor response to therapy [38], [39], screening for early detection [40], [41], and classifying

tumor malignancy [42], [43]. Nodule volumetry, the measurement of 3D volume of a nodule,

requires accurate segmentation [36], [37], [38], [39], [44], [45], [46], [30], [31], [47], [48], [49],

[50], [51]. In a tumor follow-up or therapy monitoring study, tumor growth/response can be

characterized by differentiating nodule’s volume measured at different time-points, replacing the

traditional 2D-based RECIST and WHO protocols [38]. The segmentation also defines a local

image area, from which image features can be extracted for further computational analyses. For
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example, lung cancer screening by computer-aided-detection (CADe) often enhances the overall

detection accuracy by segmenting detected nodules as a post-analysis to remove false-positive

cases [52]. Tumor malignancy classification in computer-aided diagnosis (CADx) will also

rely on accurate segmentation for extracting image appearance features whose quality dictates

the overall classification performance [53]. Thus improving accuracy of nodule segmentation

has direct impact to these clinical tasks. While segmentation of large solitary nodule can be

straightforward, small or GGO nodules cause difficulty because of the partial volume effect

(PVE) [13], [15], [30], [31].

B.. The Motivation: Reproducibility in Nodule Volumetry

Beyond the demand for accuracy, the major technical challenge facing the pulmonary nodule

segmentation is reproducibility. Recent reports on nodule volumetry have revealed that there

are significant inter-scan and inter-observer variabilityin volume measurement by using the

segmentation solutions currently available at the clinical practice [39], [44], [46], [47], [48],

[49], [50]. This limits clinical applications of the segmentation-based volumetry to characterize

tumor’s growth in a short time interval. The causes for the inter-scan variability include variations

in image acquisition and reconstruction settings [44], [46], [49], while those for inter-observer

variability include uncertainty in the results of segmentation algorithm employed [47], [48], [50].

Pulmonary nodule segmentation is a semi-automatic procedure, involving user-determined seed

points to indicate a target nodule to be segmented. Different readers, or a single reader studying

the same scan more than once, may produce different seed points, causing different segmentation

results of the same nodule. In percentage error of estimatedvolume, this inter-observer variability

can be as high as 20% [39]. Despite the increasing interests in pulmonary nodule segmentation,

there is a general lack of studies that focus on designing a reliable and robust segmentation

solution against such variabilities. This chapter contains materials previously published by the

author in [24], [25], [14]. The rest of chapter is organized in five sections, each of which is

dedicated to describe our overall segmentation algorithm design, the theory of anisotropic scale

selection, the robust anisotropic Gaussian fitting algorithms, the results of our experimental

evaluations, and our conclusive remarks, respectively.

II.. OVERALL SEGMENTATION ALGORITHM DESIGN

We design reproducible nodule segmentation solutions by reducing inter-observer and inter-

scan variabilities in their results. Our approach consistsof the three successive steps as follows:
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1) Fit an anisotropic Gaussian model to an input image containing a target nodule, given a

single voxel seed located nearby the target,

2) Extract an ellipsoidal boundary approximation from the fitted Gaussian as a parametric

characterization of the target, and

3) Segment the target nodule more accurately by refining the parametric characterization using

the fitted ellipsoid as an initialization of a further non-parametric segmentation procedure.

1) Gaussian model fitting:plays a key role for designing our robust nodule segmentation

solution. Suppose that the intensity distributionf(x) of nodule’s CT appearance can be approx-

imated by a product of a Gaussian function (i.e., multivariate normal distribution)Φ(x) and a

positive amplitude parameterα.

g(x) ≡ α × Φ(x)|x∈S (1)

whereS is a set of data points in the neighborhood of the center location u, in which the

Gaussian approximation is supposed to be valid such that

f(x) ≈ g(x)|x∈S (2)

A d-variate isotropic GaussianΦi(x) is defined by

Φi(x;u, σ2) ≡ (2πσ2)−d/2 exp(−
(x − u)t(x − u)

2σ2
) (3)

Such a Gaussian modelg(x;u, σ, α) with d = 3 can be fitted to the nodule’s CT appearance by

estimating the centeru, width σ, and heightα of the Gaussian that appears most similar to the

input.

In order to regularize this estimation process over discrepancy between the nodule’s true

appearance and the standard Gaussian model, we consider smoothing image data. Gaussian

scale-space [54], [55], [56], [1], [57], [58] provides suchsmoothed data in a series of images

blurred by Gaussian filters of increasing widths, Gaussian scale-spaceL : R
d × R+ → R is a

one-parameter family of ad-variate continuous signalf : R
d → R provided by a convolution

with isotropic Gaussian kernelsΦi(x;0, h) with increasing (band)widths or scalesh ≥ 0.

L(x; h) ≡ f(x) ∗ Φi(x;0, h2) ≡

∫

Rd

f(y)Φi(x − y;0, h2)dy (4)

Such a linear scale-space is known to be a solution of the diffusion equation∂hL = 1/2∇2L [54],

[55] initialized by L(x; 0) = f(x).

Automatic scale selectionis an interesting problem defined over this scale-space:
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Find the scale from a set of analysis scales (i.e., filter widths) that provides the best

estimate of the local image structure’s size, known as characteristic scale.

A well-known solution to this problem was first proposed by Lindeberg [1], [2]; The characteristic

scaleh∗ of a local image structure is defined by the local maximum of the normalized scale-

space derivatives over scalesh and spacex. When blob-like nodular structures are considered,

the derived characteristic scaleh∗ and its locationx∗ can be treated as the widthσ and centeru

of the Gaussian fitted to the underlying blob. In this sense, Lindeberg’s scale selection solves the

Gaussian fitting problem. This concept with a Laplacian of Gaussian (LoG) case has recently

been exploited for pulmonary nodule segmentation [59], [35]. However, the major shortcoming

of this approach is that the isotropic Gaussian approximation is too restrictive to capture the true

appearance of nodules accurately. In the 3D domain, this amounts to approximating a nodule

by a spherical blob. An obvious extension is to employ anellipsoid to approximate a nodule by

fitting an anisotropicGaussianΦa(x),

Φa(x;u,Σ) ≡ |2πΣ|−/2 exp(−
1

2
(x − u)tΣ−1(x − u)) (5)

where | · | denotes the matrix determinant andΣ is a d × d symmetric positive semi-definite

(SPSD) covariance matrix, which determines the shape of thed-variate anisotropic Gaussian.

This chapter presents two approaches to address this extension.

The first approach exploits the anisotropic scale selection. The Lindeberg’s scale selection

principle can be extended to anisotropic scale-spaceL(x;H) that consists of a group of images

blurred by Gaussian filters with varying scales and orientations [1], [60], [25]. Anisotropic scale

selection determines the covariance matrixΣ by finding a local maximum of the normalized

derivatives of the anisotropic scale-space overd(d+1)/2 free parameters forming the anisotropic

scaleH ∈ SPSD(d), whereSPSD(d) denotes a set of alld×d symmetric positive semi-definite

matrices. Various selection criteria have been proposed byLindeberg, as well as by the author,

using the second moment matrix [1] and the Hessian matrix [60], [25]. More details of this

approach will be described in Section III.

The second approach is based on a stability-based scale selection inspired by the work by

Comaniciu on data-driven bandwidth selection for kernel density estimation (KDE) [3]. In this

work, mean shift [4] was used to define a basin of attractionS of each mode in a KDE function.

An isotropic Gaussian was fitted to each mode by robust least-squares estimation of local mean

u and varianceσ2 using data statistics collected only from the basinS. This was iterated for
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successively increasing analysis bandwidths, resulting in a set of fitted Gaussian models. The

stability-based selection chose the scale that produced the least change in the fitting results

when analysis bandwidth was perturbed. To apply this for anisotropic Gaussian fitting, we have

translated this method to 1) Gaussian scale-space by exploiting its similarity to the KDE with

Gaussian kernel [24], [25] and to 2) anisotropic Gaussian byusing a total least-squares with the

SPSD constraint [61], [62], [24]. More details of this approach will be described in Section IV.

2) Ellipsoidal boundary approximation:is given by an equal-elevation contour of the fitted

anisotropic Gaussian model. Another definition of this boundary is by a point set with equal

Mahalanobis distance from the centeru of the fitted Gaussian,

dM(x;u,Σ) ≡ (x − u)tΣ−1(x − u) (6)

In 3D, this will form an ellipsoid whose principal axes corresponds to the eigen vectors of

the inverse of the estimated covarianceΣ and whose radii to the square root of their eigen

values. Deriving an ellipsoid from a Gaussian function requires a threshold parameter of the

fixed elevation or Mahalanobis distance. In our previous work [14], we have experimentally

chosen this distance value as 1.6416, corresponding to the 35% confidence limit of the normal

distribution in 3D.

3) Boundary refinement:takes the derived ellipsoidal boundary{x|dM(x;u,Σ) = 1.6416}

as an initialization to further refine the boundary segmentation. Accurate volumetry requires this

process as the ellipsoidal approximation may cause a significant bias to its volume estimate. Any

deformable surface methods, such as the level set method [63], can be used for this task. Other

approaches include spatiotemporal mean shift clustering [26] and likelihood ratio test [27].

This chapter focuses on the first of this three-step nodule segmentation framework. The two

proposed Gaussian fitting approaches will be revisited in the next sections with their detailed

descriptions, as well as discussion on their robustness against variability typical in our data set.

III.. A NISOTROPICSCALE SELECTION

This section presents the theory for anisotropic scale selection. The automatic scale selection

relates the characteristic scale of underlying object to the analysis scale used for constructing

the scale-space. Extending this to anisotropic scales yields a paradigm to estimate the Gaussian

covariance matrix by evaluating data represented in an anisotropic scale-space. It was Lindeberg

and Garding who pioneered this concept, calling it affine Gaussian scale-space and affine shape
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adaptation [1], [60]. Later Okada et al. [25] extended this framework as anisotropic scale selection

to include more scale selection criteria. This section follows the notations used in Okada et al.

A.. Anisotropic Scale-Space and Its Derivatives

Anisotropic scale-space is a generalization of the isotropic scale-space in Eq.(4) by consid-

ering an anisotropic Gaussian kernel characterized by a fully parameterized symmetric positive

semi-definiteanalysis scale matrixH ∈ SPSD(d) ∈ R
d×d. Anisotropic scale-spaceL : R

d ×

R
d×d → R of a d-variate continuous signalf(x) is defined as:

L(x;H) ≡ f(x) ∗ Φa(x;0,H) ≡

∫

Rd

f(y)Φa(x − y;0,H)dy (7)

The analysis matrixH hasd(d + 1)/2 free parameters and controls the shape of the Gaussian

kernel. The anisotropic scale-space is a solution to the anisotropic homogeneous diffusion:

∂HL(x;H) = 1/2∇∇tL(x;H) (8)

L(x,0) = f(x) (9)

The nth-order derivatives ofL(x;H) can be derived by convolving the signalf(x) with

the nth-order Gaussian derivative kernels since the differential operators commute across the

convolution operations. Thus the first-order scale-space gradient vectorG(x;H) ∈ R
d and the

second-order scale-space Hessian matrixΨ(x;H) ∈ R
d×d are defined by,

G(x;H) ≡ ∇L(x;H) = f(x) ∗ Φ(x;H)H−1(−x) (10)

Ψ(x;H) ≡ ∇∇tL(x;H) = f(x) ∗ Φ(x;H)H−1(xxt − H)H−1 (11)

Next we introduceL-normalized scale-space derivativesdefined by the point-wise division

of the scale-space derivatives by the corresponding scale-space as response-normalized deriva-

tives. L-normalized scale-space gradient vectorGl and Hessian matrixΨl are defined by,

Gl(x;H) ≡
G(x;H)

L(x;H)
=

f(x) ∗ Φ(x;H)H−1(−x)

f(x) ∗ Φ(x;H)
(12)

Ψl(x;H) ≡
Ψ(x;H)

L(x;H)
=

f(x) ∗ Φ(x;H)H−1(xxt − H)H−1

f(x) ∗ Φ(x;H)
(13)
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B.. Scale-Space Derivatives of Gaussian-Like Structures

Now we consider an analysis of local blob-like structures using the above anisotropic scale-

space derivatives. Suppose that the signalf(x) represents a volume-of-interest (VOI) in a 3D

CT image, containing a blob-like structure (e.g., nodule), and that the blob’s CT appearance

can locally be approximated by the Gaussian modelg(x;u,Σ, α) in Eq.(1) with the anisotropic

GaussianΦa(x) in Eq.(5),

f(x) ≈ g(x;u,Σ, α) = α × Φa(x;u,Σ)|x∈S (14)

Note that the above modeling assumes the signal to be positive-valued. Although a CT scan

typically comes in the Hounsfield unit that can take negativevalues, it is straightforward to

transform the intensity range so that this positive-value constraint is readily met. With this

assumption, the anisotropic scale-space in Eq.(7) takes a form of another Gaussian with a

covarianceΣ + H since a convolution of two Gaussians is another Gaussian. Similarly, the

anisotropic scale-space derivatives in Eqs.(10,11) become a convolution of a Gaussian with

Gaussian derivatives, resulting in,

L(x;H) ≃ αΦa(x;u,Σ + H) (15)

G(x;H) ≃ αΦa(x;u,Σ + H)(Σ + H)−1(u − x) (16)

Ψ(x;H) ≃ αΦa(x;u,Σ + H)(Σ + H)−1[(u − x)(u − x)t

− (Σ + H)](Σ + H)−1 (17)

Plugging Eqs.(15-17) to Eqs.(12,13) yields two equations that are satisfied when theL-normalized

scale-space derivatives are evaluated for a local blob-like structure,

Gl(x;H) ≃ (Σ + H)−1(u − x) (18)

Ψl(x;H) ≃ (Σ + H)−1(u − x)(u − x)t(Σ + H)−1 − (Σ + H)−1 (19)

Notice that this response-normalization removes both the multiplicative parameterα and the

Gaussian termΦa from the derivative formulae. BothL-normalized scale-space gradientGl and

HessianΨl are computable sinceL(x;H) is non-zero within a finite range as long asf(x) is

positive-valued.
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C.. Maximum-Over-Scales Criteria for Scale Selection

The maximum-over-scales criterion was first proposed by Lindeberg [2] as a solution to

the isotropic scale selection problem. Scale-space derivatives normalized by the analysis scaleh

raised to the power of an upper-bounded real valueγ are defined asγ-normalized derivatives.

Lindeberg demonstrated that various functions of theγ-normalized derivatives assume their local

maximum at the characteristic scale of the target feature. For the d-variate anisotropic Gaussian

structures, theγ-normalized Laplacian withγ = (d+2)/4 evaluated at a spatial local maximum,

tr[H(d+2)/4Ψ(u;H)], is locally maximized over scales when the analysis scaleH is equal to the

signal’s covarianceΣ, where “tr” denotes the trace of ad×d matrix. Lindeberg and Garding [60]

have shown that this criterion can be extended to other second-order cases using the trace and

determinant of second moment and Hessian matrices.

We developed novel anisotropic maximum-over-scales criteria constructed with thenorm

of the combinedγ- andL-normalized scale-space derivatives [25]. The norm is defined both in

vector and matrix while the trace and determinant used in theLindeberg’s criteria are specific to

matrix. Therefore the choice of the norm makes it possible toconsider first-order scale selection

criteria and to unify them with the second-order criteria using the same functional form. Note also

that values ofγ in the Lindeberg’s scale selection criteria depend on the dimension of the signal

and the order of the differentiation for assuming the maximum-over-scales property. The proposed

criteria provide an elegant solution, in which a constantγ = 1/2 gives rise to the maximum-

over-scales property regardless of the signal’s dimensions and of the order of differentiation.

The spatial local maximum locationu is assumed to be known hereafter. Such maximum can be

found by searching locations that satisfies∇L(x;H) = 0. For notational simplicity, the function

arguments ofGl(x;H) andΨl(x;H) are omitted unless they are evaluated at a specific location.

Fig.1 illustrates the proposed criteria with a synthetic 1DGaussian signal.

1) First-Order Criterion: Using Eq.(18), aγ-normalization of theL-normalized scale-space

gradient vector withγ=1/2 is expressed by

H1/2Gl = H1/2(Σ + H)−1(u − x) (20)

whereH1/2 denotes the square root of the matrixH: H = H1/2H1/2. This matrix square root can

be computed readily sinceH ∈ SPSD(d). The L2 norm of theγ- andL-normalized gradient

is then given by,

‖H1/2Gl‖2 = ‖H1/2(Σ + H)−1(u − x)‖2 (21)
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Fig. 1. Examples of the maximum-over-scales criteria. A centered 1D Gaussian signal withσ2
= 2 is used as target. (a)

the first-order method with Eq.(21), (b) theγ-normalized Laplacian in [2], (c) the second-order method with Eq.(24), (d) the

second-order method with Eq.(28). Curved lines in each plot display thenorm computed at 21 locationsx=0, 0.1, ..., 2 over 291

analysis scalesh=0.1, 0.11, .., 3. Dash lines denote the ground-truth scale. “©” and “×” indicate the maximum-over-scales for

the spatial maximum (x = 0) and for the non-maximum (x 6= 0), respectively.

Using this, the following first-order maximum-over-scalescriterion is obtained:

Thm1: TheL2 norm of theγ- andL-normalized scale-space gradient vectorGl with γ = 1/2

in Eq.(21) is maximized when the analysis scale matrixH ∈ SPSD(d) is equal to the

characteristic covarianceΣ of a local Gaussian-like structure and whenx 6= u.

Proof: Comaniciu [3] proved a theorem stating thatthe magnitude of the bandwidth-normalized

mean shift vector with a Gaussian kernel is maximized when the analysis bandwidth

H is equal toΣ [3, p.287]. A proof of this theorem cites the Comaniciu’s proof by
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showing that theL-normalized scale-space gradientGl is proportional to the mean

shift vector defined over a scale-space:m(x;H) ≡ HGl [24]. This immediately leads

to ‖H1/2Gl‖2 = ‖H−1/2m‖2 stating that theL2 norm of theγ- and L-normalized

scale-space gradient vector is equivalent to the magnitudeof the bandwidth-normalized

mean shift vector. Details of scale-space and mean shift will be revisited in Section IV.

Whenx = u, Gl = 0 for all H, thus the norm does not hold the maximum-over-scales

property.2

Note that this criterion holds at arbitrary locationsx ∈ S except at the centeru as demonstrated

in Fig.1(a).

2) Second-Order Criteria:Two types of second-order scale selection criteria are derived

using the Frobenius matrix norm, which is a common extensionof the L2 norm to a matrix.

First, a solution only with the second-order Hessian matrixis examined. Using Eq.(19), theγ-

andL-normalized scale-space Hessian matrix withγ=1/2 is expressed by,

H1/2Ψl = H1/2GlG
t
l − H1/2(Σ + H)−1 (22)

When evaluated at the spatial maximumu, the normalized Hessian is reduced to the following

simple form becauseGl becomes zero,

H1/2Ψl(u;H) = −H1/2(Σ + H)−1 (23)

The Frobenius matrix norm of this derivative matrix function is then given by,

‖H1/2Ψl(u;H)‖F = ‖H1/2(Σ + H)−1‖F (24)

The following second-order maximum-over-scales criterion is obtained using Eq. (24),

Thm2: The Frobenius norm of theγ- andL-normalized scale-space Hessian matrix withγ =

1/2 in Eq.(24) is maximized when the analysis scale matrixH ∈ SPSD(d) is equal

to Σ and whenx = u.

Proof: We defineη(H) ≡ ‖H1/2Ψl(u;H)‖F . The theorem must be true ifη(Σ)2 − η(H)2 is

greater or equal to zero with equalityiff H = Σ. Recall thatΣ andH are symmetric
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positive definite matrices. Thus we have,

η(Σ)2 − η(H)2

= ‖Σ1/2(Σ + Σ)−1‖2
F − ‖H1/2(Σ + H)−1‖2

F

= 1
4
tr[Σ−1/2Σ−1/2] − tr[(Σ + H)−1H(Σ + H)−1]

= 1
4
tr[Σ−1 − 4(Σ + H)−1H(Σ + H)−1]

= 1
4
tr[(Σ + H)−1(HΣ−1 − I)2Σ(Σ + H)−1]

SinceΣ andH are positive definite, all the matrices inside the trace are also positive

definite. Since the trace of a positive definite matrix is positive-valued, we haveη(Σ)2−

η(H)2 ≥ 0. Trivially, the equality holds iffH = Σ. 2

The classicd-variateγ-normalized Laplacian by Lindeberg can be expressed as a matrix trace,

tr[H(d+2)/4Ψ(u;H)] = −L(u;H)tr[H(d+2)/4(Σ + H)−1] (25)

Also the Frobenius norm in Eq.(24) can be expressed by,

‖H1/2Ψl(u;H)‖2
F = tr[(Σ + H)−1H(Σ + H)−1] (26)

As compared in Fig.1(b) and Fig.1(c), both methods behave similarly despite the difference in

their functional forms. Theorem 2 is true only at the spatialmaximumu as shown in Fig.1(c)

as was also the case for the Lindeberg’s second-order criteria.

Second, both first-order gradient and second-order Hessianis examined together by con-

sidering a matrix function of the difference between theL-normalized second-moment matrix

GlG
t
l and Hessian matrixΨl. From Eqs.(18,19), theγ-normalization of this matrix function with

γ=1/2 is given by,

H1/2(GlG
t
l − Ψl) = H1/2(Σ + H)−1 (27)

The Frobenius norm of this normalized derivative function is,

‖H1/2(GlG
t
l − Ψl)‖F = ‖H1/2(Σ + H)−1‖F (28)

Consequently, we obtain the following second-order maximum-over-scales criterion using Eq.(28),

Thm3: Consider a matrix function subtracting theL-normalized scale-space Hessian matrix

from theL-normalized second moment matrix: the outer-product of theL-normalized

scale-space gradient vector. The Frobenius norm of theγ-normalization of this matrix

function with γ = 1/2 in Eq.(28) is maximized for allx ∈ S when the analysis scale

matrix H ∈ SPSD(d) is equal toΣ.
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Proof: For allx ∈ S, ‖H1/2(GlG

t
l − Ψl)‖F = ‖H1/2(Σ + H)−1‖F = η(H). From the proof

of theorem 2, we haveη(Σ)2 − η(H)2 ≥ 0 with equality atH = Σ. 2

As shown in Fig.1(d), the function value isinvariant against the locationx; the value does not

depend on the location, at which it is evaluated. Note a peculiar equality of two scale space

derivative functions: theL-normalized scale-space Hessian evaluated at the spatial maximum

(Ψl(u;H)) and the difference of theL-normalized second moment and Hessian matrices (GlG
t
l−

Ψl). Furthermore, unlike the other first- and second-order criteria, the maximum-over-scales

property of this criterion holds at any locationsx ∈ S. This is a key property of this criterion

which allows us to collect the scale estimates from a number of points rather than to have a

single point-estimate only at the spatial maximumx = u. This property will be exploited in

another scale selection strategy which will be described inthe next section.

D.. Related Work

The extension of the Gaussian scale-space to anisotropic scales has been explored in

past. They have been called in various terms, including anisotropic scale-space [25], affine

scale-space [1], [60], and directional scale-space [64]. The anisotropic scale-space discussed in

this chapter models the anisotropic homogeneous diffusionprocess while the traditional linear

Gaussian scale-space [54], [55] models the isotropic homogeneous diffusion and the anisotropic

diffusion proposed by Perona and Malik [65] models the isotropic inhomogeneous diffusion.

Lindeberg and Garding [1], [60] is the first to discuss the type of anisotropic extension of the

Gaussian scale-space discussed in this chapter and appliedit to fingerprint analysis [66]. The work

presented in this chapter complements Lindeberg’s work with unifying scale selection criteria

and robust estimation techniques introduced to apply them to practical problems. Introduction

of robust estimation techniques to the scale-space has beenscarcely studied in past. Robust

anisotropic diffusion proposed by Black et al. [67] is the only other related work addressing this

issue to the best of our knowledge.

Automatic scale selection was pioneered by Lindeberg for isotropic scale [2] and later for

anisotropic scale [1], [60], [25]. This scale selection concept has played a major role in developing

the popular scale- and affine-invariant interest-point detector such as SIFT [68], Harris-Hessian

Affine feature detectors [69], and GRIF [64]. The proposed second-order criterion in Eq.(28)

has an interesting parallel to the affine-invariant featuredetector proposed by Mikolajczyk and
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Schmid [69]. The Harris-affine and Hessian-affine detectorsby Mikolajczyk and Schmid are

based respectively on the second moment matrix and Hessian matrix, while the proposed second-

order criterion combines both second moment and Hessian matrices in a single scale selection

method.

The anisotropic extension for the Gaussian kernel has also been explored in the context of

convolution filter design in the orientation space. Freemanand Adelson proposed the oriented

steerable filter by a linear combination of basis filters [70], while Bigun et al. [71] presented

multi-dimensional directional estimation using the matrix eigenvalue problem. These classic

oriented filters have also been extended to 3D domain. Faas and van Vliet [72] discussed an

extension of the steerable filter to the 3D orientation spacewith pseudo-regular 3D orientation

sampling using the icosahedron grid. On the other hands, Lampert and Wirjadi [73] proposed a

method for separating an anisotropic Gaussian filter along arbitrary oriented axes.

A number of previous works have also addressed applicationsof the Gaussian intensity

model fitting using the anisotropic scale-space analysis. Bahalerao and Wilson [74] proposed an

intensity model fitting method for visualizing 3D vascular structures in MR images. They utilized

anisotropic model similar to ours, however their method does not exploit the robust statistics

and involves an expensive EM algorithm-based iterative solution for the model fitting. Our

proposed method exploits a more efficient closed-form robust least-squares method. Manmatha

and Srimal [75] developed a hand writing segmentation system utilizing an anisotropic scale-

space-based blob detection technique. However, they considered anisotropy only up to a diagonal

covariance matrix. The extension to the full anisotropy along arbitrary axis is provided by our

solutions.

IV.. ROBUST ANISOTROPICGAUSSIAN FITTING

Let us now revisit the problem of how to robustly fit an anisotropic Gaussian modelg(x)

in Eq.(1) to the appearance of pulmonary nodules shown in a 3DCT image. One simple and

common approach is to treat the imagef(x) as a 3D histogram then estimate the Gaussian

parameters as the expected mean and covariance matrix with the histogram. The underlying

probability distribution required to compute the expectations is calculated by normalizing the

histogram. This is possible sincef(x) is assumed to be non-negative-valued. This naive method

fails when:

1) the intensity distribution in the imagef(x) does not follow a Gaussian distribution closely,
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2) the target nodule is attached or adjacent to other non-target structures, and

3) the user-specified voxel seed given to indicate a target nodule is placed too far from the

target.

The first cause of failure,non-Gaussianity, is relevant to some extent for all nodule cases because

there is no justification for nodules to have a Gaussian appearance. Moreover, the GGO and

necrosis (i.e., cell deaths causing a hollow area in the middle of a nodule) cases will cause

larger deviation between the nodule appearance and Gaussian distribution. The second cause of

failure, juxtaposed non-target structure, makes the image data fit to a Gaussian distribution only

within an unknown and irregular range of the image domain. Pulmonary nodules are commonly

attached to blood vessels and pleural surface (i.e., lung wall). Because the degree of attachment

varies largely from peripheral to submersion, the domain range of which the data follows the

Gaussian appearance varies widely as a consequence. Technically speaking, this introduces an

arbitrary truncation to a data model, making the model fitting difficult. Even when the target

nodule is not attached to other structures, there can be a number of other structures located nearby.

A natural extension of the Gaussian fitting approach would beto employ a Gaussian mixture

model which can be fit to the multi-structured data by using the Expectation-Maximization (EM)

algorithm [76]. However, this approach is not suitable for our problem because many structures

do not follow the Gaussian appearance assumption (e.g., vessel) and the number of nearby

structures is arbitrary and unknown. The third cause of failure,seed variability, is a fundamental

limitation of a semi-automatic segmentation and the main cause of the inter-observer variability

in volumetry. Together with the non-Gaussianity of data, the Gaussian centroid estimate can

yield biased results depending on where the seed is placed. Due to the non-target structures

located nearby, the model can be fit to a wrong structure when the seed is located too close to

the non-target structure.

Addressing these issues, we propose a semi-automatic approach for fitting a single anisotropic

Gaussian model. We designed our model fitting algorithm to berobust against the three afore-

mentioned factors common in nodule segmentation: non-Gaussianity, juxtaposed non-target struc-

tures, and seed variability. We first derived a convergent scale-space mode seeking algorithms,

scale-space mean shift[77], [24], by exploiting the similarity of Gaussian scale-space and kernel

density estimation. The results of the anisotropic scale selection described in the previous section

will be reused with this scale-space mean shift to design a Gaussian fitting algorithm that is



16
robust against the juxtaposed non-target structures and the seed variability. To address the non-

Gaussianity issue, we propose a novel scale selection method, most-stable-over-scales. This

method carries out the model fitting across the isotropic scale-space then chooses the best fitted

model using a stability-based criterion.

The robustness plays a key role toward the goal of realizing areproducible volumetry.

The Gaussian approximation of the nodule appearance poses atrade-off between accuracy and

robustness. The approximation causes unavoidable errors in volume measurement of nodules.

On the other hand, the mathematical simplicity of the model allows us to robustify the volume

estimation process so that the tumor growth rate estimated by such robust methods can be more

accurate than the rate estimated by more accurate but less robust segmentation methods, as

discussed in [23]. In the following, the proposed robust Gaussian model fitting algorithms will

be described.

A.. Mean Shift and Anisotropic Scale-Space

Mean shift is a popular technique for analyzing the mode structure of kernel density

estimation (KDE) from discrete data samples. It is an adaptive gradient-ascent algorithm with

automatic step-size selection and is provably convergent to a mode of the density function. This

data-driven framework provides an efficient solution to thegeneral non-parametric data clustering

problem in the Parzen windows setting [78], [79], [4]. The mode-seeking property of the mean

shift algorithm has also been successfully applied to a widerange of vision problems such as

tracking [80], [77] and segmentation [81], [4], [14].

Given a d-variate sample setS = {xi ∈ R
d|i = 1, .., n}, the KDE f̂(x) with a Gaussian

kernelΦa(x) in Eq.(5) is defined by,

f̂(x) ≡
1

A

n
∑

i=1

Φa(x;xi,H) (29)

where A is a normalizing factor that is a function ofn and H. Mean shift vector using the

Gaussian kernel is defined as the difference between the kernel-weighted sample mean and the

current location,

m(x) ≡

∑n
i=1 xiΦa(x;xi,H)

∑n
i=1 Φa(x;xi,H)

− x (30)

The gradient-ascent like mean shift procedure is then defined by a successive iterationyk of this

mean shift vectorm(yk) from an initializationy0 until convergence aty∗,

yk+1 = yk + m(yk) (31)
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The mean shift formulam(x) can be derived by evaluating an estimator of the KDE’s

spatial gradient,

∇xf̂(x) =
1

A

n
∑

i=1

∇xΦa(x;xi,H) (32)

=
H−1

A

n
∑

i=1

(xi − x)Φa(x;xi,H)

=
H−1

A

[

n
∑

i=1

xiΦa(x;xi,H) − x

n
∑

i=1

Φa(x;xi,H)

]

=
H−1

A

n
∑

i=1

Φa(x;xi,H) ×

[∑n
i=1 xiΦa(x;xi,H)

∑n
i=1 Φa(x;xi,H)

− x

]

= H−1f̂(x)m(x)

This formulation also clarifies the relationship of the meanshift vector to the KDE’s gradient as

m(x) =
H∇xf̂(x)

f̂(x)
(33)

Beyond the KDE, the mean shift vector can also be derived from abroad class of kernel-

smoothed functions [82], including the scale-space [77], [24]. A naive discretization of the

Gaussian scale-space in Eq.(7) yields,

L̂(x;H) ≡
n

∑

i=1

f(xi)Φa(x;xi,H) (34)

where n is the number of voxels in the imagef(x). Given that the imagef(x) is positive-

valued, this discretized Gaussian scale-space can be considered as a kernel-smoothed function

with positive weights after appropriate normalization. Cheng [79] has shown that mean shift

derived from such a weighted KDE holds the desirable properties of the original mean shift.

Evaluating the gradient of the discretized Gaussian scale-space in Eq.(34) in the same way

demonstrated in Eq.(32) yields the scale-space mean shift,

m(x) ≡

∑n
i=1 xif(xi)Φa(x;xi,H)

∑n
i=1 f(xi)Φa(x;xi,H)

− x (35)

Applying this to the same means shift procedure in Eq.(31) provides a gradient-ascent like

iterative algorithm that is convergent to an intensity peakin L̂(x;H) in the neighborhood of an

arbitrary initialization.
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B.. Most-Stable-Over-Scales Methods for Gaussian Fitting

As mentioned in Sec II, we use the Gaussian scale-space to regularize an image to handle

data irregularity. In constructing a scale-space, the image f(x) is smoothed by Gaussian kernels,

modeling the continuous diffusion process. By increasing the kernel bandwidth, an initially noisy

image would increasingly become smoother. An important question in this set-up is when to

stop this diffusion. With too little smoothing, we have highvariance in estimation due to the

remaining noise. With too much smoothing, we have a biased estimate causing inaccuracy but

with a low variance. This trade-off is known asbias-variance dilemmaand motivates the problem

of automatic bandwidth selectionin finding most accurate KDE of data samples.

The proposed anisotropic scale selection criteria discussed in Sec III offers solutions to this

bandwidth selection problem because of the mathematical duality between the KDE and the scale-

space we have established in Sec IV-A. However, this approach poses two serious shortcomings.

First, seeking the scale-space maxima becomes impracticalwhen high-dimensional anisotropic

structures are considered. Such cases require a dense sampling of a multivariate product space,

resulting in prohibitively large search space, known as thecourse of dimensionality. Second, what

the maximum-over-scales criteria select as the best scale is not the scale that best regularizes the

signal but rather the scale that best matches the target’s characteristics scale. When these two

scales, the characteristic and best regularizer scales aredifferent, the anisotropic scale selection

in Sec III would stop the diffusion at the wrong place.

Addressing these issues, we developed themost-stable-over-scalesmethod: a stability-based

scale selection thatdecouplesthe above two types of scales.In order to address the curse of

dimensionality in searching the anisotropic scale-space,we employ the isotropic scale-space in

Eq.(4) for regularizing the estimation process with linearscalesH = hI (h ∈ R > 0). At each

analysis scaleh, the anisotropic characteristic scaleΣ(h) is estimated by robustly fitting the

Gaussian modelg(x) to f(x) by using the scale-space mean shift. The usage of the isotropic

scale-space in solving the anisotropic scale selection problem is only possible because of this

decoupling. Given a set ofS analysis scales{hs|s = 1, .., S, hs < hs+1}, this process yields a

set of Gaussian estimates{Φs(x;u(hs),Σ(hs))|s = 1, .., S}.

The most-stable-over-scales scale selection method chooses the best GaussianΦ∗(x;u∗,Σ∗)

among the set{Φs} by selecting the best scaleh∗ with a divergence-based stability test:

(u∗,Σ∗) = (u(h∗),Σ(h∗) | h∗ = argminsdiv{Φ(hi(s))}) (36)
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At each analysis scalehs, the stability test perturbs the scale within a fixed interval hs±a and fits

a Gaussian at every perturbed scale{hi(s)|i = 1, .., L} whereh1(s) = hs−a andhL(s) = hs+a.

A divergence measure of these Gaussians represents how stable the model fitting process is at

the analysis scalehs. The minimum of this divergence measure over all evaluated analysis scales

indicates the most stable Gaussian estimate. A form of the Jensen-Shannon divergence for normal

distributions proposed in [3] is employed as our measure, given a set of ordered analysis scales

forming a geometric sequence{hs|s = 1, .., S; hs+1/hs = constant},

JS(hs) =
1

2
log

| 1
2a+1

∑

i Σ(hi(s))|

2a+1
√

∏

i |Σ(hi(s))|
(37)

+
1

2

∑

i

(u(hi(s)) − u)t(
∑

i

Σ(hi(s)))
−1(u(hi(s)) − u)

whereu = 1
2a+1

∑

i u(hi(s)). Jensen-Shannon divergence is a natural extension of the pair-wise

Kullback-Leibler divergence to describe similarity amonga set of distributions [83]. In practice,

the indexi and the intervala can be set so that the stability test at each scalehs evaluates with

the three immediately neighboring scales(hs−1, hs, hs+1).

The proposed automatic scale/bandwidth selection method is robust against the non-Gaussian-

ity of the nodule data because it does not analyze the residual error of the model fitting, which

is a common bandwidth selection approach. Such residual errors fail to indicate the goodness

of fit when the data do not follow the Gaussian appearance assumption.

Robust Gaussian fitting is performed as two successive steps of estimating the Gaussian

mean and covariance at each analysis scalehs. Addressing the seed variability issue, we use

majority voting of the convergence points of the scale-space mean shift initialized by the seed.

Addressing the juxtaposed non-target structures, we propose a robust least-squares estimation of

the covariance matrix by a data-driven estimate of the domain rangeS in our model equation

Eq.(14). We definebasin of attractionas a set of all data points in the image domainx, from

which the scale-space mean shift in Eq.(35) converges to thesame point,

S ≡ {xj|∀jyc ≈ y∗(xj)} (38)

wherey∗(xj) denotes a convergence of a scale-space means shift procedure initialized byxj.

This least-squares estimation is robust because the parameters are estimated only from statistics

sampled within this basin. The following two sections describe these two estimation processes

in details.
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C.. Mean Estimation

Suppose that the user-specified seed markerxp is given inside the basinS. We perform a

uniform sampling in the neighborhood ofxp, resulting inN1 sample points. Using each sample as

an initialization, the scale-space means shift is performed on L(x; hs), yielding N1 convergence

points {y∗
j}. These convergence points are subjected to a clustering with a fixed Mahalanobis

distance threshold then the location with the majority votewill provide the final estimate of the

Gaussian centroidu(hs).

Robustness against the seed variability is important not only for reducing the inter-observer

variability but also for enhancing the usability of the overall semi-automatic segmentation by

relieving the user from the task of locating the seeds precisely at the nodule’s center. The voting

scheme will increase the robustness especially when the seed is placed at a peripheral area of the

basin. The bias-variance dilemma suffers this estimation task. With too little smoothing, a nodule

can exhibit multiple peaks with zero gradient, resulting inhigh variance in the convergence point

set{y∗
j}. On the other hand, too much smoothing can assure a better-defined basin of attraction

with a single peak but with less accurate localization. The task of finding the best estimate is

delegated to the most-stable-over-scales method in Eqs.(36,37).

D.. Covariance Estimation

Recall the anisotropic scale selection criteria discussed in Sec III. While the Lindeberg’s

original Laplacian-based criterion is only valid at the spatial maximum locationu, the proposed

first-order and second-order criteria in Eqs.(21,28) are valid at any other locations in the neigh-

borhood ofu(hs). Exploiting this property, we estimate the Gaussian covarianceΣ(hs) from

L(x; hs) by first collecting a set of local linear constraints with theunknown covariance matrix

and next solving the set of linear equations to derive the final estimate that minimizes the error

in the least-squares sense. Robustness against the juxtaposed non-target structures is achieved

by collecting local estimates only from the points within the basin of attractionS of u(hs) so

the information that belongs to other non-target structures will be effectively ignored.

To this end, we perform another uniform sampling of data points around the estimated

centroidu(hs), resulting inN2 seeds, each of which is used to initialize a scale-space mean

shift procedure. At each iteration of a mean shift procedure, a linear constraint equation is

computed and stored. The constraint equations collected along the path of the mean shift that

converged tou(hs) are retained while ignoring those by mean shift converged toelsewhere.



21
This framework provides arobust least-squaresmethod, where the suppression of outliers is

given through the basin whose shape is determined from data and adapts to each case unlike

the common robust estimators, such as the m-estimator [84].Note also that our method does

not fit the Gaussian model directly to the scale-spaceL(x; hs) but estimates the true covariance

Σ(hs) with L(x; hs). This is a key property since it allows a direct comparison ofthe covariance

estimates from different bandwidthhs in the proposed most-stable-over-scales. In the following,

we describe the first- and second-order methods with different linear constraint equations derived

from theL-normalized scale-space derivatives in Eqs.(18,19).

1) First-Order Method: A local covariance estimator with the normalized gradientGl is

derived by manipulating Eq.(18) while maintaining its equality,

ΣGl = u − x − HGl (39)

whereGl can be computed numerically by using Eqs.(7,10). This equation can also be expressed

as a function of the fixed-bandwidth mean shift vectorm(x;H) ≡ HGl(x;H) proposed in [3],

[24], i.e., ΣH−1m = u − x − m. Both equations become singular whenGl goes to zero at

x = u.

The resulting equation of an unknownΣ is under-complete, requiring at least two inde-

pendent samples for the unique solution. Note that Eq.(39) satisfies with arbitraryH, allowing

to use the isotropic scale whereH = hI. Given a sufficient number of independent samples, an

over-complete set of linear equations can be formed and solved by a least-squares method with

a constraint that the solution must be a symmetric positive semi-definite matrixΣ ∈ SPSD(d).

We adapt a closed-form constraint least-squares solution proposed in [24] to solve this problem.

Given a set ofK measurements{(xk, Gl(xk; hs))|k = 1, .., K} within S along the paths of

mean shift procedures convergent tou(hs), we construct an over-complete normal equation,

AΣ = B (40)

A ≡ (Gl1, .., GlK)t (41)

B ≡ (u − x1 − hGl1, ..,u − xK − hGlK)t (42)

The constrained least-squares solution of this normal equation for the unknownΣ ∈ SPSD(d)

is given by finding the minimizerY∗ of an area criterion‖AY−BY−t‖2
F whereY is Cholesky

factorization ofΣ = YYt [62]. The closed-form of this solution is expressed by a function of
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symmetric Schur decompositions ofΨ ≡ AtA andQ̃ ≡ ΣPut

PQuPΣP given Q ≡ BtB,

Σ(hs) = uPΣ−1
P uQ̃ΣQ̃ut

Q̃
Σ−1

P ut
P

Ψ = uPΣ2
Put

P

Q̃ = uQ̃Σ2
Q̃
ut

Q̃

(43)

2) Second-Order Method:Another covariance estimator with the normalized HessianΨl

is derived by manipulating Eq.(19) while maintaining its equality,

Σ = (GlG
t
l − Ψl)

−1 − H (44)

whereGl can be computed numerically by using Eqs.(7,10) andΨl by using Eqs.(7,11). This

equation exploits both first- and second-order derivatives. Unlike the first-order equation, the

equality holds at arbitrary locationsx ∈ S.

At the spatial maximumu, Eq.(44) collapses into the form only with the Hessian matrix,

Σ = (−Ψl(u;H))−1 − H

= L(u;H)(−Ψ(u;H))−1 − H (45)

The resulting form is similar to the well-known Hessian-based covariance estimator [85], except

the second negative term included due to its scale-space nature. Note that, for the second-

order case, the magnitude parameterα can be expressed analytically. The analytical form of

the scale-space Hessian matrix evaluated at the spatial maximum u is given by: Ψ(u;H) =

−α(2π)−d/2|Σ+H|−1/2(Σ+H)−1. This equation can be solved forΣ sinceH+Σ ∈ SPSD, i.e.,

Σ = α
2

d+2 |2π(−Ψ(u;H))−1|−
1

d+2 (−Ψ(u;H))−1−H. Since this and Eq.(45) must be equivalent,

the following formula is obtained after some algebra,

α =
√

|2π(−Ψ(u;H))−1|L(u;H)d+2 (46)

The scale-space HessianΨ(x;H) is symmetricnegativesemi-definite ifx is at a stable

critical point of −L(x;H). WhenΨ(u;H) is numerically computed by using Eq.(11), it must

be assured thatu satisfies this condition so that the estimatedΣ by Eq.(45) satisfies the positive

definite constraint and Eq.(46) remains as real-valued.

Similar to the first-order method, a set ofK measurements{(Gl(xk; hs),Ψl(xk; hs))|k =

1, .., K} are sampled withinS along the paths of convergent mean shift procedures. A robust

least-squares covariance estimator is given by averaging these local estimates,

Σ(hs) =
1

K

K
∑

k=1

{(Gl(xk; hs)Gl(xk; hs)
t − Ψl(xk; hs))

−1 − hsI} (47)
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Fig. 2. Examples of the most-stable-over-scales methods. A centered 1D Gaussian signal ofσ2
= 2 with additive random

noise (randn ∗ 0.01) is used as the target. At each analysis scale, the variance of the target isestimated from a set of samples

within: (a) ±0.1σ, (b) ±1.0σ, and (c)±3.0σ. Dash lines: the ground-truth scale. Dot lines: the first-order estimates by Eq.(39).

Solid lines: the second-order estimates by Eq.(44). “+” and “×” denote the most stable estimates by the first- and second-order

methods, respectively.

The second-order equation provides a full covariance estimate for each sample location. Thus a

valid estimator with a single sample at the spatial local maximum locationu can be obtained

by using Eq.(45).

Fig.2 compares the first- and second-order most-stable-over-scales methods with the 1D

synthetic Gaussian data with additive random noise. Three different sampling ranges (±0.1σ,

±1.0σ, ±3.0σ) were evaluated. Both methods achieve accurate scale estimation given an appro-

priate choice of the sampling range. The results also suggest that the first-order method favors a

larger sampling range while the second-order method prefers a smaller one. When using the data

without the noise, both methods resulted in estimates with no errors. The additive noise causes

estimation errors that depend on sample locations. For the second-order case, the estimates tend

to be more accurate when evaluated at a location closer to thespatial maximum.

V.. EXPERIMENTAL EVALUATIONS

A.. Synthetic Data with Noise

The proposed scale selection methods are studied with 1D synthetic data with the presence

of noises. The target feature is the centered 1D Gaussian with σ2 = 2. As shown in Fig.3,

three types of additive noise are used: (a) neighboring structure, (b) strong random noise, (c)

the combination of (a) and (b).

Fig.4 illustrates the results by the proposed maximum-over-scales criterion. In general, we

find that (i) the maximum-over-scales criterion is susceptible to the noises, (ii) the first-order
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Fig. 3. 1D synthetic data with noise. The target is the centered 1D Gaussian with σ2
= 2. (a) a Gaussian centered atu = −5

with σ2
= 0.5 superimposed to the target. (b) the target with additive random noise (randn ∗ 0.04). (c) the data (a) with the

same additive noise in (b).
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Fig. 4. Variance estimation by the maximum-over-scales criterion for the signals shown in Fig.3. 1st row: the first-order method

with Eq.(21). 2nd row: the second-order method with Eq.(24). 3rd row: the second-order method with Eq.(28). The legend is

the same as Fig.1.
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Fig. 5. Variance estimation by the most-stable-over-scales methods for the signals in Fig.3. At each analysis scale, the variance

of the target is estimated from samples within: 1st row:±0.1σ, 2nd row:±1.0σ, 3rd row:±2.0σ. The legend is the same as

Fig.2.

method is more sensitive to the random noise, (iii) the second-order methods are more sensitive

to the neighboring structure. These observations can be explained by the fact that the support of

the Gaussian derivative kernels is larger for the higher order derivatives. Thus the second-order

methods are naturally more sensitive to the neighboring structure or the signal truncation than

the first-order method. The most accurate estimate was obtained by the first-order method when

the data without the random noise were evaluated at points far from the non-target structure, as

shown in the top-left of Fig.4.

Fig.5 illustrates the results by the most-stable-over-scales criterion. The first-order (dotted

lines) and second-order (solid lines) methods are comparedby using the same data as Fig.4.
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Fig. 6. Average variance estimation errors of the most-stable-over-scales methods over 100 independent tests. The same types

of data in Fig.3 with different random noise are used for each test. The errors are plotted against varying sampling ranges. Dot

and solid lines denote errors by the first- and the second-order methods, respectively.

At each analysis scale, the target’s variance is estimated from samples within three different

sampling ranges:±0.1σ, ±1.0σ, and±2.0σ. The crosses “+” and “×” denote the estimates by

the first- and second-order methods, respectively. The results demonstrate that the most-stable-

over-scale criterion are more accurate than the maximum-over-scales criterion if the sampling

range is chosen correctly. For the data (a), both methods were accurate using only samples

within the basin of attraction. For the data (b), the first-order (second-order) method gave better

results with a larger (smaller) range. For the data (c), the second-order method with a very small

sampling range was most accurate. The first-order estimate in b(1) and the second-order estimates

in a(3) and c(3) were out of range. With the large sampling range, the scale estimates for data

(a) and (c) were corrupted because of the samples located near the edge of or out of the target’s

basin of attraction. The second-order method with the very small sampling range resulted in the

overall best accuracy across the different types of noise. Fig.6 shows average estimation errors of

the most-stable-over-scales methods over 100 tests. The errors are plotted against continuously

varying sampling ranges and compared with the aforementioned three data types. It demonstrates

that both the first- and second-order methods achieve much higher accuracy than the maximum-

over-scales criterion within the±2.2σ sampling range that roughly corresponds to the target’s

basin of attraction. Also observed was a tendency that the first-order (second-order) method is

more accurate with a larger (smaller) sampling range.

Fig.7 illustrates 2D examples comparing the proposed scaleselection methods. The test data

consists of a centered target Gaussian with additive randomnoise and a neighboring structure

as shown in Fig.7(a). Fig.7(b-e) show results with the maximum-over-scales methods. We use a
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Fig. 7. Examples with 2D synthetic data consisting of a target centered Gaussian with a neighboring structure centered at (-3,3)

and additive random noise as shown in (a). From (b) to (e): the maximum-over-scales methods. (b) first-order method evaluated

at (2,-2), (c) second-order method at the non-maximum location, (d) second-order method evaluated at (0,0), (e)γ-normalized

Laplacian at the maximum location. From (f) to (h): the most-stable-over-scales methods. (f) first-order method, (g) second-order

gradient and Hessian method, (h) second-order Hessian only method. The ground-truth and scale estimates are denoted by 90%

confidence ellipses with dash and solid lines, respectively.
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set of 144 analysis scale matrices sampled along the two eigenvectors of the ground-truth matrix

by setting the corresponding eigenvalues to(1, 2, .., 12). Fig.7(f-h) show results with the most-

stable-over-scales methods. We used a set of 26 isotropic analysis scales from 0.1 to 7.6 with a

constant geometric ratio21/4. The sampling range is set to one Mahalanobis distance. The results

suggest that the most-stable-over-scales methods outperform the maximum-over-scales methods,

confirming the finding from the 1D case. The three most-stable-over-scales methods resulted in

similar accuracy. The second-order case (g) with both gradient and Hessian, however, gave the

best accuracy in terms of the Frobenius norm of the error (0.69).

B.. Lung CT Data

3D implementations of the most-stable-over-scales methods are applied to the problem

of estimating anisotropic spreads of pulmonary nodules shown in high-resolution computed-

tomography (HRCT) images. HRCT images of 14 patients displayingthe total of 77 pulmonary

tumors were used for this evaluation. Each volumetric imageconsists of 12-bit positive values

over an array of 512×512 lattices. A marker indicating the rough tumor location is given by a

radiographic reader for each nodule. We compare the first-order and the second-order (Hessian

only) methods. For both methods, a set of 14 isotropic analysis scalesh = (0.502, .., 4.752)

with a geometric ratio21/4 are used. The system is implemented in C language and processa

32x32x32-voxel volume-of-interest by an average of two seconds with a 2.4 GHz Intel CPU.

The second-order method resulted in less failures (10 cases) than the first-order method (14

cases). All the solitary tumors were correctly estimated byboth methods. Most of the failures

were due to small nodules that are attached to the lung wall (i.e., on-the-wall cases).

Fig.8 shows examples of the estimation results. The left columns illustrate part- or non-solid

nodule cases which are more likely to become malignant than solid ones [10]. The right columns

show the cases attached to the pleural surface. Both methods resulted in similar estimates for

many cases (e.g., (a)-(e) and (c)-(g)). However, the second-order method often provided more

accurate spread estimates (e.g., (b)-(f)). Furthermore, some cases failed by the first-order method

were correctly estimated by the second-order method (e.g.,(d)-(h)).

VI.. CONCLUSIONS

This chapter presents a framework for robust pulmonary nodule segmentation, focusing

on approximating the nodule’s appearance by robustly fitting a Gaussian model to CT data.
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Fig. 8. Examples of the 3D spread estimation of lung tumors in 3D HRCT data by using the most-stable-over-scales scale

selection methods. “+” denotes the marker locations. The local spatial maxima and 3D spread estimates are denoted by “×”

and 2D intersections of 50% confidence ellipsoids, respectively. Cases(a)-(d) show the results by the first-order method. Cases

(e)-(h) show those by the second-order (Hessian only) method.
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The framework unifies the concepts of automatic scale selection and robust Gaussian fitting.

In particular, we investigated the theory of anisotropic scale selection: scale selection in an

anisotropic scale-space. Furthermore, the popular non-parametric mean shift data analysis is

extended to the scale-space and we demonstrated the relationship between the automatic scale

and bandwidth selection problems. As results, we offer two solutions for anisotropic Gaussian

model fitting: 1) anisotropic scale selection with various maximum-over-scales criteria and 2)

robust anisotropic Gaussian fitting by various most-stable-over-scales methods.

Technically, the main conclusions of this chapter are (i) the norm of theγ- andL-normalized

anisotropic scale-space derivatives offers elegant scaleselection solutions with a constantγ=1/2

regardless of the signal’s dimension and of the order of differentiation and (ii) the most-stable-

over-scales criterion with scale-space mean shift outperforms the maximum-over-scales criterion

in the presence of noise. Experiments with 1D and 2D synthetic data were conducted to validate

these findings. Finally, we applied 3D implementations of the proposed methods to the problem

of estimating anisotropic spreads of pulmonary nodules shown in HRCT images. Comparison

of the first- and second-order methods indicates the advantage of exploiting the second-order

information for realistic application scenarios with the presence of noise.
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