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Abstract

This chapter presents a comprehensive review of the literature related to ground-glass nodules (GGNs)

and evaluates effectiveness of RAGF algorithm, proposed byour previous work [45, 46], for pulmonary

nodule characterization of GGN cases in the high-resolution computed tomography (HRCT) images.

The literature on GGNs in radiology, pathology and medical image analysis are surveyed and discussed.

The nomenclature for GGNs are also summarized in order to clarify some confusion in the literature.

The RAGF algorithm is evaluated by using a HRCT dataset consisting of 56 GGN cases. This chap-

ter outlines the RAGF algorithm in some detail and discussesthe experimental results with the GGN

dataset.

Keywords: Ground-glass nodules; part- and non-solid nodules; X-raycomputed tomography;

pulmonary nodules; nodule segmentation; nodule volumetry

1 Introduction: Literature Review

Lung cancer is the most common cause of cancer death in the U.S. for both sexes [61]. Among

various types of the small-cell and non-small-cell lung cancers, adenocarcinoma is the most preva-
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lent type, accounting for more than a third of all primary lung tumors, and its incidence has been

increasing in past a few decades. [14]. X-ray computed tomography (CT) is the most sensitive

imaging domain for non-invasive diagnostics of adenocarcinomas among others [26]. The recent

advances in 3D imaging technology, such as high-resolutionand multi-detector CT, has greatly

improved image resolution and scanning time [6], making it possible to detect very small lung

tumors. Study of such small tumors is clinically important because they can still be malignant and

early detection of such malignancy can increase the chance of patient survival [44]. This technical

advent has also helped us to better understand the intricatepathology of a type of adenocarcinoma

known assmall peripheral adenocarcinomas[42]. Ground-glass nodule(GGN) is the common

radiographic appearance of such small peripheral lung adenocarcinomas [14].

1.1 Radiographic Characteristics of GGNs

Radiologically speaking, GGN represents a type of pulmonarynodules (i.e., localized increase of

attenuation in the lung parenchyma of a X-ray CT image), whichdoes not completely obscure

the underlying normal parenchymal structures such as airways, vessels and interlobular septa (i.e.,

presenting a focal ground-glass opacity orGGO). GGN is also known assubsolidnodule, while

those that completely obscure the lung parenchyma are called solid nodules. GGN covers a spec-

trum between completely-not-solid and almost-solid opacities, which are clinically categorized

into two subtypes:pureandmixedGGNs. For the pure GGNs, the appearance of the entire nodule

is subsolid, while the mixed GGNs consists of a combination of solid and subsolid components.

1.2 Nomenclature of GGNs

There exist varying, sometimes confusing, terms denoting these radiographic classifications. In lit-

erature, GGNs has equivalently been called as GGOs [32], focal GGOs [41], localized GGOs [40],

nodular GGOs [47], localized/focal GGAs (ground-glass attenuation) [12], subsolid nodules [14],

nonsolid nodules [9], or semisolid nodules [27]. The pure GGNs are also callednonsolidnod-

ules [19], while the mixed GGNs are calledpart-solidnodules [19] orheterogeneousGGOs [63].
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1.3 Clinical Prevalence: Epidemiology

GGNs are clinically significant because they are the CT appearance of a prevalent and highly

malignant class of lung cancers, offering an effective and non-invasive screening and diagnostic

means. The spectrum of the small peripheral adenocarcinomas represented by GGNs has been

histologically classified by Noguchi [42] and WHO [59], including special types of the prema-

lignant atypical adenomatous hyperplasia (AAH), the malignant bronchioloaleveolar carcinoma

(BAC), and more invasive mixed subtype adenocarcinoma. BAC corresponds to Noguchi’s type A,

B and C classifications and is the most common form of adenocarcinoma, accounting for 74% of

all adenocarcinomas and 2-6% of all non-small-cell lung cancers. When combining the BAC with

the incidence of the mixed subtype adenocarcinoma with a BACcomponent, the combined class

accounts for 20% of all lung cancers [14].

1.4 Malignancy of GGNs

The radiographic findings of the pure and mixed GGNs have beenshown to correspond roughly

to the AAH, BAC and other adenocarcinomas [12, 32, 63, 40, 54,24]. GGNs are most likely

malignant [9]. And the mixed GGNs are shown to have much higher chance of malignancy than

pure GGNs and solid nodules. In a screening study by Henschkeet al. [19], the mixed GGNs

recorded a malignancy rate of 63% while the pure GGNs and solid nodules were malignant only

in 8% and 7% cases, respectively. Several studies have also shown that greater GGO components

in the mixed GGN cases correlate with lesser chance of malignancy [41, 35, 47] and better prog-

nosis [2, 24, 33]. Despite these findings, the value of CT for differentiating benigh and malignant

GGNs has not been confirmed because there are reports with mixed results in literature [14].

1.5 GGNs’ Evolution and Histopathological Disease Progression

Studying the subtypes of GGNs are also important for understanding the histopathological evo-

lution of the peripheral adenocarcinomas. The pure GGNs that are less than 5mm in size nearly
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always corresponds to AAH, while the larger pure and mixed GGNs should be treated malignant as

BAC or invasive adenocarcinoma [41, 14]. It has been observed that at least some cases of benign

AAH slowly progress to malignant BAC and to more invasive adenocarcinoma [21, 1, 56, 22] thus

early detection and treatment of pure GGO can also improve a prognosis of lung cancer [60]. The

growth pattern of these GGNs are however confusing. Many cases do not show increase in nodule

size, and in some cases the nodule size can even decrease overtime while being malignant [39].

In general, the evolution from AAH to malignant adenocarcinoma is very slow [39] and may not

be hypermetabolic at FDG-PET [9] thus requiring a longer interval in a CT follow-up study with

more accurate volumetry/change-estimation scheme. This poses a difficult technical challenge

since the subsolid opacity of GGNs makes accurate and repeatable 3D lesion segmentation a chal-

lenging task, and such accurate segmentation is a prerequisite for an accurate volumetry/change-

estimation [64, 29, 48, 20, 13].

1.6 Computer-Aided Detection and Diagnosis of GGNs

Computer-aided detection (CADe) and diagnosis (CADx) for pulmonary nodules is a well-studied

field. The improved 3D image resolution helps radiologists detect nodules more accurately [11],

however it also creates more of a burden increasing the amount of data they need to interpret. Thus,

automation of the analysis with computer-assisted systemsis much needed for reducing this bur-

den and also improving the diagnostic accuracy especially for the small nodules. Despite the vast

existing literature on general lung CAD [49, 26, 50, 37, 52, 36, 15], studies on applying the CAD

approach to GGNs still under-represent the above clinical interests in the literature. Three differ-

ent steps, detection [10, 57, 25, 4, 70, 23, 65, 58], segmentation [67, 46, 68, 70, 66, 5, 31, 53, 58],

and classification [55, 43, 69], of the GGN CAD scheme have beenstudied by a number of in-

vestigators. For GGN detection, most approaches exploit either image processing filters (N-Quoit

filter [10, 57] and Gabor filter [4]) or machine learning-based classifiers (three-layer ANN [25]

and LDA [23, 58]). Only a few previous studies exist for classification of GGN subtypes. Suzuki

et al. [55] proposed a CAD scheme for classifying malignancy of pulmonary nodules by using the

massive training artificial neural network. Odry et al. [43]proposed an algorithm to automatically
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estimate the amount of solid components in GGNs. Zheng et al.[69] introduced a voxel-wise

ground-glass opacity index feature that can be used for other applications. For segmentation, vari-

ous proposals have been made in the literature. The proposedalgorithms include robust anisotropic

Gaussian fitting [46], shape-based Markov random field [67, 68], non-parametric 3D texture like-

lihood map analysis [70], 4-phase level set segmentation [66], 6-stage region growing [31], and

LDA-based machine learning approach [5, 58]. Most studies focus on maximizing segmentation

accuracy rather than robustness/reproducibility. Despite these increasing interests, GGN-CAD re-

mains an open problem with much room for improvement especially in robustness.

1.7 Lung Nodule Volumetry and Its Limitation

Toward realizing a robust volumetry/change-estimation ofGGNs in order to diagnose small AAH

and BAC more reliably and uncover more details of the peripheral adenocarcinomas’ disease pro-

gression, this study focuses on the segmentation part of theoverall GGN-CAD. Segmentation

applied in volumetry (i.e., estimation of volume change over time or measuring the doubling time)

brings more emphasis to its robustness/reproducibility than its raw accuracy as a domain-specific

criterion. Recent studies on CT nodule volumetry have revealed considerable variability in the

existing software’s estimation results when varying CT reconstruction parameters [17], CT dosage

setting [18], software versions [51], algorithm choice [3]and algorithm threshold parameters [17].

These inaccuracies limit the time-interval of follow-up studies to be some large values, reducing

its clinical usability [30]. Note that a fixed-value bias in segmentation error is canceled out when

measuring volumetry so that even an inaccurate segmentation algorithm can be a good choice for

volumetry as long as it is reproducible and robust. Thus robust algorithm that produces more re-

producible/consistent results than existing more accurate but less robust solutions can be a better

choice in this application context.
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Figure 1: An illustration of pulmonary nodule examples withtypical data noises captured in 3D

CT images. From left to right, (a): vascularized pure GGN, (b): 1D vertical profile of (a). (c):

nodule attached to pleural surface in 2D dissection, and (d): 1D horizontal profile of (c) through

the nodule center, The voxel-intensities in (b,d) indicatethe Hounsfield unit with an offset 1024.

“+” denotes markers used as initialization points providedby expert radiologists. The estimated

nodule center and anisotropic spread are shown by “x” and 35%confidence ellipses, respectively.

1.8 GGN Characterization: Our Approach

Robust anisotropic Gaussian fitting (RAGF) algorithm proposed by our previous work [45, 46] is

one example of such robust nodule segmentation solution. Instead of finding an accurate nodule

boundary estimate, RAGF algorithm addressesnodule characterization problem, yielding a robust

estimate of ellipsoidally approximated nodule boundary and a set of nodule characterizations in

terms of i) nodule center, ii) nodule volume, iii) maximum diameter, iv) average diameter, and

v) isotropy. The algorithm is designed to be robust against the real CT data with noise that is

intrinsic to the measurement process and also the pathologyand anatomy of our interest, including

the variability of GGNs,

1. deviation of the signal from a Gaussian intensity model ofour choice (i.e., non-Gaussianity:

Fig.1(a,b)),

2. uncertainty in the marker location ”+” given by system users (i.e., initialization: Fig.1(a,c)),

and

3. influences from surrounding structures such as the pleural surface and vessels (i.e., margin-

truncation: Fig.1(c,d)).
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Fig.1 illustrates two example cases in 2D cross-sectional and 1D profile views of the two lesions

for the pure GGN and the juxtapleural case [29]. The RAGF method succeeds in robustly approxi-

mating the nodule boundary (shown by the solid-line ellipses around the centerx in the figure) and

its volumetric measurements even with the presence of thesedifficulties. The algorithm is relevant

to the GGN characterization because not only it is robust against GGNs’ variable intensity appear-

ances but also it can handle the cases with pleural surfaces since small peripheral adenocarcinoma

has high likelihood for such wall-attachments. An extensive validation study with 1310 cases has

demonstrated this method’s effectiveness for solitary pulmonary nodules in both primary and sec-

ondary lung cancers. However its effectiveness for GGN cases has not been fully confirmed by

our previous studies. In this chapter, we validate the same RAGF algorithm proposed in [46] with

a dataset of 56 GGN cases. The rest of this chapter presents the summary of the RAGF algorithm,

as well as the results of the experimental validation.

2 Methods: RAGF Nodule Characterization

The pulmonary nodule in a chest CT image typically appears as alocal concentration of high

CT values surrounded by very low CT values of lung parenchyma asbackground. One of the most

common model functions for describing the characteristicsof such bounded signals is the Gaussian

function [34, 46].

The volumetric CT image is treated as the discretization of ad(=3)-dimensional continuous

non-negative signalf(x) over a 3D regular lattice. The non-positiveness is assured by using the

offset with 1024 to the CT values in Hounsfield unit. The symbolu is used for describing the

location of a spatial local maximum off . Suppose that the local region off aroundu can be

approximatedby a product of ad-variate Gaussian function and a positive multiplicative parameter,

f(x) ≃ α × [Φ(x;u,Σ)]x∈S (1)

Φ(x;u,Σ) = (2π)−d/2|Σ|−1/2 exp(−
1

2
(x − u)tΣ−1(x − u)) (2)

whereS is a set of data points in the neighborhood ofu, belonging to thebasin of attraction

of u. The problem of our interest can now be understood as the parametric model fitting and
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the estimation of the model parameters: meanu, covarianceΣ, and amplitudeα. The mean

andcovarianceof Φ describe thespatial local maximumandspreadof the nodule appearance,

respectively.

As discussed in the previous section, the above assumption for choosing the Gaussian inten-

sity model can be largely violated when applied to GGN cases since the intensity distribution of

GGNs will most likely not follow that of a Gaussian function (See Fig.1(b)). Two approaches can

be pursued in this situation. The first is to choose a model that better fits the data. This is a difficult

approach since formulating a functional model that covers all possible GGN appearances is a chal-

lenging task. Instead, we take the second approach of devising a robust model-fitting/parameter-

estimation scheme, which allows the fit of a model to data thatdo not closely follow the model

assumption. The following sections describe one such example by combining the ideas from robust

non-parametric density estimation and scale-space data analysis.

2.1 Theory: Anisotropic Scale-Space and Scale-Space Mean Shift

The scale-space theory [62, 28, 38] states that, given anyd-dimensional continuous signalf :

R
d → R, the scale-space representationF : R

d ×R+ → R of f is defined to be the solution of the

diffusion equation,∂hF = 1/2∇2F , or equivalently the convolution of the signal with Gaussian

kernelsΦ(x;0,H) of various bandwidths (or scales)H ∈ R
d×d,

F (x;H) = f(x) ∗ Φ(x;0,H). (3)

WhenH = hI (h > 0), F represents the solution of the isotropic diffusion process[38]. WhenH

is allowed to be a fully-parameterized symmetric positive definite matrix,F representsanisotropic

scale-spacethat is the solution to a partial differential equation:∂HF = 1/2∇∇tF .

The gradient vector of the anisotropic scale-space representationF (x;H) can be written as

convolution off with the Gaussian derivative kernel∇Φ, since the gradient operator commutes

across the convolution operation. Some algebra reveals that ∇F can be expressed as a function of
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a vector whose form resembles the fixed-bandwidth density mean shift [7],

∇F (x;H) = f(x) ∗ ∇Φ(x;H)

=

∫

f(x′)Φ(x − x′;H)H−1(x′ − x)dx′

= H−1

∫

x′Φ(x − x′;H)f(x′)dx′ − H−1x

∫

Φ(x − x′;H)f(x′)dx′

= H−1F (x;H)m(x;H) (4)

m(x;H) ≡

∫

x′Φ(x − x′;H)f(x′)dx′

∫

Φ(x − x′;H)f(x′)dx′
− x. (5)

Eq.(5) definesscale-space mean shift: the extended fixed-bandwidth mean shift vector forf .

Eq.(5) can be seen as introducing a weight variablew ≡ f(x′) to the kernelK(x′) ≡ Φ(x − x′).

Therefore, an arithmetic mean ofx′ is weighted by the product of the kernel and signal values

K ′(x′) ≡ Φ(x − x′)f(x′). The mean shift procedure [8] is defined as iterative updatesof a data

pointxi until its convergence atym
i ,

yj+1 = m(yj;H) + yj; y0 = xi. (6)

Such iteration gives a robust and efficient algorithm of gradient-ascent, sincem(x;H) can be

interpreted as a normalized gradient by rewriting Eq.(4);m(x;H) = H∇F (x;H)/F (x;H). The

direction of the mean shift vector aligns with the exact gradient direction whenH is isotropic with

a positive scale.

2.2 Robust Gaussian Mean Estimation

We assume that the 3D volume is given with information of where the target structure is roughly

located but we do not have explicit knowledge of its spread. The marker pointxp indicates such

location information. We allowxp to be placed anywhere within the basin of attractionS of the

target structure. In this condition, the Gaussian meanu can be estimated as a local intensity mode

of the scale-space with a fixed bandwidthH by using the mean shift procedure in Eq.(6) withxp

as its initial point. To increase the robustness of this approach, we runN1 mean shift procedures

initialized by sampling the neighborhood ofxp uniformly. The majority of the procedure’s conver-
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gence at the same location (in terms of the Mahalanobis distance withH) indicates the location of

the maximum.

2.3 Robust Gaussian Covariance Estimation

The Gaussian covarianceΣ in Eq.(1) characterizes thed-dimensional anisotropic spread and ori-

entation of the signalf around the estimated modeu. It can be robustly estimated by using infor-

mation only sampled within the basin of attraction of the target nodule, ignoring the information

that belongs to other structures. This is done by collectingmean shift vectors along convergent

scale-space mean shifts from multiple seed points then estimating the unknown covariance as a

function of the collected mean shifts by solving a constrained least-squares problem.

With the signal model of Eq.(1), the definition of the mean shift vector of Eq.(5) can be

rewritten as a function ofΣ,

m(yj;H) = H
∇F (yj;H)

F (yj;H)

≃ H
αΦ(yj;u,Σ + H)(Σ + H)−1(u − yj)

αΦ(yj;u,Σ + H)

= H(Σ + H)−1(u − yj). (7)

Further rewriting Eq.(7) results in a linear matrix equation of unknownΣ,

ΣH−1mj = bj (8)

wheremj ≡ m(yj;H) andbj ≡ u − yj − mj. An over-complete set of the linear equations

can be formed by using all the trajectory points{yj|j = 1, .., tu} that converge to the sameu

located within the basin of attractionS. For efficiently collecting a sufficient number of samples

{(yj,mj)}, we runN2 mean shift procedures initialized by sampling the neighborhood of pre-

estimatedu uniformly. This results intu samples (tu =
∑N2

i=1
ti), whereti denotes the number

of points on the convergent trajectory starting fromxi. The system described in Eq.(8) can be
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formulated as a constrained least-squares problem,

AΣ = B

Σ ∈ SPD

A = (m1, ..,mtu)tH−t

B = (b1, ..,btu)t

(9)

whereSPD denotes a set of symmetric positive definite matrices inR
d×d. The unique closed-form

solutionΣ∗∗ of this system is given by

Σ∗∗ = UPΣ−1

P UQ̃ΣQ̃Ut
Q̃
Σ−1

P Ut
P (10)

which involves symmetric Schur decompositions [16, p.393]of the matricesP ≡ AtA andQ̃ ≡

ΣPUt
PQUPΣP givenQ ≡ BtB, i.e.,

P = UPΣ2

PUt
P

Q̃ = UQ̃Σ2

Q̃
Ut

Q̃
.

The solutionΣ∗∗ is derived from findingY∗∗ in the Cholesky factorization ofΣ = YYt. It can

be shown thatΣ∗∗ uniquely minimizes an area criterion‖AY − BY−t‖2
F where‖.‖F denotes the

Frobenius norm.

2.4 Robust Scale Selection

The previous sections explain how the RAGF method estimates the Gaussian centeru and spreadΣ

given an analysis bandwidthH. The scale-space-based multi-scale analysis treatsH as a variable

parameter. Our procedure repeats the Gaussian fitting for a set of analysis bandwidths{Hk|k =

1, .., K}. Then the bandwidth that provides the optimal amongK estimates is sought by a certain

criterion. RAGF algorithm exploits the stability test proposed in [7]. Given a set of estimates

{(uk,Σk)} for a series of the successive linear analysis bandwidths{hk|k = 1, .., K}, a form of

the Jensen-Shannon divergence is defined by,

JS(k) =
1

2
log

| 1

2a+1

∑k+a
i=k−a Σi|

2a+1

√

∏k+a
i=k−a |Σi|

+
1

2

k+a
∑

i=k−a

(ui − u)t(
k+a
∑

i=k−a

Σi)
−1(ui − u) (11)
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whereu = 1

2a+1

∑k+a
k−a ui anda define the neighborhood width of the divergence computation. The

most stable estimate across the analysis bandwidths provides a local minimum of the divergence

profile. We treat the minimizer as the final estimation of the RAGF method(u∗,Σ∗).

2.5 Algorithm Overview

The RAGF algorithm assumes that a marker indicating the roughlocation of the target nodule is

givena priori. Such information can be provided by a user of a GUI-based system. The estimation

algorithm is presented below.

Problem Given the 3D input dataf(x), a marker pointxp, a set of analysis scales{Hk|k =

1, ..., K}, estimate the 3D anisotropic structure of a nodule (u∗, Σ∗).

Scale-specific estimationFor eachk,

1. Perform uniform sampling centered atxp, resulting in a set ofN1 starting points.

2. Perform the mean shift procedure in Eq.(6) from each starting point.

3. Take the convergence point of the majority of the points asthe location estimateuk.

4. Perform uniform sampling centered atuk, resulting in a set ofN2 starting points.

5. Perform the mean shift procedure from each starting point.

6. Construct the system in Eq.(9) with the mean shift vectors{m(yj)} along the converg-

ing trajectories.

7. Solve the system by Eq.(10), resulting in the covariance estimateΣk.

Scale selectionWith K estimates{(uk,Σk)},

1. Compute the divergence{JS(uk,Σk)} using Eq.(11) fork = 1 + a, ...,K − a.

2. Find the most stable solution(u∗,Σ∗) by finding a local minimum of{JSk}: argmink

JS(uk,Σk).
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2.6 Volumetric Measurements

The multi-scale Gaussian-based model fitting, described inthe previous sections, results in the

mean and covariance estimates(u∗,Σ∗) of a Gaussian function that fits the given data best. Treat-

ing the fitted model as a normal probability distributionN (x;u∗,Σ∗), the tumor boundary seg-

mentation can be approximated by a confidence ellipsoid forming a 3D equal-probability contour.

Such a confidence ellipsoid is defined by the solutions to the following generic quadratic equation,

(x − u∗)tΣ∗−1(x − u∗) = σ2 (12)

whereσ2 is a squared Mahalanobis distance, defining the confidence limit. The volumetry of an

ellipsoid can be determined as a function of three radii along its major and two minor orthogonal

axes. The radii are denoted byri > 0 (r1 ≥ r2 ≥ r3).

The following derivesri from the eigen decomposition of the covarianceΣ∗. Such eigen

decomposition can be expressed in a matrix equation:Σ∗V = VL. V is a column matrix of the

eigenvectorsvi andL is a diagonal matrix of the corresponding eigenvaluesλ2
i (λ1 ≥ λ2 ≥ λ3).

Right-multiply the matrix equation withVt yields the symmetric Schur decomposition ofΣ∗:

Σ∗ = VLVt. SinceΣ∗−1 = VL−1Vt, with a coordinate transformy ≡ Vt(x − u∗), Eq.(12)

can be simplified to:ytL−1y = σ2. Substituting three points,y = (r1, 0, 0)t, (0, r2, 0)t, (0, 0, r3)
t,

which are known to lie on the ellipsoid surface, to the quadratic equation results in,

ri = σλi (13)

As a result, the following volumetric measurement formulaecan immediately be derived for the

volumeV = 4

3
πσ3

∏

i λi, the maximum diameterL = 2σλ1, the average diameterA = 2

3
σ

∑

i λi,

and the isotropyR = λ2+λ3

2λ1
, whereV , L, andA are in the voxel unit and the isotropyR ranges

in [0, 1], taking the value 1 when it becomes a sphere. The bias of thesevolumetric measure-

ments are caused solely by the segmentation error. Therefore, these formulae are exact thus free

from the partial volume effect when the tumor boundary is well-characterized by the ellipsoidal

segmentation.

Given a voxel dimension in a physical unit, the volumetric measurement formulae above can

be revised to produce the measurements in the unit. This is a crucial step for any comparative
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and differential studies because the voxel dimension can vary across different scans. Suppose that

a voxel dimension is given as(∆x, ∆y, ∆z) in millimeter or any other unit. After a coordinate

transform, eigenvalues in the unit of millimeter,λ′
i, can be expressed as a function of the voxel

dimensions and eigenvectors,

λ′

i = βiλi (14)

βi =
√

(vxi∆x)2 + (vyi∆y)2 + (vzi∆z)2 (15)

where the eigenvector is denoted byvi = (vxi, vyi, vzi)
t. This leads us to the following formulae

which takes the voxel dimension into account,

V ′ =
4

3
πσ3

∏

i

βiλi (16)

L′ = 2σλ′

1 = 2σ max
i

βiλi (17)

A′ =
2

3
σ

∑

i

βiλi (18)

R′ =
λ′

2 + λ′
3

2λ′
1

(19)

whereλ′
1 ≥ λ′

2 ≥ λ′
3. Note thatλ′

i must be re-sorted from the original order given by the eigen

decomposition because the coordinate transform may changesuch an order.

3 Experiments

3.1 Data

A dataset of 56 clinical GGN cases is used in this study. Thin-section chest high-resolution com-

puted tomography (HRCT) images of 34 patients are recorded by multiple multislice CT scanners

(Somatom Volume Zoom and Somatom Sensation 16; Siemens) andanonymatized. Each vol-

umetric image consists of 12-bit positive values over an array of 512x512 lattices. The num-

ber of slices in a CT volume and the dimensions of a voxel vary across volumes in our data

set. The number of slices ranges between 217 and 616. The voxel dimensions range within
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Figure 2: Twelve GGN examples in 3D HRCT. Each case is shown in the three-plane MPR view

of a 43-voxel cubic volume-of-interest. Cases (a-b) are circular, cases (c-f) are with hazy opacity,

cases (g-j) are small (<5mm), and cases (k-l) are attached to pleural surface.
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[0.4609 − 0.8281, 0.4609 − 0.8281, 0.5 − 1] in millimeter. Fifty-six GGN lesions were identified

by trained radiologists among the set of volumes. For each GGN lesion, the radiologists provided

the initialization markerxp indicating its rough location and a 43-voxel cubic volume-of-interest

(VOI) centered at the marker is extracted as a pre-process. All cases are small (<15mm) and 44 of

them are extremely small (<5mm). Thirty-nine cases are peripheral located near or attached to the

lung wall. Fig. 2 shows 12 illustrative examples of this dataset with circular (a-b), hazy (c-f), and

small (g-j), and attached (k-l) cases.

3.2 Results

A 3D implementation of the RAGF algorithm is evaluated with the above GGN dataset. The

implementation is straightforward without any 3D specific adaptation. The analysis bandwidths

are set to 18 scales with 0.25 intervalh = (0.502, 0.752, .., 4.752). Uniform sampling in the 3-voxel

neighborhood of the marker (i.e.,N1 = 7) is used for estimating local maximum. The 3-voxel size

is determined empirically. The same strategy is employed for initializing the mean shift trajectories

around the local maximum (i.e.,N2 = 7). The neighborhood width of the divergence computation

is set toa = 1 (considering only three adjacent scales).

Fig. 3 displays the results of the RAGF method for one GGN example case (Fig.2(a)). The

second row shows the intensity images generated from the Gaussian model fitted to the data in the

first row. The third row shows the result of approximated nodule boundary shown as 2D intersec-

tions of the 35% confidence ellipsoid of the fitted Gaussian. Fig. 4 shows the RAGF characteriza-

tion results for the examples shown in Fig. 2. Our visual inspection revealed that the marker lo-

cations provided by trained radiologists are noticeably off-centered in many cases, deviating from

the true/estimated nodule centers with a certain degree. The correct estimations for these GGN

cases demonstrate the feasibility and effectiveness of theRAGF method for GGN characterization.

Next the quantitative performance of the RAGF with the above dataset is studied. Due to the

lack of ground-truth for 3D nodule segmentation, the classification of the correct or failure estima-

tion is given manually by eye-appraisal of experts using a 3Drender view and its corresponding
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Figure 3: An example of nodule characterization by the RAGF algorithm. A circular GGN ex-

ample in Fig. 2(a) is shown in the first row. The second row shows the estimated intensity image

of the Gaussian model fitted to the above data by the RAGF. The third row shows the final nod-

ule boundary approximation by the 35% confidence ellipsoid of the fitted Gaussian. The marker

locations are indicated by +. The estimated nodule centers are indicated by x.
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Figure 4: Nodule characterization results by the RAGF algorithm for the twelve GGN examples

shown in Fig. 2. See captions of Fig.3 and Fig.2 for details
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Estimation # Cases (%) Verification # Cases (%)

Correct 49 (87.5) TP 44 (78.6)

FN 5 (8.9)

Failure 7 (12.5) TN 4 (7.1)

FP 3 (5.4)

Table 1: Quantitative performance evaluation of the RAGF method. The data set consists of 56 pure

GGNs from 34 patients. Multiple scanners are used for data collection. TP: true positive, accepted

correct estimates. FN: false negative, rejected correct estimates. TN: true negative, rejected false

estimates. FP: false positive, accepted false estimates.

MPR view. Statistical verification using the chi-square test [46] is also performed for each RAGF

result to determine whether to accept or reject it.

Table 1 summarizes the resulting performance statistics. 49 cases (87.5%) resulted in suc-

cessful nodule characterization confirmed by the eye-appraisal. For verification, small percentage

of cases resulted in false acceptance (3 false positives (FPs): 5.4%) and false rejection (5 false neg-

atives (FNs): 8.9%). The few failures were caused by a) under-segmentation due to nearby vessels

(two FPs and one TN), b) mis-detection due to wall-attachment (two TNs), c) over-segmentation

due to very hazy opacity (one TN), and d) under-segmentationdue to necrosis (one FP). Fig. 5

shows examples for these four causes of failures. Fig. 5(a) illustrates the failure due to nearby

vessels. The RAGF in this case captures a small high-intensity vessel region rather than the GGN

attached to the vessel. This case corresponds to a failure ofthe scale selection process which

mistakenly chose the analysis scale that corresponds to thevessel to be most stable. Fig. 5(b) illus-

trates the case where a GGN attached to the lung wall is missed. This failure was mainly caused

by ill-placed markers. With such markers, non-pathological structures nearby the markers can be

characterized instead of the target nodule and are accidentally well-approximated by the Gaussian

distribution (e.g., rib bones). 37 other peripheral cases were correctly characterized. Fig. 5(c)

shows the failure where the opacity of GGN is so low that the RAGF’s covariance estimation

failed. Finally, Fig. 5(d) shows a case with necrosis insideof a GGN. In such a case, the nodule

center exhibits a hollow, causing the RAGF to capture a sub-region of the target GGN. Overall,
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Figure 5: Examples of failures by the RAGF algorithm. (a) under-segmentation due to nearby

vessels, (b) mis-detection due to wall-attachment, (c) over-segmentation due to very hazy opacity,

(d) under-segmentation due to necrosis.

the majority of the GGN cases were correctly characterized except for these special cases and the

results were successfully verified for acceptance or rejection.

4 Conclusion

This chapter presents a comprehensive literature review ofGGNs across the fields of radiology,

pathology, medical image analysis, and an experimental evaluation of the RAGF nodule character-

ization method with a clinical dataset with 56 pure GGN cases. GGN is a fairly new subject in all

these interdisciplinary fields because we have come to some understanding of them only after the

recent advent of the high-resolution CT technologies. While there exist a number of clinical and

technical reviews of this subject in the literature, to the best of our knowledge, this is the first to

offer a comprehensive review of this subject under these related disciplines together.

The RAGF algorithm was originally proposed as a robust nodulecharacterization solution

for arbitrary types of nodules. Although the original report addressed a potential advantage of the
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method to some GGN cases, no systematic evaluation of the method’s effectiveness toward GGN

was performed to date. This chapter presents the first experimental validation of the RAGF with

the clinical dataset, demonstrating the feasibility of themethod in the GGN application. Note that

the RAGF’s original performance with a large clinical data set of 1310 nodules resulted in 81.2%

success rate. With our GGN dataset, the same RAGF algorithm resulted in 87.5% success rate. The

voxel intensity distribution of the GGNs are much more irregular than the typical solid nodules.

The favorable performance of the RAGF with GGNs indicates that it is indeed capable to robustly

characterize a wide range of nodule types, including these pure GGNs.

As our future work, we plan to improve the performance of the RAGF method for the cases

attached to lung walls and vessels (Fig.5(a,b)) in order to improve the performance further. For

deriving more clinically conclusive result, we plan to evaluate more GGN cases, especially the

mixed cases, as well as to evaluate actual volumetry from follow-up CT data.

Overall, the presented RAGF method is generic and does not depend on semantics of the ab-

solute CT values in the Hounsfield unit. The robustness, flexibility, and efficiency of the proposed

framework, therefore, facilitates not only the pulmonary nodule applications in CT sought in this

chapter but also various other applications in different imaging domains (e.g., PET scans) and dif-

ferent pathological and anatomical structures (e.g., polyps), involving with the analysis of blob-like

geometrical structures. We plan to explore such other applications of our method in future.
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