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Abstract

This chapter presents a comprehensive review of the literaelated to ground-glass nodules (GGNSs)
and evaluates effectiveness of RAGF algorithm, proposetubyprevious work [45, 46], for pulmonary
nodule characterization of GGN cases in the high-resaiutmmputed tomography (HRCT) images.
The literature on GGNs in radiology, pathology and medicelge analysis are surveyed and discussed.
The nomenclature for GGNs are also summarized in order tdyckome confusion in the literature.
The RAGF algorithm is evaluated by using a HRCT dataset stingiof 56 GGN cases. This chap-
ter outlines the RAGF algorithm in some detail and discusisesxperimental results with the GGN

dataset.
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1 Introduction: Literature Review

Lung cancer is the most common cause of cancer death in thefdy.Both sexes [61]. Among

various types of the small-cell and non-small-cell lungezas, adenocarcinoma is the most preva-
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lent type, accounting for more than a third of all primarydunmors, and its incidence has been
increasing in past a few decades. [14]. X-ray computed toapdy (CT) is the most sensitive
imaging domain for non-invasive diagnostics of adenocanias among others [26]. The recent
advances in 3D imaging technology, such as high-resolwiah multi-detector CT, has greatly
improved image resolution and scanning time [6], makingoggible to detect very small lung
tumors. Study of such small tumors is clinically importaathuse they can still be malignant and
early detection of such malignancy can increase the chdmagient survival [44]. This technical
advent has also helped us to better understand the intpa#ttelogy of a type of adenocarcinoma
known assmall peripheral adenocarcinomg42]. Ground-glass noduléGGN) is the common

radiographic appearance of such small peripheral lunga@eainomas [14].

1.1 Radiographic Characteristics of GGNs

Radiologically speaking, GGN represents a type of pulmonadules (i.e., localized increase of
attenuation in the lung parenchyma of a X-ray CT image), whichs not completely obscure
the underlying normal parenchymal structures such as ggwessels and interlobular septa (i.e.,
presenting a focal ground-glass opacity@&0). GGN is also known asubsolidnodule, while
those that completely obscure the lung parenchyma aredcadla nodules. GGN covers a spec-
trum between completely-not-solid and almost-solid ojes,i which are clinically categorized
into two subtypespureandmixedGGNSs. For the pure GGNs, the appearance of the entire nodule

is subsolid, while the mixed GGNs consists of a combinatiosotid and subsolid components.

1.2 Nomenclature of GGNs

There exist varying, sometimes confusing, terms denokiegd radiographic classifications. In lit-
erature, GGNSs has equivalently been called as GGOs [33| G Os [41], localized GGOs [40],

nodular GGOs [47], localized/focal GGAs (ground-glassratation) [12], subsolid nodules [14],
nonsolid nodules [9], or semisolid nodules [27]. The pureNSGre also calledionsolid nod-

ules [19], while the mixed GGNs are callpdrt-solid nodules [19] oheterogeneou§GOs [63].



1.3 Clinical Prevalence: Epidemiology

GGNs are clinically significant because they are the CT appear of a prevalent and highly
malignant class of lung cancers, offering an effective am-imvasive screening and diagnostic
means. The spectrum of the small peripheral adenocarcmoemesented by GGNs has been
histologically classified by Noguchi [42] and WHO [59], inding special types of the prema-
lignant atypical adenomatous hyperplasia (AAH), the nralig bronchioloaleveolar carcinoma
(BAC), and more invasive mixed subtype adenocarcinoma. B&&sponds to Noguchi’s type A,
B and C classifications and is the most common form of adenwana, accounting for 74% of
all adenocarcinomas and 2-6% of all non-small-cell lungceast When combining the BAC with
the incidence of the mixed subtype adenocarcinoma with a B&@ponent, the combined class

accounts for 20% of all lung cancers [14].

1.4 Malignancy of GGNs

The radiographic findings of the pure and mixed GGNs have Baewn to correspond roughly
to the AAH, BAC and other adenocarcinomas [12, 32, 63, 40,28}, GGNs are most likely
malignant [9]. And the mixed GGNs are shown to have much highance of malignancy than
pure GGNs and solid nodules. In a screening study by Hensehké [19], the mixed GGNs
recorded a malignancy rate of 63% while the pure GGNs and solidules were malignant only
in 8% and 7% cases, respectively. Several studies haveladsmghat greater GGO components
in the mixed GGN cases correlate with lesser chance of madigy[41, 35, 47] and better prog-
nosis [2, 24, 33]. Despite these findings, the value of CT fifedintiating benigh and malignant

GGNs has not been confirmed because there are reports wigldl magults in literature [14].

1.5 GGNs'’ Evolution and Histopathological Disease Progression

Studying the subtypes of GGNs are also important for undedstg the histopathological evo-

lution of the peripheral adenocarcinomas. The pure GGNsatfgaless than 5mm in size nearly



always corresponds to AAH, while the larger pure and mixedNG&hould be treated malignant as
BAC or invasive adenocarcinoma [41, 14]. It has been obsihvat at least some cases of benign
AAH slowly progress to malignant BAC and to more invasiveraat&arcinoma [21, 1, 56, 22] thus
early detection and treatment of pure GGO can also improvegnpsis of lung cancer [60]. The
growth pattern of these GGNs are however confusing. Mangscds not show increase in nodule
size, and in some cases the nodule size can even decreasamaverile being malignant [39].
In general, the evolution from AAH to malignant adenocamoma is very slow [39] and may not
be hypermetabolic at FDG-PET [9] thus requiring a longeenvdl in a CT follow-up study with
more accurate volumetry/change-estimation scheme. Tdgega difficult technical challenge
since the subsolid opacity of GGNs makes accurate and edge&D lesion segmentation a chal-
lenging task, and such accurate segmentation is a prettegiaisan accurate volumetry/change-
estimation [64, 29, 48, 20, 13].

1.6 Computer-Aided Detection and Diagnosis of GGNs

Computer-aided detection (CADe) and diagnosis (CADXx) for mudary nodules is a well-studied
field. The improved 3D image resolution helps radiologisgtedt nodules more accurately [11],
however it also creates more of a burden increasing the aebddata they need to interpret. Thus,
automation of the analysis with computer-assisted systemmsich needed for reducing this bur-
den and also improving the diagnostic accuracy especiailthie small nodules. Despite the vast
existing literature on general lung CAD [49, 26, 50, 37, 52,1, studies on applying the CAD
approach to GGNs still under-represent the above clinidalésts in the literature. Three differ-
ent steps, detection [10, 57, 25, 4, 70, 23, 65, 58], segrien{®7, 46, 68, 70, 66, 5, 31, 53, 58],
and classification [55, 43, 69], of the GGN CAD scheme have Istadied by a number of in-
vestigators. For GGN detection, most approaches expltbikreimage processing filters (N-Quoit
filter [10, 57] and Gabor filter [4]) or machine learning-bds#assifiers (three-layer ANN [25]
and LDA [23, 58]). Only a few previous studies exist for cifisation of GGN subtypes. Suzuki
et al. [55] proposed a CAD scheme for classifying malignarfqggutmonary nodules by using the

massive training artificial neural network. Odry et al. [$Bpposed an algorithm to automatically



estimate the amount of solid components in GGNs. Zheng ¢62].introduced a voxel-wise
ground-glass opacity index feature that can be used for agp@ications. For segmentation, vari-
ous proposals have been made in the literature. The propdga@ithms include robust anisotropic
Gaussian fitting [46], shape-based Markov random field [8T, iion-parametric 3D texture like-
lihood map analysis [70], 4-phase level set segmentatiél @Bstage region growing [31], and
LDA-based machine learning approach [5, 58]. Most studiesis on maximizing segmentation
accuracy rather than robustness/reproducibility. Degpise increasing interests, GGN-CAD re-

mains an open problem with much room for improvement espgamarobustness.

1.7 Lung Nodule Volumetry and Its Limitation

Toward realizing a robust volumetry/change-estimatio@&Ns in order to diagnose small AAH
and BAC more reliably and uncover more details of the pergledenocarcinomas’ disease pro-
gression, this study focuses on the segmentation part obvubeall GGN-CAD. Segmentation
applied in volumetry (i.e., estimation of volume changerdirae or measuring the doubling time)
brings more emphasis to its robustness/reproducibiléy tits raw accuracy as a domain-specific
criterion. Recent studies on CT nodule volumetry have redeatmsiderable variability in the
existing software’s estimation results when varying CT retauction parameters [17], CT dosage
setting [18], software versions [51], algorithm choice §Bld algorithm threshold parameters [17].
These inaccuracies limit the time-interval of follow-updies to be some large values, reducing
its clinical usability [30]. Note that a fixed-value bias iegsnentation error is canceled out when
measuring volumetry so that even an inaccurate segmemtgorithm can be a good choice for
volumetry as long as it is reproducible and robust. Thussbhigorithm that produces more re-
producible/consistent results than existing more aceurat less robust solutions can be a better

choice in this application context.
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Figure 1. An illustration of pulmonary nodule examples wigpical data noises captured in 3D
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CT images. From left to right, (a): vascularized pure GGN; () vertical profile of (a). (c):
nodule attached to pleural surface in 2D dissection, andl@)horizontal profile of (c) through
the nodule center, The voxel-intensities in (b,d) indidate Hounsfield unit with an offset 1024.
“+” denotes markers used as initialization points provitigdexpert radiologists. The estimated

nodule center and anisotropic spread are shown by “x” and @x8fidence ellipses, respectively.

1.8 GGN Characterization: Our Approach

Robust anisotropic Gaussian fitting (RAGF) algorithm propldsg our previous work [45, 46] is
one example of such robust nodule segmentation solutisteadd of finding an accurate nodule
boundary estimate, RAGF algorithm addresseslule characterization problengielding a robust
estimate of ellipsoidally approximated nodule boundarg arset of nodule characterizations in
terms of i) nodule center, ii) nodule volume, iii) maximunanieter, iv) average diameter, and
V) isotropy. The algorithm is designed to be robust agaimstreal CT data with noise that is
intrinsic to the measurement process and also the pathalodjanatomy of our interest, including
the variability of GGNs,

1. deviation of the signal from a Gaussian intensity modelwfchoice (i.e., non-Gaussianity:
Fig.1(a,b)),

2. uncertainty in the marker locatior-" given by system users (i.e., initialization: Fig.1(a,c))

and

3. influences from surrounding structures such as the glsurtace and vessels (i.e., margin-

truncation: Fig.1(c,d)).



Fig.1 illustrates two example cases in 2D cross-sectiomalld profile views of the two lesions
for the pure GGN and the juxtapleural case [29]. The RAGF nwetuzceeds in robustly approxi-
mating the nodule boundary (shown by the solid-line ells@und the centerin the figure) and
its volumetric measurements even with the presence of ti#fgeilties. The algorithm is relevant
to the GGN characterization because not only it is robushag&GNs’ variable intensity appear-
ances but also it can handle the cases with pleural surfawsssmall peripheral adenocarcinoma
has high likelihood for such wall-attachments. An exteasiglidation study with 1310 cases has
demonstrated this method’s effectiveness for solitarynmulary nodules in both primary and sec-
ondary lung cancers. However its effectiveness for GGN<ass not been fully confirmed by
our previous studies. In this chapter, we validate the sam@Ra&lgorithm proposed in [46] with
a dataset of 56 GGN cases. The rest of this chapter preserganimary of the RAGF algorithm,

as well as the results of the experimental validation.

2 Methods: RAGF Nodule Characterization

The pulmonary nodule in a chest CT image typically appears lasa concentration of high
CT values surrounded by very low CT values of lung parenchynielksground. One of the most
common model functions for describing the characteristicaich bounded signals is the Gaussian

function [34, 46].

The volumetric CT image is treated as the discretization &&8)-dimensional continuous
non-negative signaf(x) over a 3D regular lattice. The non-positiveness is assuyatsing the
offset with 1024 to the CT values in Hounsfield unit. The symbo$ used for describing the
location of a spatial local maximum gf. Suppose that the local region @¢faroundu can be

approximatedy a product of a-variate Gaussian function and a positive multiplicatisegmeter,
f(x) ~ ax[P(x;u,X)]xes Q)
1
d(x;u,X) = (2m) Y3372 exp(—§(x —u)'¥ 7 (x —u)) (2)

where S is a set of data points in the neighborhoodwfbelonging to thebasin of attraction

of u. The problem of our interest can now be understood as themedria model fitting and
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the estimation of the model parameters: mearcovarianceX, and amplituden. The mean
and covarianceof ® describe thespatial local maximunand spreadof the nodule appearance,

respectively.

As discussed in the previous section, the above assumptiambosing the Gaussian inten-
sity model can be largely violated when applied to GGN caseedhe intensity distribution of
GGNs will most likely not follow that of a Gaussian functioi€e Fig.1(b)). Two approaches can
be pursued in this situation. The first is to choose a modebitzer fits the data. This is a difficult
approach since formulating a functional model that coviérsossible GGN appearances is a chal-
lenging task. Instead, we take the second approach of dgwésrobust model-fitting/parameter-
estimation scheme, which allows the fit of a model to data dieanot closely follow the model
assumption. The following sections describe one such ebalnyrombining the ideas from robust

non-parametric density estimation and scale-space datgsis

2.1 Theory: Anisotropic Scale-Space and Scale-Space Mean Shift

The scale-space theory [62, 28, 38] states that, givendasiynensional continuous signdl :
R? — R, the scale-space representation R? x R, — R of f is defined to be the solution of the
diffusion equationp, F' = 1/2V?F, or equivalently the convolution of the signal with Gaussia

kernels®(x; 0, H) of various bandwidths (or scaleH) € R4,
F(x;H) = f(x) * ®(x; 0, H). 3)

WhenH = kI (h > 0), F represents the solution of the isotropic diffusion prodds$ WhenH
is allowed to be a fully-parameterized symmetric positigérdte matrix,F' representanisotropic

scale-spac¢hat is the solution to a partial differential equatiéhi ' = 1/2VV'F.

The gradient vector of the anisotropic scale-space reptaten /'(x; H) can be written as
convolution of f with the Gaussian derivative kerngl®, since the gradient operator commutes

across the convolution operation. Some algebra reveal&/thacan be expressed as a function of



a vector whose form resembles the fixed-bandwidth densignmsaift [7],

VE(x;H) = f(x)*VP(x;H)
= /f d(x —x;HH (¥ — x)dx’

= H /X P(x —x; H) f(x')dx' — Hlx/q)(x —x;H) f(x")dx’'

= H—lF(x; H)m(x; H) 4)
e X O(x =X H)f(x)dx
meeHD = [o(x —x; H)f(x)dx x- (5)

Eq.(5) definesscale-space mean shifthe extended fixed-bandwidth mean shift vector for
Eq.(5) can be seen as introducing a weight variablke f(x’) to the kernelK (x') = ¢(x — x/).
Therefore, an arithmetic mean &f is weighted by the product of the kernel and signal values
K'(x') = ®(x — x') f(x'). The mean shift procedure [8] is defined as iterative updaftesdata

pointx; until its convergence at.",
yi+1 =m(y; H) +y;; yo =x;. (6)

Such iteration gives a robust and efficient algorithm of gratlascent, sincen(x; H) can be
interpreted as a normalized gradient by rewriting Eq.(d)x; H) = HVF(x; H)/F(x; H). The
direction of the mean shift vector aligns with the exact gratidirection wherH is isotropic with

a positive scale.

2.2 Robust Gaussian Mean Estimation

We assume that the 3D volume is given with information of wehidie target structure is roughly
located but we do not have explicit knowledge of its spredae marker poink, indicates such
location information. We allow, to be placed anywhere within the basin of attractioof the
target structure. In this condition, the Gaussian meaan be estimated as a local intensity mode
of the scale-space with a fixed bandwidihby using the mean shift procedure in Eq.(6) with

as its initial point. To increase the robustness of this epgin, we runV; mean shift procedures

initialized by sampling the neighborhoodxf uniformly. The majority of the procedure’s conver-



gence at the same location (in terms of the MahalanobismtistevithH) indicates the location of

the maximum.

2.3 Robust Gaussian Covariance Estimation

The Gaussian covarian& in Eq.(1) characterizes thedimensional anisotropic spread and ori-
entation of the signal around the estimated modke It can be robustly estimated by using infor-
mation only sampled within the basin of attraction of theyéamodule, ignoring the information

that belongs to other structures. This is done by colleatiegin shift vectors along convergent
scale-space mean shifts from multiple seed points themastig the unknown covariance as a

function of the collected mean shifts by solving a constdileast-squares problem.

With the signal model of Eq.(1), the definition of the mearftstector of Eq.(5) can be

rewritten as a function ot

VF(y;; H)
F(y;; H)
a®(y;u, X+ H)(Z+H) ' (u-y,)
ad®(yj;;u, X+ H)
= HEZ+H) (u-y,) (7)

m(y;; H)

~ H

Further rewriting Eq.(7) results in a linear matrix equatad unknown3Z,
EH_lmj = bj (8)

wherem; = m(y,;; H) andb;, = u — y; — m;. An over-complete set of the linear equations
can be formed by using all the trajectory poifts;|; = 1,..,¢,} that converge to the same
located within the basin of attractia®. For efficiently collecting a sufficient number of samples
{(y;,m;)}, we run N, mean shift procedures initialized by sampling the neighbod of pre-
estimatedu uniformly. This results int, samples#, = Zf\fl t;), wheret; denotes the number

of points on the convergent trajectory starting fresm The system described in Eq.(8) can be
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formulated as a constrained least-squares problem,

A = B
3 € SPD
A = (my,..,my)H"
B = (by,..,b)

(9)

whereSPD denotes a set of symmetric positive definite matriceéRirt. The unique closed-form

solutionX** of this system is given by
2 =UpSp'UgEaUp T Up (10)

which involves symmetric Schur decompositions [16, p.3%¥3he matrice® = A‘A andQ =
Y pULQURXYp givenQ = B'B, i.e.,

P = UpxiU,

o N2 7t
Q = UsziUu,.

The solutionX** is derived from findingY ** in the Cholesky factorization € = YY*. It can
be shown thak** uniquely minimizes an area criteriddAY — BY ~¢||%2 where||.||r denotes the

Frobenius norm.

2.4 Robust Scale Selection

The previous sections explain how the RAGF method estimageSaussian centarand sprea®
given an analysis bandwidiH. The scale-space-based multi-scale analysis tidats a variable
parameter. Our procedure repeats the Gaussian fitting fer ef sinalysis bandwidth§H |k =
1,.., K'}. Then the bandwidth that provides the optimal améhgstimates is sought by a certain
criterion. RAGF algorithm exploits the stability test prgeal in [7]. Given a set of estimates
{(ug, Xy)} for a series of the successive linear analysis bandwiffihgc = 1, .., K'}, a form of

the Jensen-Shannon divergence is defined by,

1 k+ k+ k+
1 o |2a+1 Zi:ls—a z]7/| + 1 < 2

> w—wi( ) ) (w—u (11)

2 2a-+1 Hf:]ia 13| 2 i=k—a i=k—a




whereu = ﬁ Z’,jfg u; anda define the neighborhood width of the divergence computafibe

most stable estimate across the analysis bandwidths goadocal minimum of the divergence

profile. We treat the minimizer as the final estimation of theG®Amethod u*, ).

2.5 Algorithm Overview

The RAGF algorithm assumes that a marker indicating the rdagdtion of the target nodule is
givena priori. Such information can be provided by a user of a GUI-base@ysThe estimation

algorithm is presented below.

Problem Given the 3D input datg (x), a marker pointk,, a set of analysis scalg§H|k =

1,..., K}, estimate the 3D anisotropic structure of a nodufe £*).
Scale-specific estimationFor eachk,

1. Perform uniform sampling centered:at resulting in a set ofV; starting points.
2. Perform the mean shift procedure in Eq.(6) from eachistppoint.

3. Take the convergence point of the majority of the pointdhadocation estimata,,.
4. Perform uniform sampling centerecgt, resulting in a set ofV, starting points.
5. Perform the mean shift procedure from each starting point

6. Construct the system in Eq.(9) with the mean shift vecfaisy ;) } along the converg-

ing trajectories.

7. Solve the system by Eq.(10), resulting in the covariastienateX:,.
Scale selectionWith K estimateq (uy, 3x)},

1. Compute the divergende/ S(uy, )} using Eq.(11) fok = 1 + a, ..., K — a.

2. Find the most stable solutign*, 3*) by finding a local minimum of J.S }: argminy,
JS(U_k, Ek)
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2.6 \Volumetric Measurements

The multi-scale Gaussian-based model fitting, describatienprevious sections, results in the
mean and covariance estimates, ¥*) of a Gaussian function that fits the given data best. Treat-
ing the fitted model as a normal probability distributidq(x; u*, *), the tumor boundary seg-
mentation can be approximated by a confidence ellipsoidifgyra 3D equal-probability contour.

Such a confidence ellipsoid is defined by the solutions todlefing generic quadratic equation,
(x —u")'TH(x —u*) =o? (12)

whereo? is a squared Mahalanobis distance, defining the confidemie The volumetry of an
ellipsoid can be determined as a function of three radii@itgimajor and two minor orthogonal

axes. The radii are denoted by> 0 (11 > ry > r3).

The following derives-; from the eigen decomposition of the covariar’Xté Such eigen
decomposition can be expressed in a matrix equaiv' = VL. V is a column matrix of the
eigenvectors; andL is a diagonal matrix of the corresponding eigenvalig$\; > Ay > A3).
Right-multiply the matrix equation witiV* yields the symmetric Schur decomposition 0f:
¥* = VLV SinceX* ! = VL~!'V!, with a coordinate transform = Vi(x — u*), Eq.(12)
can be simplified toy'L~'y = ¢2. Substituting three points, = (71,0, 0)%, (0,72, 0)*, (0,0, r3)°,

which are known to lie on the ellipsoid surface, to the quadequation results in,
r, = U)\i (13)

As a result, the following volumetric measurement formutae immediately be derived for the
volumeV = %7?03 I, Ai, the maximum diametel = 20\, the average diametet = %a >Ny
and the isotropyk = Ag;kfd whereV, L, and A are in the voxel unit and the isotrogy ranges

in [0, 1], taking the value 1 when it becomes a sphere. The bias of th@smetric measure-
ments are caused solely by the segmentation error. Theraf@se formulae are exact thus free
from the partial volume effect when the tumor boundary islwbkharacterized by the ellipsoidal

segmentation.

Given a voxel dimension in a physical unit, the volumetriasiwement formulae above can

be revised to produce the measurements in the unit. This igaat step for any comparative
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and differential studies because the voxel dimension cgna@oss different scans. Suppose that
a voxel dimension is given ag\z, Ay, Az) in millimeter or any other unit. After a coordinate

transform, eigenvalues in the unit of millimetex,

'

can be expressed as a function of the voxel

dimensions and eigenvectors,

o= B (14)
B; = \/(vaac)2 + (v Ay)? + (v, Az)? (15)

where the eigenvector is denoted Wy= (v,;, vy, vs;)". This leads us to the following formulae

which takes the voxel dimension into account,

4
Vi = gmo I3 (16)
L' = 20\ =20 max BiXi a7)
2
A= o) Bk (18)
Ay + X
A 2 3 19
K 2\ (19)

where)] > X, > \;. Note that\; must be re-sorted from the original order given by the eigen

decomposition because the coordinate transform may cleugean order.

3 Experiments

3.1 Data

A dataset of 56 clinical GGN cases is used in this study. Beiction chest high-resolution com-
puted tomography (HRCT) images of 34 patients are recordedubtyphe multislice CT scanners
(Somatom Volume Zoom and Somatom Sensation 16; Siemensaraotgymatized. Each vol-
umetric image consists of 12-bit positive values over amyaof 512x512 lattices. The num-
ber of slices in a CT volume and the dimensions of a voxel vargsacvolumes in our data

set. The number of slices ranges between 217 and 616. Thé dixensions range within
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Figure 2: Twelve GGN examples in 3D HRCT. Each case is showreithitee-plane MPR view
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of a 43-voxel cubic volume-of-interest. Cases (a-b) areutarg cases (c-f) are with hazy opacity,

cases (g-j) are smalk(bmm), and cases (k-I) are attached to pleural surface.



[0.4609 — 0.8281,0.4609 — 0.8281, 0.5 — 1] in millimeter. Fifty-six GGN lesions were identified
by trained radiologists among the set of volumes. For eachN &Gion, the radiologists provided
the initialization markeix, indicating its rough location and a 43-voxel cubic volunfarterest
(VOI) centered at the marker is extracted as a pre-procdbsages are smalk(15mm) and 44 of
them are extremely smalkkGmm). Thirty-nine cases are peripheral located near oclathto the
lung wall. Fig. 2 shows 12 illustrative examples of this datawith circular (a-b), hazy (c-f), and

small (g-j), and attached (k-l) cases.

3.2 Results

A 3D implementation of the RAGF algorithm is evaluated witle tlbove GGN dataset. The
implementation is straightforward without any 3D speciftaptation. The analysis bandwidths
are set to 18 scales with 0.25 interiak (0.50%,0.752, .., 4.75%). Uniform sampling in the 3-voxel
neighborhood of the marker (i.6V; = 7) is used for estimating local maximum. The 3-voxel size
is determined empirically. The same strategy is employethithalizing the mean shift trajectories
around the local maximum (i.eN, = 7). The neighborhood width of the divergence computation

is set toa = 1 (considering only three adjacent scales).

Fig. 3 displays the results of the RAGF method for one GGN eXxamgse (Fig.2(a)). The
second row shows the intensity images generated from thedizaumodel fitted to the data in the
first row. The third row shows the result of approximated nedioundary shown as 2D intersec-
tions of the 35% confidence ellipsoid of the fitted Gaussiag. 4shows the RAGF characteriza-
tion results for the examples shown in Fig. 2. Our visual at$ion revealed that the marker lo-
cations provided by trained radiologists are noticeablyceftered in many cases, deviating from
the true/estimated nodule centers with a certain degree. cbhrect estimations for these GGN

cases demonstrate the feasibility and effectiveness & AteF method for GGN characterization.

Next the quantitative performance of the RAGF with the abat@askt is studied. Due to the
lack of ground-truth for 3D nodule segmentation, the cfasgion of the correct or failure estima-

tion is given manually by eye-appraisal of experts using a@&miler view and its corresponding
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Figure 3: An example of nodule characterization by the RAGJoddhm. A circular GGN ex-
ample in Fig. 2(a) is shown in the first row. The second row shthe estimated intensity image
of the Gaussian model fitted to the above data by the RAGF. Titeertbw shows the final nod-
ule boundary approximation by the 35% confidence ellipsoithe fitted Gaussian. The marker

locations are indicated by +. The estimated nodule centermdicated by x.
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Figure 4: Nodule characterization results by the RAGF atgorifor the twelve GGN examples
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Estimation | # Cases (%)| Verification | # Cases (%)
Correct | 49 (87.5) TP 44 (78.6)
FN 5 (8.9)
Failure 7(12.5) TN 4(7.1)
FP 3(5.4)

Table 1: Quantitative performance evaluation of the RAGHoet The data set consists of 56 pure
GGNs from 34 patients. Multiple scanners are used for ddtaatmn. TP: true positive, accepted
correct estimates. FN: false negative, rejected correérhates. TN: true negative, rejected false

estimates. FP: false positive, accepted false estimates.

MPR view. Statistical verification using the chi-squard {é6] is also performed for each RAGF

result to determine whether to accept or reject it.

Table 1 summarizes the resulting performance statisti@ades (87.5%) resulted in suc-
cessful nodule characterization confirmed by the eye-aggirdor verification, small percentage
of cases resulted in false acceptance (3 false positive:(BR1%) and false rejection (5 false neg-
atives (FNs): 8.9%). The few failures were caused by a) usdgmentation due to nearby vessels
(two FPs and one TN), b) mis-detection due to wall-attachr{tero TNs), c) over-segmentation
due to very hazy opacity (one TN), and d) under-segmentatiento necrosis (one FP). Fig. 5
shows examples for these four causes of failures. Fig. B(s)rates the failure due to nearby
vessels. The RAGF in this case captures a small high-injevsssel region rather than the GGN
attached to the vessel. This case corresponds to a failutteeascale selection process which
mistakenly chose the analysis scale that corresponds t@fisel to be most stable. Fig. 5(b) illus-
trates the case where a GGN attached to the lung wall is migded failure was mainly caused
by ill-placed markers. With such markers, non-patholdgstaictures nearby the markers can be
characterized instead of the target nodule and are aceitiewell-approximated by the Gaussian
distribution (e.g., rib bones). 37 other peripheral caseseveorrectly characterized. Fig. 5(c)
shows the failure where the opacity of GGN is so low that the RAGovariance estimation
failed. Finally, Fig. 5(d) shows a case with necrosis ingfla GGN. In such a case, the nodule

center exhibits a hollow, causing the RAGF to capture a sglmneof the target GGN. Overall,
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(a) (b) (c) (d)
Figure 5: Examples of failures by the RAGF algorithm. (a) urgkgmentation due to nearby

vessels, (b) mis-detection due to wall-attachment, (c)-segmentation due to very hazy opacity,

(d) under-segmentation due to necrosis.

the majority of the GGN cases were correctly characterizee for these special cases and the

results were successfully verified for acceptance or rieject

4 Conclusion

This chapter presents a comprehensive literature revie®@Ns across the fields of radiology,
pathology, medical image analysis, and an experimentél&san of the RAGF nodule character-
ization method with a clinical dataset with 56 pure GGN ca&&SN is a fairly new subject in all

these interdisciplinary fields because we have come to sowberstanding of them only after the
recent advent of the high-resolution CT technologies. Wiiérd exist a number of clinical and
technical reviews of this subject in the literature, to tlestof our knowledge, this is the first to

offer a comprehensive review of this subject under thesgaeldisciplines together.

The RAGF algorithm was originally proposed as a robust nodbracterization solution

for arbitrary types of nodules. Although the original rejpaddressed a potential advantage of the
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method to some GGN cases, no systematic evaluation of tHeodisteffectiveness toward GGN
was performed to date. This chapter presents the first erpatal validation of the RAGF with
the clinical dataset, demonstrating the feasibility oftiiethod in the GGN application. Note that
the RAGF’s original performance with a large clinical data&el310 nodules resulted in 81.2%
success rate. With our GGN dataset, the same RAGF algoritbutited in 87.5% success rate. The
voxel intensity distribution of the GGNs are much more iteg than the typical solid nodules.
The favorable performance of the RAGF with GGNSs indicatesithaindeed capable to robustly

characterize a wide range of nodule types, including these @GNs.

As our future work, we plan to improve the performance of thed&Amethod for the cases
attached to lung walls and vessels (Fig.5(a,b)) in ordemjarove the performance further. For
deriving more clinically conclusive result, we plan to exate more GGN cases, especially the

mixed cases, as well as to evaluate actual volumetry frolovielip CT data.

Overall, the presented RAGF method is generic and does nehdem semantics of the ab-
solute CT values in the Hounsfield unit. The robustness, fléyikand efficiency of the proposed
framework, therefore, facilitates not only the pulmonaoglale applications in CT sought in this
chapter but also various other applications in differeragmg domains (e.g., PET scans) and dif-
ferent pathological and anatomical structures (e.g.,g®lyinvolving with the analysis of blob-like

geometrical structures. We plan to explore such other egipdins of our method in future.
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