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Abstract: The goal of this study was to develop a computer-aided therapeutic response 

(CADrx) system for early prediction of drug treatment response for glioblastoma 

multiforme (GBM) brain tumors with diffusion weighted (DW) MR images. In 
conventional Macdonald assessment, tumor response is assessed nine weeks or more  

post-treatment. However, we will investigate the ability of DW-MRI to assess response 

earlier, at five weeks post treatment. The apparent diffusion coefficient (ADC) map, 
calculated from DW images, has been shown to reveal changes in the tumor’s 

microenvironment preceding morphologic tumor changes. ADC values in treated brain 

tumors could theoretically both increase due to the cell kill (and thus reduced cell density) 
and decrease due to inhibition of edema. In this study, we investigated the effectiveness of 

features that quantify changes from pre- and post-treatment tumor ADC histograms to 

detect treatment response. There are three parts to this study: first, tumor regions were 
segmented on T1w contrast enhanced images by Otsu’s thresholding method, and mapped 

from T1w images onto ADC images by a 3D region of interest (ROI) mapping tool using 

DICOM header information; second, ADC histograms of the tumor region were extracted 
from both pre- and five weeks post-treatment scans, and fitted by a two-component 

Gaussian mixture model (GMM). The GMM features as well as standard histogram-based 

features were extracted. Finally, supervised machine learning techniques were applied for 
classification of responders or non-responders. The approach was evaluated with a dataset 

of 85 patients with GBM under chemotherapy, in which 39 responded and 46 did not, 
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based on tumor volume reduction. We compared adaBoost, random forest and support 
vector machine classification algorithms, using ten-fold cross validation, resulting in the 

best accuracy of 69.41% and the corresponding area under the curve (Az) of 0.70. 

Keywords: CADx; DW-MRI; biomarker; adaBoost; random forest; support vector 
machine 

 

1. Introduction 
 

Computer aided diagnosis (CADx) can be defined as a diagnosis that is made by a radiologist who 

uses the output from a computerized analysis of medical images as a “second opinion” in both 

detecting lesions and making diagnostic decisions [1]. One aim of the typical CADx system is to 
extract and analyze the characteristics of benign and malignant lesions in an objective manner to aid 

the radiologist. Here, the “diagnostic” decision relates to treatment response and early classification of 

drug responders versus non-responders, and we name our proposed system as computer-aided 

therapeutic response (CADrx) system.  

Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor in human. 

Anti-angiogenesis drugs are increasingly being explored in clinical trials as therapeutic options. In a 

phase II in vivo clinical trial, the conventional way to assess treatment response is the tumor size 

change after chemotherapy or radiotherapy based on Macdonald criteria and evaluated on T1-weighted 

contrast enhanced (T1wCE) MR images. However, efficacy can only be evaluated at least 8–10 weeks 

after treatment. 

Diffusion weighted magnetic resonance imaging (DW-MRI) has the potential to work as a surrogate 

biomarker to reveal changes in the tumor microenvironment that precede morphologic tumor  

changes [2]. DW-MRI depends on the microscopic mobility of water. This mobility, classically called 

Brownian motion, is due to thermal agitation and is highly influenced by the cellular environment of 

water. Because water diffusion is strongly affected by molecular viscosity and membrane permeability 

between intra- and extracellular compartments, DW-MRI can be used to characterize highly cellular 

regions of tumors versus acellular regions. Treatment response detection can be manifested as a change 

in tumor cellularity, which may precede tumor size changes. Thus, findings on DW-MRI could be an 
early sign of biologic changes. [3] 

The purpose of this study is to use apparent diffusion coefficient (ADC), derived from DW-MR 

images, for early prediction of the tumor volume change on a later scan. There are two main parts to 
this computer-aided treatment response evaluation system. First, a semi-automated segmentation 

algorithm is applied to segment the GBM brain tumors on T1wCE images. Then, the tumor ROI is 

mapped onto derived ADC maps and the histogram of tumor ADC values will be extracted for 
automatic treatment response prediction. 

Computer-aided detection and segmentation of GBM brain tumors is a challenging problem and in 

Table 1 we present a concise review of the prior art in automatic tumor segmentation. Fuzzy clustering 
and knowledge-based analysis are popular methods explored by the early pioneers [4-6]. Voxel-based 

classification method using statistical pattern classification techniques are explored by others [7-15]. 
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Most of the studies above use multiple MRI sequences (T1w, T2w, proton density weighted, and Flair) 
for the automatic tumor and edema detection and segmentation. Liu et al. [16] developed an interactive 

system adapting the fuzzy connectedness using multiple MRI sequences. Dube et al. [17,18] used 

texture features and segmentation by the weighted aggregation (SWA) method for the GBM tumor 
segmentation on T1wCE images which is similar to part of our study. In our study, we developed 

semi-automated method to segment tumors on T1wCE images; in addition, we mapped the tumor 

contours onto ADC maps. 

Table 1. Summary of related methods in brain tumor segmentation. The type abbreviations 

are NC: Nasopharyngeal carcinoma; MNG: Meningiomas; MG - malignant gliomas; MS – 

multiple sclerosis. 

Authors Technique Type Image sequences # of tumors 
Liu et al. [16] Semi-automated fuzzy 

clustering 
GBM T1w, T1w+c, Flair 5 

Philips et al. [4] Fuzzy clustering GBM PD,T2w, T1w+c 1 
Clark et al. [5] Fuzzy clustering and 

knowledge-based analysis 
GBM PD,T2w, T1w+c 7 

Fletcher-Heath 
et al. [6] 

Fuzzy clustering and 
knowledge-based analysis 

Brain 
tumor  

PD,T2w, T1w with 
no contrast 

4 

Prastawa et al. [7] Learn distribution of normal 
tissues/outlier detection as 
tumors 

Brain 
tumors 

T2w, T1w (with or 
without contrast) 

3 

Kaus et al. [8] Adaptive template -moderate 
technique with atlas prior 

LGG/M
G  

T1w+c, sagittal 
view 

20 

Lee et al. [11] Conditional random field and 
support vector machine 

Brain 
tumors 

T1w, T1w+c, T2w 7 

Ho et al. [9] 3D level set  GBM T1w+c, T1w, T2w 3 
Vinitski et al. [10] k-nearest neighbor MS and 

MG 
PD, T2w, T1w, 
magnetization 
transfer 

9 

Zhu & Yan et al. [12] Hopfield neural network Brain 
tumors 

NA 2 

Zhang et al. [13] Support vector machine NC T1w, T1w+c 9 
Corso et al. [15] SWA-segmentation by 

weighted aggregation. 
GBM T2w, T1w, T1w+c, 

Flair 
20 

Dube et al. [17] SWA with texture features GBM T1w+c NA 
Nie et al. [14] Spatial accuracy-weighted 

hidden Markov field and EM 
to solve the problem of high 
and low resolution problem 

Gliomas High:T1w, T1w+c 
Low:T2w, Flair 

15 

 

Computer-aided diagnosis (CADx) in GBM brain tumor is an active research area, and many 

promising MR methods have been developed for detecting and characterizing cancer, its treatments 

and adverse effects, e.g. T1-weighted MR, T2-weighted MR, MR spectroscopy, perfusion-weighted 

MR, and diffusion-weighted MR. In our study, we focused on T1-weighted and DW-MRI. Tumor size 
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change on T1w images is the only imaging biomarker that is accepted by the FDA as a surrogate 
endpoint of clinical outcome after chemotherapy and radiotherapy for phase III trials [19]. Diffusion 

MRI has been explored as early detection of human GBM brain tumor treatment response early 

therapeutic responses before the tumor size changes. Table 2 presents a review of the recent studies 
that used DWI for GBM early prediction of treatment response. Ross et al reported ADC value 

increase significantly in effective therapeutic intervention in pre-clinical studies and presented two 

patients to support this hypothesis in a preliminary clinical study [2,20]. Mardor et al. [21] applied 
both low and high b-value and used mean ADC and diffusion index for treatment response evaluation. 

Moffat et al calculated voxel-by-voxel tumor ADC value changes over time and displayed it as a 

functional diffusion map for correlation with clinical response [22,23]. They reported that the number 
of voxels with increased ADC is related to treatment efficacy. Our previous work [24] showed 

promising results for using ADC histogram analysis, and we explored a more sophisticated classifier 

and designed experiments to show the advantages of the two-component histogram modeling. 

Table 2. Summary of related methods in GBM tumor treatment response using DWI. 

Authors # Of Patients 
Chenevert et al. [20] 2 
Ross et al. [2] 2 
Mardor et al. [21] 10 
Moffat et al. [22] 20 
Hamstra et al. [23] 34 

 

Machine learning and statistical pattern recognition have great contributions to the biomedical 

community because they can improve the sensitivity and/or specificity of detection and diagnosis of 

disease, while at the same time increasing objectivity of the decision-making process [26]. The need 

for machine learning is perhaps greater than ever given the dramatic increase in medical data being 

collected, new detection, and diagnostic modalities being developed as well as the complexity of the 

data types and importance of multimodal analysis. In all of these cases, machine learning can provide 

new tools for interpreting the high-dimensional and complex datasets with which the clinician is 
confronted [26]. In our study, we explored three different classification methods: AdaBoost, random 

forest, and support vector machine. 

The AdaBoost algorithm, introduced by Freund and Schapire [27], is an iterative algorithm that can 
boost weak classifiers into a strong classifier and improve the final accuracy. In each iteration, a 

feature is working as a weak classifier and the best feature is selected to minimize the average training 

error. Afterwards, the weights on training samples are redistributed in such a way that the weight of 
accurately classified samples will be reduced while the weight of ill classified samples is raised. 

Therefore, AdaBoost focuses on the most “difficult” ones [28]. The final classifier aggregates the 

selected weak classifier from each iteration, and the weight for each weak classifier depends on its 
error rate. However, AdaBoost can be sensitive to noise and may introduce the overfitting problem. 

Random forests (RF) is a classifier that combines many decision trees [29]. Each tree depends on 

values of a random vector sampled independently and with equal distribution. Each tree casts a unit 
vote for the most popular case at input, and random forests outputs the class that is the mode of the 
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classes output by individual trees. Breiman suggests the generalization error for forests converges to a 
limit as the number of trees in the forest becomes large [30]. The error of a forest of tree classifiers 

depends on the strength of the individual trees in the forest and the correlation between them. Using a 

random selection of features to split each node yields error rates that compare favorably to Adaboost 
but are more robust with respect to noise. 

Support vector machines (SVMs) are a set of related supervised learning methods used for 

classification and regression [31,32]. Viewing input data as two sets of vectors in an n-dimensional 
space, an SVM will construct a separating hyperplane in that space, one which maximizes the margin 

between the two data sets. To calculate the margin, two parallel hyperplanes are constructed, one on 

each side of the separating hyperplane, which are "pushed up against" the two data sets. Intuitively, a 
good separation is achieved by the hyperplane that has the largest distance to the neighboring data 

points of both classes, since in general the larger the margin the lower the generalization error of the 

classifier [33]. SVM have been reported to work well for pharmaceutical data analysis [34]. 
There are two main challenges in this work. One challenge is the two competing effects in ADC 

changes after treatment. In general, water movement inside cells is more restricted than outside. Thus, 

increased cell density tends to lower ADC values, whereas increased edema (more interstitial water) 

results in higher ADC values. Therefore, theoretically, ADC values in treated brain tumors could not 

only increase due to the cell kill (and thus reduced cell density), but also decrease due to inhibition of 

edema. None of the listed studies above have specified the separate effects. Thus, we applied a two-

component model to fit the tumor ADC histogram [25]. The other challenge is that it is difficult to 

directly identify GBM brain tumors on ADC maps. We developed a semi-automated framework to 

achieve that goal. 

There are several contributions in this work. First, we developed a computer-aided method to semi-

automatically identify tumors on ADC maps. Second, we explored the changes of different statistical 

features of the whole tumor ADC histogram. Moreover, we applied a two-component Gaussian 

mixture modeling to fit the tumor ADC histogram to overcome the two competing effects. Next, we 

used earth mover’s distance (EMD) to directly measure the distance between the pre- and post-

treatment tumor ADC histograms. Finally, we introduced machine learning technique to do feature 

selection and classification to classify responders and non-responders.  

This paper is organized as follows: Section 2 describes the image acquisition and patient group, 

Section 3 describes the semi-automated identification of GBM tumors on ADC maps, and Section 4 
describes the histogram feature extraction and classification. The Result Section reports the 

performance of the tumor mapping on ADC maps, and the results of our comparative study for three 

different classifiers. The final section offers a discussion of the experimental results as well as the 
future work. 

 

2. Image Acquisition  
 
2.1. Patient cohort 

 

A total of 85 patients with GBM treated by anti-angiogenesis drugs were included in our 

preliminary study from our research database. Images in this database were acquired as part of 
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multicenter GBM treatment trial. Tumors were diagnosed by board-certified radiologists as responders 
or non-responders to drugs based on Macdonald criteria from follow-up scans (8–10 weeks after 

baseline). The Macdonald criteria define tumor response by use of tumor size change, steroids, and 

neurological functions. There are four ‘response’ categories: complete response (CR): disappearance 
of enhancing tumors, off steroids, and neurologically stable or improved. Partial response (PR): >50% 

reduction in size of enhancing tumor, steroids stable or reduced, neurologically stable or improved. 

Progressive disease (PD): >25% increase in size of enhancing tumor or any new tumor, or 
neurologically worse, and steroids stable or increased. Stable disease (SD): all other situations. In our 

study, we used tumor volume to evaluate tumor sizes. More than 50% increase in volume is considered 

to be the PD based on the neuro-radiologist’s suggestion [44]. Since GBM is a rapidly progressing 
disease, we classified PD as non-responders and CR, PR and SD as responders. As a result, 39 were 

responders and 46 were non-responders. The DW-MRI scans were performed 5–7 weeks apart 

between baseline and follow-up scans.  
The patients in this study were pooled from six medical sites scanned on 9 different scanner models 

(GE/Siemens) including both 1.5 T and 3 T scanners. The imaging protocol for T1wCE is 3D volume 

in the axial plane with flip angle-spoiled gradient echo sequence (FSPGR) or magnetization-prepared 

rapid gradient-echo (MP-RAGE) sequence, 1–5 mm slice thickness, 0.9375 mm by 0.9375 mm pixel 

size, and 256 × 256 in-plane resolution. The imaging protocol for the DW images is either DWI or 

different tensor imaging (DTI), 700–1,000 s/mm2 for b-value, 3–30 for the number of diffusion 

sensitization probing directions, 5–7 mm slice thickness, 1.797mm by 1.797 mm pixel size,  

and 256 × 256 or 128 × 128 in-plane resolution.  

We developed a quality assurance technique to evaluate the consistency of ADC measurements 

from multiple scanners and multiple visits by use of ROI analysis with normal appearing white  

matter [35]. Our study [35] showed that there is no significant difference in ADC measurement among 

the different scanner models used. For the between-visit reproducibility, ADC measurement was found 

to be reproducible with consistent image protocols. 

 

2.2. ADC map derivation 

 

All ADC maps were calculated from DW-MR images with the same in-house software using a two-

point method as shown in the following equation: 

ADC = -ln[S(b)/S(0)]/b       (1) 

with b being the diffusion sensitivity factor ranging between 700 and 1,000 s/mm2, S(0) and S(b) being 

the image intensity when b = 0 and b = 700 – 1,000 s/mm2. For DWI images, we calculated ADC maps 
from DW images by equation (1). For DTI, we calculated ADC for each orientation and averaged them 

as the final ADC map. Figure 1(b) shows an example of a derived brain ADC map. 
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Figure 1. (a) An example of the tumor segmented on a T1wCE image; (b) An example of 
the tumor ROI mapped from T1wCE to ADC map; (c) An example of the tumor ADC 

histogram fitted by two-component Gaussian mixtures. 

  

(a)     (b)     (c) 

 
3. Semi-Automated Image Analysis on ADC Maps 
 

All patients were scanned by both T1wCE MR images and DW-MR images. Since it is difficult to 

segment tumors accurately on derived ADC maps, we segmented tumors on T1wCE images first, and 

then mapped the tumor contours onto the corresponding ADC maps. 

 

3.1. Tumor segmentation on T1wCE MR images 

 

All tumors were segmented on T1wCE images via a semi-automated method using the Otsu’s 

thresholding algorithm [36] and seeded region growing [37]. First, radiologists drew a line from inside 

of the tumor to the outside of the tumor on the approximate center slice of the tumor. Then intensity 

values along the line were collected to form a bimodal histogram, and the Ostu’s thresholding method 

was used to find the optimal thresholding value. Afterwards, a 3D seeded region growing was applied 

to obtain the segmentation results in the whole volume. Threshold-based segmentation methods are a 

standard approach to calculation of tumor volume. 

The concept behind the Otsu’s thresholding method [36] is to find the threshold that minimizes the 
weighted within-class variation 2

wσ  as in equation (2), considering the two-class segmentation into 

object and background: 
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with ( )q t as the class probability, ( )c tµ  as class mean, ( )c tσ  as class variance, c = 1,2 as two different 

classes, t is variable for the intensity value, and P(.) is the probability density function. Given an initial 

class mean and variance, the algorithm will do an exhaustive search by altering the thresholding value 

to find the optimal thresholding value.  

Afterwards, seeded region growing [37] using the optimal thresholding value was applied to get the 

tumor contours in the 3D volume. Radiologists reviewed the results and made manual corrections 

when necessary. Figure 1(A) shows an example of a segmented tumor on a T1wCE image. 



Algorithms 2009, 2                            
 

1357

3.2. Tumor mapping from T1wCE images to ADC maps 

 

It is difficult for radiologists to directly delineate the tumor contours on ADC maps, and the 

scanner-provided T1w images and the derived ADC maps are not inherently co-registered, because 

they have different slice thickness, different field of view (FOV), and different image resolutions. 

Therefore, a 3D ROI mapping tool was developed to map the tumor ROIs from T1wCE images onto 

ADC maps based on the scanner geometry. Compared to the co-registration technique, the mapping 

tool only transformed voxels within the tumor ROI rather than the whole image volume; thus it was 

more computationally efficient. However, the mapping tool could not correct for patient motion; thus a 

board-certified radiologist was required to visually check the mapped results and perform manual 

corrections when necessary. 

The mapping tool used an affine transformation with the parameters extracted from the DICOM 

header based on physical locations. Equation 3 shows the way to calculate the 3D physical location 

voxelwise. ∆i,j.k is the physical voxel size read from the tag “pixel spacing” and calculated from “slice 

location”; Xx,y,z, Yx,y,z is image orientation read from the tag “image orientation” which specifies the 

orientation of the image frame rows and columns, Zx,y,z is the z-direction orientation calculated from 

Xx,y,z, Yx,y,z, Sx,y,z is read from the tag “patient position” which specifies the physical location of the 

patient’s anterior-left-upper corner; i, j, k are voxel index; and Px,y,z are the calculated physical location 

of the voxel in millimeters. The transformation matrices are calculated for both source and target ROI 

respectively. For each voxel in the source ROI, the physical location is first calculated, and then the 

inverse operation is performed to calculate the corresponding voxel coordinates of the target ROI. 

Finally, radiologists visually check the contours on ADC maps and manually correct the tumor 

contours on ADC when necessary. Figure 1(B) shows an example of the mapped tumor ROI on the 

ADC map from the T1wCE image. 

Equation 3. The physical location calculation of a voxel (i,j,k). 







































∆∆∆

∆∆∆

∆∆∆

=
















11000

k

j

i

SZYX

SZYX

SZYX

P

P

P

zkzjyiz

ykyjyiy

xkxjxix

z

y

x

 
 

4. Feature Extraction and Classification 
 

The differences between the features extracted from pre- and post-treatment tumor ADC histograms 

are used as the input to a tumor response classifier. 

 

4.1. Observations 

 

Figure 2 shows examples of tumor ADC histograms for both pre-and post-treatment with 

responders and non-responders. The upper histogram shows the ADC value distribution before the 

drug treatment, while the lower one shows the ADC value distribution after the drug treatment. On the 
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left is an example of a volumetrically responding tumor, while on the right is an example of a non-

responding tumor. From the figure, we observe that not only the location but also the shape of the 

responder’s histogram changes after treatment. The two Gaussian mixture components change as well.  

 

4.2. General histogram features 

 

Different statistical features from tumor ADC histograms were extracted. According to clinical 

studies, the ADC value should change after treatment. In our data set, we observed that the histograms 

exhibit change not only in location, but also in shape. Therefore, we introduced the extraction of 

different ADC histograms features and explored changes in their pattern. The features are: mean, 

standard deviation, skewness, kurtosis, median, IQR (interquartile range), 25% percentile, and 75% 

percentile. 

Figure 2. Examples of histograms from two tumors and two time points: (a), (c): example 

of a responding tumor for pre- and post-treatment respectively; (b), (d): example of a non-

responding tumor for pre- and post-treatment respectively. 

 

 

4.3. Features from GMM 

 

Two-component Gaussian mixture modeling was applied to each tumor ADC histogram and the 

two-component features were extracted. Due to the competing effects of tumor cell density and edema, 

we made the assumption that the obtained tumor ADC histogram was composed of two components 

relating to tumor cellularity and edema. We assumed that the component with lower peak is influenced 

by tumor cellularity, and the component with higher peak by edema effects. We used a two component 
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GMM as shown in Equation 3 to fit the ADC histogram for both baseline and follow-up scans and 
applied EM algorithm to estimate GMM parameters, with x  as the intensity values, ai as the weight of 

the components, µi and σi as the Gaussian parameters. 

∑
=

=
2

1

)()(
i

ii xGxf α
, with 

2

2

2

)(

2

1
)( i

ix

i

i exG σ
µ

πσ

−−

=
    (4) 

The EM algorithm can be used to estimate the parameters of a parametric mixture model 

distribution: the weight of the components ai, the Gaussian parameters µi, and σi. It is an iterative 

algorithm with two steps: an expectation step (E-step) and a maximization step (M-step).  

In the E-step, with the current parameter estimates of the mixture components, the algorithm 

calculates the expectation values for the membership variables of all data points. In the (m+1) 

iteration, the expectation is: 
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In M-step, the algorithm maximizes the expectation value and updates the corresponding 

parameters. The following solutions can be developed: 

( 1)

( 1) 1

( 1)

1

N
m

n ni
m n

i N
m

ni
n

x p

p
µ

+

+ =

+

=

=
∑

∑
  

( 1) 2 ( 1)

( 1) 2 1

( 1)

1

( )
( )

N
m m

n i ni
m n

i N
m

ni
n

x p

p

µ
σ

+ +

+ =

+

=

−
=
∑

∑
  

∑
=

+=
N

n

m
nii p

n 1

)1(1α
   (6)

 

The features we obtained from the GMM-EM were named as lower peak mean (LPM), lower peak 

variance (LPV), lower peak proportion (LPP), higher peak mean (HPM), higher peak variance (HPV) 

and higher peak proportion (HPP). Figure 2 shows examples of tumor ADC histograms fitted by GMM 

with low ADC and high ADC curves overlaid.  

Combining GMM features with the statistical features, we obtained 14-dimensional feature vectors 

for both pre- and post-treatment tumor histograms. Afterwards, we calculated the rate of change 

between the pre- and the post-treatment tumor histogram. Therefore, we had a 14-dimensional vector 

as the difference feature vector.  

 

4.4. Earth Mover’s Distance 

 

Finally, we applied the earth mover's distance (EMD) [38,39] as a metric to directly evaluate the 

distance between the pre- and post-treatment tumor ADC histograms. Informally, if the histograms are 

interpreted as two different ways of piling up a certain amount of dirt over the region D, the EMD is 

the minimum cost of turning one pile into the other; where the cost is assumed to be amount of dirt 

moved times the distance by which is moved. The calculated EMD value was appended as the 15th 

element in the difference feature vector. The calculated 15-dimensional vector was the input feature 

vector for classification.  
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4.5. Classification 

 

In this study for classification, we investigated three classification techniques with different 

characteristics: AdaBoost, random forests (RF) and support vector machine (SVM). We employed 

three classifiers to avoid biasing the results by selection of a single classification method. The reason 

we choose them is that the first two classifiers both include a feature selection mechanism. By 

applying these two classification techniques, we are seeking the best features that would separate 

responders from non-responders. SVM is reported to outperform several of the most frequently used 

machine learning techniques in structure–activity relationship (SAR) analysis. [34] In this study, all 

classifiers were implemented in the open source data mining software Weka [41]. Their performance 

was evaluated using 10-fold cross validation method. 

Three experiments were performed. First, the conventional method of using mean ADC for 

treatment response classification was applied [2]. Second, the AdaBoost, RF classifier, and SVM were 

applied to the difference feature vectors of general statistical histogram features without GMM 

features, and results from the three classifiers were compared. Finally, the three classifiers were 

applied using all statistical features including the GMM features, and the results were compared, and 

the results of accuracies from different classification techniques were compared with conventional 

method of ADC mean changes by the test of proportion. 

 

5. Results 
 
5.1. Segmentation Performance 

 

Figure 3 shows four examples of segmentation on T1wCE images and the mapped results on the 

derived ADC maps. 

For quantitative evaluation of the tumor segmentation mapping results, we randomly selected 31 

subjects’ baseline data. The 31 tumors are from an ADC mapping database, 20 of which have different 

image resolutions between the T1wCE and ADC images in all three dimensions and 11 of which have 

exactly the same 3D image resolution in both modalities. We calculated the overlap ratio between the 

mapped ROI generated automatically by the tool and an ROI corrected by a neuro-radiologist. The 

overlap ratio (OR) is defined by Equation 6, where A and B are two tumor ROIs and size(.) is the 

number of voxels in that ROI.  

))()(()(*2 BsizeAsizeBAsize +∩     (7) 

The results are shown in Table 3 with 20 out of 31 ROIs (64.5%) have an overlap ratio over 90%.  

 
Table 3. Distribution of overlap ratios. 

Overlap ratio 100% 95~100% 90~95% 80~90% 60~80% 0~60% 
Number of patients 10 7 3 2 5 4 
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Figure 3. (a)-(d) and (i)-(l) show four examples of tumor segmentations on T1wCE 

images; (e)-(h) and (m)-(p) show the corresponding mapped tumor contours on ADC 

maps. 

 
(a)    (b)   (c)    (d) 

 
(e)    (f)     (g)    (h) 

 
(i)   (j)   (k)   (l) 

 
(m)   (o)   (p)   (q) 
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5.2. Classification Performance 

Using the conventional method of mean ADC change (subjects with a mean ADC increase 

classified as responders and those with an ADC decrease as non-responders) [2,20], the accuracy  

is 29.4% (25/85), with a sensitivity of 17.95% and a specificity of 60.87% (see Table 4). 

Table 4. Performance of the conventional mean ADC classification method. 

Classifier Sensitivity Specificity Accuracy Az 
Mean ADC change 17.95% 60.87% 29.4% 0.33 

 

The experiment with AdaBoost involved 10 learning iterations. The RF classifier was composed  

of 10 trees, each of which is constructed considering five random features. The SVM classifier used 

non-linear polynomial kernels and normalized all features.  

The results for the experiment using only the general histogram features without GMM are shown 

in Table 5 with sensitivity, specificity, accuracy and area under the ROC curve (Az). The ROC curves 

are shown in Figure 4. The curve using conventional mean ADC was plotted by varying the threshold 

of the mean ADC change used for the classification, while the curve using the three ML techniques 

were plotted by Weka. Weka plots the ROC curves by varying the threshold on the probability 

assigned to the positive class. 

Table 5. Performance comparison among three classifiers without GMM features. 

Classifier Sensitivity Specificity Accuracy Az 
AdaBoost 45.45% 75% 63.53%* 0.61 
Random forest 54.55% 73% 65.88%* 0.66 
SVM 27.27% 92.3% 67.06%* 0.60 

(*: All p-values <0.0001 comparing with accuracy of Table 4) 

Figure 4. ROC curve for three classifiers without GMM features. 

 
 

With GMM features added, the three classifiers with the same parameter setups were applied to the 

data. The results are shown in Table 6 with sensitivity, specificity, accuracy and area under the curve 

(Az) of the ROC curve. The ROC curves are shown in Figure 5. 
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Table 6. Performance comparison among three classifiers with GMM features. 

Classifier Sensitivity Specificity Accuracy Az 
AdaBoost 39.39% 80.77% 64.7%* 0.60 
Random forest 51.52% 80.77% 69.41%* 0.70 
SVM 27.27% 92.3% 67.06%* 0.60 

(*: All p-values <0.0001 comparing with accuracy of Table 4) 

Figure 5. ROC curve for three classifiers with GMM features. 

 
 
6. Discussion 
 

Compared to using only the mean ADC value, the quantitative statistical histogram features and the 

proposed classification system tremendously improved the accuracy from 29.4% to 69.41%  

(Az increased from 0.33 to 0.70). The statistical analysis indicates that all three classifiers are 

significantly different from the conventional mean ADC method with our dataset. Compared to general 

statistical histogram features, the classification with GMM features using random forest technique 

slightly improved the accuracy from 65.88% to 69.41%, while adaBoost and RF classifiers generated 

the same accuracy no matter whether GMM features were included. There is no significant difference 

between the three machine-learned classifiers. 
The conventional mean ADC method performs worse than a random classifier (Az < 0.5). The 

reason is that conventionally researchers hypothesized that mean ADC increases because the tumor 

cell density decrease after an effective treatment. This assumption may not be valid for our dataset, 

because it involves in an anti-angiogenesis drug, which suppresses the cancer cell growth without 

necessary killing tumor cells (decreasing their density) at an early stage (5-7 weeks). Another possible 

reason is that in our dataset many of the GBM tumors are recurrent GBM tumors that are usually 

necrotic. The treatment tends to reduce necrosis and edema, which will diminish ADC. Essentially 

there are two competing processes at work: cell density, edema and necrosis [25]. 

Another state-of-art study included features that capture spatial information in tumor heterogeneity 

features. Functional diffusion map (fDM) [22,23] is a popular technique studying the ADC value 

increase or decrease voxel-by-voxel. Moffat et al. applied fDM to 20 patients, classified patients into 
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the three categories: PR, SD and PD, and reported 100% accuracy [22]. However, the threshold they 

used for classification was determined from a single dataset of 20 patients used for both training and 

testing, while in our experiments, a cross validation analysis was performed. In Moffat et al’s study, 

they explored the assessment of fractionated radiation therapy for different types of brain tumors  

with 20 patients scanned on the same scanner [22]. However, in our study, we focused on the GBM 

brain tumors treated by anti-angiogenesis drugs, which suppress the blood supply for the tumor cells 

and may not directly decrease the tumor cellularity. The difference in accuracy may come from the 

different mechanism of treatment. Additionally, our dataset is from GBM drug trials across multiple 

sites, thus our preliminary study is an important contribution for exploring DWI as an early imaging 

biomarker in a real pharmaceutical drug trial. In future work, we will extract texture feature to include 

spatial information, and shape features will be extracted as well. By introducing a new richer feature 

set indicating more useful tumor information, we aim to include more information about tumors and 

further improve the performance of the classification system. 

One limitation of this study is that we classified CR, PR and SD as responders for the ground truth 

to achieve a binary classification. Since SD and PR may have different patterns in terms of their ADC 

histogram change, a multi-category classification system will be explored in future work. Another 

limitation of the study is that we used the Macdonald criteria at the eighth or tenth week after treatment 

for determining treatment response. In future work, time-to-progression and survival time will be a 

better endpoint to classify treatment response. Another limitation comes from the 3D ROI mapping 

tool. This tool is more computationally efficient compared to the co-registration techniques, but it 

cannot correct for patient motion. Therefore, in our study, a board-certified radiologist’s visually 

checked and edited all segmentation results as needed. In the future, a more sophisticated registration 

method with an image similarity measure may improve the accuracy of the tumor contours on ADC 

maps, and consequently improve the accuracy of the extracted features and the classifier performance. 

ADC values obtained on pre-operative MRI scans are reported to be of prognostic value in patients 

with glioblastoma [25,42]. The term "prognosis" refers to predicting the likely outcome of treatment. 

ADC, reported to be inversely proportional to tumor cellularity, is gaining interest in predicting GBM 

tumor prognosis. Our proposed framework now uses changes in DW-MRI for early prediction of 

treatment response; however, the framework with feature extraction and machine learning technique 

could be generalized to pre-treatment DW-MRI for prognosis prediction. 

In this study, we developed a CADrx framework with machine learning techniques to automatically 

predict tumor treatment response before the size change using DW-MRI. In our preliminary study, our 

major contributions are extracting statistical ADC histogram features, applying GMM to model the 

ADC histogram to interpret the competing effects of cellular density and edema, and applying machine 

learning techniques using all the extracted features. Cell density and edema may be reflected in ADC 

values before size changes are apparent on standard MRI sequences. Therefore, ADC holds promise as 

a biomarker, in determining both which tumors are more likely to respond to treatment and which 

tumors are actually responding.  

In conclusion, this work shows that a CADrx system using quantitative ADC histogram features 

and a machine-learned classifier has better performance in treatment response assessment over 

conventional analysis using only a mean ADC value. This will have major implications for clinical 

trials. This work has potential clinical significance for early treatment response assessment in GBM. 
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