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Abstract. Current methods for abdominal multi-organ segmentation
(MOS) in CT can fail to handle clinical patient population with missing
organs due to surgical removal. In order to enable the state-of-the-art
atlas-guided MOS for these clinical cases, we propose 1) statistical organ
location models of 10 abdominal organs, 2) organ shift models that cap-
ture organ shifts due to specific surgical procedures, and 3) data-driven
algorithms to detect missing organs by using a normality test of organ
centers and a texture difference in intensity entropy. The proposed meth-
ods are validated with 34 contrast-enhanced abdominal CT scans, re-
sulting in 80% detection rate at 15% false positive rate for missing organ
detection. Additionally, the method allows the detection/segmentation
of abdominal organs from difficult diseased cases with missing organs.
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1 Introduction

Segmentation of abdominal organs is a crucial building block for computer-aided
diagnosis (CAD) of various diseases in CT and also a major technical challenge
due to similar intensity of neighboring organs and high inter subject variabil-
ity of organ’s geometry [4]. Addressing this challenge, multi-organ segmentation
(MOS) approach has recently become popular toward improving overall segmen-
tation accuracy and enabling comprehensive analysis of multi-focal abdominal
diseases [10, 15, 13, 9, 12, 14, 6–8].

In this paper, we investigate how such MOS can be extended to a patient pop-
ulation with missing organs. Without considering this population, MOS cannot
be applied to a number of important clinical applications such as follow-up stud-
ies of surgical treatment and cancer recurrence in abdomen. Despite this clinical
importance, however, the literature discussing how MOS performs with data
from such population is lacking. Current MOS solutions are also not designed
to handle irregular anatomy cases. A common process in various MOS methods
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Fig. 1. Illustrative examples of a) segmentation failures and b,c) ten modeled organs.
Red: liver, blue: spleen, cyan: r-kidney, magenta: l-kidney, yellow: pancreas, orange:
aorta, dark green: gall bladder, purple: l-adrenal, lavender: r-adrenal, green: stomach.

is to fit an atlas of normal organ anatomy to an image to be analyzed. When
analyzing a case with missing organs, regardless of atlas formats (i.e., static [15],
probabilistic [10, 13, 9, 6, 7], or geometric [13, 12, 14, 6, 8]), MOS can fail
to segment other intact organs because of 1) post-surgical organ shifts and 2)
mis-match of the atlas’ part corresponding to the missing organs to nearby non-
targets. As a result, these MOS methods applied to missing organ cases can
underperform organ-specific segmentation schemes. Fig.1(a) illustrates such a
case with a missing right kidney (cyan) where the liver (red) shifted downward
into the cavity caused by the removed kidney and a part of the liver was iden-
tified as kidney. The main contribution of this paper is two-fold. First, surgical
procedure-specific organ shift models are proposed and built using nine clinical
cases of nephrectomy (kidney removal) and splenectomy (spleen removal). 3D
centers of ten abdominal organs are first estimated by a geometric Gaussian
mixture model (GMM) then statistically modeled with respect to normal organ
locations. Second, two new features for data-driven missing organ detection are
proposed. As a base MOS, the atlas-guided MAP algorithm proposed in [13] is
used, which fits a GMM with a probabilistic atlas constructed from ten normal
organ cases. One feature characterizes the probability of each segmented organ
being normal by using statistical organ location models, while the other feature
examines the intensity entropy under an atlas mask and compares it against
normal anatomical organs. The automatic missing organ detection allows us
to handle clinical scan data more robustly even when previous medical history
information is missing or corrupted in patient record or DICOM tag [2]. The
proposed method is related to a multi-organ identification framework [3, 5, 14]
such as the spine-based statistical location model (SLM) proposed by Yao and
Summers [14]. This paper focuses on applying the SLM approach to the missing
organ cases as a pre-step of MOS.

2 Method

2.1 Atlas-guided MAP Multi-Organ Segmentation

We follow Shimizu et al. [13] as our base atlas-guided MOS method. The MAP
estimation of organ label l ∈ {1, .., L} over 4D spatiointensity feature vector v =
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(x, y, z, I(x, y, z)) is employed: l̂ = argmaxlp(v|l)p(l). A standard probabilistic
atlas [10, 7] is built by registering K training cases of normal anatomy to a fixed
reference volume IR then computing a probability map for each of L modeled or-
gans by counting manually segmented organs. The prior p(l) is modeled by this at-
las. For each organ l, a normal spatiointensity model (uvl,Σvl) is also computed
where uvl and Σvl are the mean and covariance of feature vectors of the organ l
from theK training cases. The likelihood p(v|l) is modeled by an extended GMM

p(v) =
∑L

l=1

(
1
N

∑N
n=1 αl(n)

)
N(v;ul,Σl) whereN denotes the number of voxels

and the mixing weights αl(n) are defined over each voxel n. To segment L organs
in a test case Ite, Ite is first registered to IR using affine transformation followed
by B-spline non-rigid registration [11]. Then the GMM is initialized by the normal
spatiointensity model and fit to Ite using the EM-algorithm [1].

2.2 Organ Location and Shift Models

Geometry of abdominal organs varies due to a) inter-subject variation, b) post-
surgical organ shifts, c) postures and d) pathology. Focusing on modeling the first
two factors, we prepare a set {Inam |m = 1, ..,Mna} with L normal anatomy and
a set {Imo

m′ |m′ = 1, ..,Mmo} with one or two organs missing. After registering all
cases to IR, each organ’s location is modeled by the point distribution density of
organ centers xlm, each of which is given by either the segmented organ’s median
coordinate or expert’s manual estimation. Organ location models (OLMs) for
normal anatomy (NA) and for missing organs (MO) are built as a set of normal
densities over Mna NA and Mmo MO cases, respectively

NA = {NAl} = {N(x;μl,Σl)|l = 1, .., L} (1)

MO = {MOl} = {N(x;μ′
l,Σ

′
l)|l = 1, .., L} (2)

where μl = 1/Mna

∑
m xlm, μ′

l = 1/(Mmo −#MOl)
∑

m′ xlm′ , #MOl denotes
the number of missing cases for organ l, and Σl and Σ′

l are covariance matrices
corresponding to μl and μ′

l, respectively.
While both NA and MO model the inter-subject variation of organ locations,

MO is also influenced by the post-surgical organ shifts. Organ shift model (OSM)
is then designed by a set of normal point-difference distributions {ylm = xlm −
μl}l in a local frame centered at μl for each organ l

OS = {OSl} = {N(yl;μ
′
l − μl,Σ

′
l)|l = 1, .., L} (3)

Surgical procedure-specific organ shift models {OSt|t = 1, .., T } where T is the
number of organ-specific missing cases are modeled by computing an OSM in
Eq.(3) with a subset of the MO cases specific to a surgical procedure such as
nephrectomy and splenectomy. OSM can take two different variations according
to their purposes; anatomical and detectional OSM. Anatomical OSM is created
by manually estimated organ centers which visualize true post-surgical organ
shifts. Whereas detectional OSM applies centers estimated by EM algorithm
which detects the failure of EM algorithm for missing organs and this used as a
part of our missing organ detection method.
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2.3 Missing Organ Detection

When fitting the GMM p(v) described in Sec 2.1 to a missing organ case Imo, a
normal model corresponding to a missing organ will be fitted to arbitrary non-
target organ(s) located nearby. Data-driven detection of such missing organs can
therefore be used to mitigate this EM estimation error. Each organ in the atlas
is first linearly translated to the center estimated by EM algorithm for each NA
and MO cases resulting in organ-specific binary atlas masks Bl(x).

The first indicator feature Fl of missing organ l is the probability of estimated
organ centers by EM being abnormal with respect to estimated organ centers
of NA,

Fl = 1− p(x|θl) = 1−N(x;μl,Σl) (4)

where θl = (μl,Σl).
The second indicator feature Gl examines the difference in texture pattern

under the atlas mask Bl(x) comparing entropies of MO to NA and scales it to
the same range as Fl,

Gl = 1− e−|El−ENA
l | (5)

where El and ENA
l denote intensity entropy computed with the MO case Imo

and with the NA cases {Inam } masked by Bl(x), respectively.

3 Experiments

3.1 Data

Nine MO (Mmo=9) and twenty five NA (Mna=25) cases, totaling 34 contrast-
enhanced diseased abdominal CT scans, are used in this study. Each scan consists
of 512×512×50 voxel slices with 5mm thickness stored in Mayo analyze format.
CT scanners from various manufacturers are used to acquire this dataset with
the ISOVUE 300 contrast agent. The MO dataset contains three different types
of surgical organ removal: i) 5 splenectomy cases (spleen removed), ii) 3 nephrec-
tomy cases (right kidney removed), and iii) 1 splenectomy and nephrectomy case
(spleen and left kidney removed). Ten abdominal organs (L = 10) are considered
in this study: aorta (AO), gallbladder (GB), left/right adrenal glands (LA,RA),
liver (LV), left/right kidney (LK,RK), pancreas (PN), spleen (SP), and stomach
(ST). For validation, segmentation ground-truth is generated for 9 NA and 9 MO
cases with ITK-Snap tool. Fig.1(b,c) illustrate the examples of the segmenta-
tion ground-truth. The probabilistic atlas is built with ten (K = 10) abdominal
thin-slice CT scans of normal anatomy delineated by expert radiologists.

3.2 Results

We first evaluate OLMs and OSMs that are built by using our data. To esti-
mate each organ center, we use 3D center of gravity of Bl computed by our base
MOS. Fig.2(a) shows an example view of the constructed NA in Eq(1). Fig.2(b)
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(a) (b)

Fig. 2. OLM and OSM. (a) NA with 10 organs. Estimated organ and model centers
are denoted by blue ’x’ and red ’+’, respectively. An ellipse shows an iso-contour of
the 3D covariance multiplied by two for each organ. (b) Detectional OS with the organ
shift vectors shown in indigo arrows. MO’s and NA’s centers are denoted by black ’x’
and red ’+’, respectively.

(a) (b)

Fig. 3. Detectional OSt for splenectomy and nephrectomy. (a) With five splenectomy
cases. (b) With three nephrectomy cases. Blue ellipses show removed organs for respec-
tive procedures.

illustrates a similar example view of the detectional OS in Eq.(3). Next the
surgical procedure-specific detectional OSMs are evaluated. Fig.3(a,b) show de-
tectional OSt for splenectomy and nephrectomy in the same format of Fig.2.
Larger shifts are observed by the removed organs indicated by ellipses.

Quantitative analyses of constructed OLMs and detectional OSMs are eval-
uated in Fig.4. Fig.4(a) summarizes the variance of OLMs for each organ. The
trace of a covariance matrix is equivalent to the sum of eigenvalues thus pro-
portional to the average variance across the three spatial axes. For NA, the
covariance trace for the stomach was the largest (92.8) and that for the left kid-
ney was the smallest (4.2). For MO, the trace for the pancreas was the largest
(428.7) and that for the left adrenal was the smallest (6.1). The unit of the mea-
sures is in voxels. The pancreas exhibited the largest magnitude of the organ shift
(16.3), followed by the spleen (8.0), stomach (3.6), and aorta (3.2). Fig.4(b) com-
pares the magnitudes of organ shift vectors ylm for each organ. Pancreas and
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Fig. 4. Analyses of organ location variances and organ shift magnitudes. (a) Blue:
trace of covariances in NA, green: trace of covariances in MO, magenta: magnitudes
of organ shift vectors in voxels. (b) Comparison of magnitudes of organ shift vectors
in voxels for the two surgical procedures against the overall average.
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Fig. 5. (a) ROC analysis for missing organ detection with Fl and Gl features. (b)
Segmentation accuracy in Jaccard index (JI). Blue down-triangles and red up-triangles
show organ-wise average JIs for NA and MO cases, respectively. Captions of organs
are defined in Sec.3.1. ’AV’ indicates the average JI over all organs.

spleen resulted in large organ shifts for both procedures. For splenectomy, pan-
creas, left kidney, liver and spleen exhibited the shifts larger than average. For
nephrectomy, gall bladder, stomach and right kidney exhibited larger shifts. In
both cases, organs that were removed (spleen and right kidney) resulted in large
shifts, which indicate mismatch to non-target organ(s). Fig. 5(a) summarizes the
receiver operating characteristic (ROC) analysis of missing organ detection using
Fl in Eq.(4) and Gl in Eq.(5). Both features exhibit positive correlations to the
missing organ occurrences. At 3.75% false positive rate (FPR), sensitivity for Fl

andGl are 10% and 40%. At 15% FPR, sensitivity for Fl andGl are 80% and 40%.
The area under the curve (AUC) for Fl and Gl are 0.83 and 0.71, respectively.

Finally, we evaluate the baseline MOS results on our data from the diseased
population. Fig. 5(b) shows organ-wise segmentation accuracy in Jaccard index

(JI = |A∩B|
|A∪B| where A and B are equal-length binary patterns) averaged over
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Fig. 6. Illustrative examples of the baseline atlas-guided MOS results. Top row: NA
cases. Second row: spleen removed (left), spleen and left kidney removed (right). The
same color scheme in Fig.1 is used.

the NA (blue ’V’) and MO (red ’A’) cases with ground truths. Liver, left kidney
and spleen have relatively high accuracy. The accuracy for MO cases is lower
than that for NA in general due to difficulties for handling the diseased cases.
The accuracy for spleen and left kidney of MO is significantly lowered since MO
includes cases missing them. Not only missing organ itself but even neighboring
organ, liver, is influenced by right kidney missing such that the bottom of liver is
segmented as right kidney that causes the lower accuracy of MO liver. Segmen-
tation of adrenal glands and gall bladder is challenging because they are very
small and their shape varies widely. Stomach also yields very low JI because its
shape and intensity is extremely various.

Fig. 6 demonstrates four illustrative examples of segmentation results. NA cases
shown in the top row indicate successful segmentations of major abdominal organs
except for the pancreas in the left case. On the other hand, MO cases shown in
the bottom row encountered more issues. On the splenectomy case on the left, the
spleen model (blue) was falsely put on the left kidney and missed the aorta. On
the splenectomy/nephrectomy case on the right, the spleen and left kidney models
are falsely put on the stomach and intestine moved to the cavity vacated by the
removed organs. In both cases, liver and right kidney are segmented correctly.

4 Conclusions and Discussion

This paper presented novel methods for modeling abdominal organ shifts due
to surgical procedures and for detecting occurrence of missing organs. Our ex-
perimental results are promising in that 1) organ shift models depicted different
patterns of organ movements for splenectomy and nephrectomy and 2) two fea-
tures applied for detection exhibited reasonable accuracy with different patterns.
Texture entropy performed better in low FPR while geometric probability per-
formed better in higher FPR. Our future work includes building and analyzing
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OLMs and OSMs with a larger dataset and exploring a combined feature with
the two proposed as well as others. Finally, the resulting missing organ detection
will be integrated with our overall MOS scheme in order to improve segmentation
accuracy for the targeted diseased population.
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