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1
REFINED SEGMENTATION OF NODULES
FOR COMPUTER ASSISTED DIAGNOSIS

RELATED APPLICATIONS

The present patent document claims the benefit of the filing
date under 35 U.S.C. §119(e) of Provisional U.S. Patent
Application Ser. No. 60/672,277, filed Apr. 18,2005, which is
hereby incorporated by reference.

BACKGROUND

The present embodiments relate to segmentation. In par-
ticular, nodules or other structures are identified from scan
data, such as from computed tomography data.

Pulmonary nodule segmentation is one goal of computer-
assisted diagnosis (CAD) for identifying lung tumors. For
example, a CAD system identifies pulmonary nodules from
chest computed tomography (CT) data. A semi-automatic
robust segmentation solution may realize reliable volumetric
measurement of nodules as part of lung cancer screening and
management.

Intensity-based segmentation solutions, such as local den-
sity maximum algorithms, segment nodules in CAD systems.
Although such solutions may perform satisfactorily for soli-
tary nodules, these solutions may not separate nodules from
juxtaposed surrounding structures, such as walls and vessels,
due to similar intensities. Approaches that are more sophisti-
cated have been proposed to incorporate nodule-specific geo-
metrical constraints. However, juxtapleural, or wall-attached,
nodules remain as a challenge because such nodules may not
conform to standard geometrical assumptions. Another
source of problem is rib bones which appear with high inten-
sity values in CT data. Such high-intensity regions near a
possible nodule may bias estimation of the nodule center.

Two approaches provide robust segmentation of juxtapleu-
ral cases. In a first approach, a global lung or rib segmentation
is performed prior to the nodule segmentation. This global
approach may be effective but also computationally complex
and dependent on the accuracy of the whole-lung segmenta-
tion. In a second approach, a local non-target removal or
avoidance is performed prior to the nodule segmentation.
This local approach may be more efficient than the global
approach but more difficult to achieve high performance due
to the limited amount of information available for the non-
target structures.

BRIEF SUMMARY

By way of introduction, the preferred embodiments
described below include methods, systems or computer read-
able media for refined segmentation of nodules in computer-
assisted diagnosis. By testing for nodule segmentation errors
based on the scan data, juxtapleural cases are identified. Once
identified, the scan data or subsequent estimation may be
altered to account for adjacent rib, tissue, vessel or other
structure effecting segmentation. One alteration is to shape a
filter as a function of the scan data. For example, an ellipsoid
from an originally estimated segmentation defines the filter.
The filter is used to identify the undesired information, and
masking removes the undesired information for subsequent
estimation of the nodule segmentation. Another possible
alteration biases the subsequent estimation away from the
incorrect information, such as the rib, tissue or vessel infor-
mation influencing the original estimation. For example, a
negative prior is assigned to data corresponding to the origi-
nally estimated segmentation for the subsequent estimation.
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Any of the testing, filtering alteration, bias alteration or com-
binations thereof may be used.

In a first aspect, a method is provided for refined segmen-
tation of nodules in computer-assisted diagnosis. A processor
tests a first processor determined segmentation as a function
of'scan data. The processor alters the scan data, a parameter or
the scan data and a parameter where the first processor deter-
mined segmentation fails the testing. A second processor
determined segmentation is determined as a function of the
altered scan data, the parameter or the altered scan data and
the parameter.

In a second aspect, a system is provided for refined seg-
mentation of nodules in computer-assisted diagnosis. A pro-
cessor is operable to test a first segmentation as a function of
scan data, operable to alter the scan data, a parameter or the
scan data and a parameter where the first segmentation fails
the testing, and operable to determine a second segmentation
as a function of the altered scan data, parameter or scan data
and parameter. A display is operable to output an indication of
the second segmentation.

In a third aspect, a computer readable storage media has
stored therein data representing instructions executable by a
programmed processor for refined segmentation of nodules in
computer assisted diagnosis. The storage media has instruc-
tions for: testing a first nodule estimation as a function of scan
data, altering the scan data, nodule estimation or both the scan
data and nodule estimation if the first nodule estimation fails
the testing, and determining a second nodule estimation as a
function of the altered scan data, the altered nodule estimation
or the altered scan data and the altered nodule estimation.

In a fourth aspect, a computer readable storage media has
stored therein data representing instructions executable by a
programmed processor for refined segmentation of nodules in
computer assisted diagnosis. The storage media has instruc-
tions for: determining a filter shape as a function of scan data,
filtering the scan data as a function of the filter shape, and
segmenting a first nodule as a function of the filtered scan
data.

In a fifth aspect, a computer readable storage media has
stored therein data representing instructions executable by a
programmed processor for refined segmentation of nodules in
computer assisted diagnosis. The storage media has instruc-
tions for: determining a first nodule estimation, identifying
the first nodule estimation as associated with a possible jux-
tapleural nodule, and biasing determination of a second nod-
ule estimation away from the first nodule estimation.

The present invention is defined by the following claims,
and nothing in this section should be taken as a limitation on
those claims. Further aspects and advantages of the invention
are discussed below in conjunction with the preferred
embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The components and the figures are not necessarily to
scale, emphasis instead being placed upon illustrating the
principles of the invention. Moreover, in the figures, like
reference numerals designate corresponding parts throughout
the different views.

FIG. 1 is a flow chart diagram of one embodiment of a
method for refined segmentation of nodules in computer-
assisted diagnosis;

FIG. 2 is a graphical example of one embodiment of refin-
ing segmentation as a function of scan data;

FIG. 3 is a graphical example of one embodiment of refined
segmentation; and

FIG. 4 is a block diagram of one embodiment of a system
for refined segmentation of nodules in computer-assisted
diagnosis.
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DETAILED DESCRIPTION OF THE DRAWINGS
AND PRESENTLY PREFERRED
EMBODIMENTS

The embodiments may provide robust pulmonary nodule
segmentation in computed tomography (CT) by improving
segmentation for juxtapleural cases. By testing segmentation
results, juxtapleural cases may be identified. Incorrect seg-
mentation due to surrounding structure may be avoided by
alteration. For juxtapleural cases, alteration is provided by
local non-target removal and/or avoidance approaches. In one
approach, the lung wall region within an input sub-volume is
detected and removed. For example, a 3D binary morphologi-
cal opening operation is used. By using the scan data to
identify a structuring element, such as a data-driven ellipsoi-
dal 3D structuring element, the morphological operation
more likely results in removal of undesired information. In
another approach, an extended mean shift framework incor-
porates a repeller (negative) prior which tends the conver-
gence away from a specific data point or points. This prior-
constrained mean shift is used for correctly detecting the
nodule center despite the presence of rib bones. The segmen-
tation accuracy may be improved without removal of data
representing the walls and ribs.

In one embodiment, both proposed solutions arerealized as
extensions of a robust anisotropic Gaussian fitting solution,
but other segmentation algorithms may be used. An ellipsoi-
dal structuring element and/or the repeller prior are derived
from the Gaussian fitting.

The embodiments may be used for other imaging modali-
ties, such as magnetic resonance imaging, ultrasound, x-ray,
positron emission or other now known or later developed
imaging modes. Data for two- or three-dimensional scans
may be used. The embodiments may alternatively be used for
isolated or non-juxtapleural cases.

FIG. 1 shows one embodiment of a method for refined
segmentation of nodules in computer-assisted diagnosis. The
method is implemented by the system of FIG. 4 or a different
system, such as a personal computer, a network server, or an
imaging workstation. The method implements the acts in the
order shown or a different order. Additional, different or
fewer acts may be provided. For example, act 26 and not 28 is
performed or vice versa with or without any other acts. As
another example, acts 22, 24 and 30 are performed without
acts 26 and/or 28.

In act 22, a nodule estimation is determined. The nodule
estimation is a segmentation of a possible nodule. The deter-
mination is performed automatically or semi-automatically
by a processor, resulting in a processor determined segmen-
tation.

The segmentation is local, such as estimating the nodule in
a sub-region of scan data representing a plane or volume. For
example, a33x33x33 voxel sub-volume is used. The region is
larger than likely nodules, such as being larger than 30 mm,
50 mm or other value in diameter. Other sizes with cube,
spherical or other shaped regions may be used, such as a
global region. The scan data is CT data or another type of data.

The local region is selected automatically by the processor
or in response to user input. A marker is established from a
radiologist’s readings by eye-appraisal or the outcome of an
automatic nodule detection system. For example, an algo-
rithm is applied globally to determine regions likely associ-
ated with nodules. As another example, the user inputs a
point, area or volume likely associated with a nodule. The
local region is centered at the user input location or over a
determined area or volume. In alternative embodiments, a
global segmentation is performed.
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After identifying the local region, nodule segmentation is
performed for the local region. The local region may include
an isolated nodule or a juxtapleural nodule. Pulmonary or
other nodule segmentation is performed on the scan data for
the local region. Any now known or later developed segmen-
tation algorithm may be used, such as filtering, trained neural
network, Bayesian, or other classifier based segmentation.

In one embodiment, the segmentation is performed with a
Gaussian fitting function. A Gaussian function, such as a two
or three-dimensional Gaussian function, is fit to the scan data.
For example, one or more of the segmentation processes
described in U.S. Patent Application Publication Nos. 2005/
0036710, 2005/0096525, 2005/0135663, 2005/0201606, or
2006/0050958, the disclosures of which are incorporated
herein by reference, are performed. One robust anisotropic
Gaussian fitting identifies the nodule represented by the com-
puted tomography scan data. Semi-automatic (e.g., one-
click) 3D nodule segmentation is provided. The one-click
segmentation uses a marker x,, indicating a rough location of
the target nodule. A 3D Gaussian function is fit to the scan
data associated with the marker. The nodule’s 3D boundary is
approximated by a 35%, 50% or other confidence ellipsoid of
the fitted Gaussian, determined empirically. Other structures
than an ellipsoid may be used, such as a sphere, cube or
irregular structure.

For computational efficiency, the algorithm is applied to a
sub-volume V (x) centered at the marker x, and extracted
from CT volume data I(x): R*—R_, such as 12-bit CT scan
data. The algorithm provides a Gaussian function which best
or sufficiently fits the local intensity distribution of the target
nodule. The fit is represented as: I(x)=~ox®(x;u, Z)I s where
D(x;u, X)=1272 " exp(-Ya(x—u)2 ™" (x-u)) is the anisotro-
pic 3D Gaussian function, o is a positive magnitude factor, S
is a local neighborhood forming a basin of attraction of the
target, u is the fitted Gaussian mean indicating the estimated
nodule center, and X is the fitted Gaussian covariance matrix
indicating the nodule’s anisotropic spread. u is the conver-
gence of the local maximum (e.g., gradient) using the fit
function.

a and S may not be calculated. Instead, the algorithm
performs a multiscale analysis by considering a Gaussian
scale-space of the input sub-volume. The Gaussian scale-
space L(x;h) is a solution of the diffusion equation

AL 1V2L
)

with an initialization L(x;0)=I(x). Such a scale-space is
defined by a convolution of I(x) with a Gaussian kernel K (x)
with a bandwidth matrix H: L(x;h)=I(x)*K(x;H=h;). The
algorithm considers a Gaussian scale-space constructed over
a set of densely sampled discrete analysis scales {h k=1 . ..
K}. At each analysis scale, a fixed-scale robust analysis is
performed for fitting an anisotropic Gaussian function in each
scale space image. The mean, u, and covariance, X, are deter-
mined for each scale or level of smoothing (i.e., bandwidth).
The fixed-scale analysis performs a robust Gaussian fitting
with scale-space mean shift, a convergent weighted mean
shift defined in the Gaussian scale-space, represented as:

fx’KH(x—x’; H)IX))dx' W
s Hy) = —x=#H
e Ho) TKue— x5 HOlGdx o

V L{x; hy)
L(x; hy)
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The Gaussian mean u as the nodule center is estimated by the
convergence of the majority of initial seeds sampled around
the marker x,,. A set of new seeds are sampled around the
estimated mean u. The mean shift procedures are then per-
formed from each seed. Gaussian covariance is estimated by
a constrained least-squares solution of a linear system with
unknown 2, constructed with mean shift vectors only along
the convergent trajectories. The linear system may be con-
structed with a response-normalized scale-space Hessian.

Given a set of estimated Gaussians, the most stable esti-
mate across the scales determines the final outcome. In one
embodiment, an error between the estimated segmentation
provided by the Gaussians and the scan data is computed. In
other embodiments, such as where the error may be large or
erratic, the set of estimated Gaussians is examined to identify
a most stable estimate as a function of the changing band-
width. The multiscale analysis, given a set of Gaussians esti-
mated at the analysis scales {(u,,2;)}, is realized by finding
the most stable estimate among others using a divergence-
based stability test, but other tests may be used. One example
algorithm employs the Jensen Shannon divergence (JSD) of
three neighboring Gaussians computed at each analysis scale.
Assuming the normal form of distributions, JSD is expressed
in the following simple form:

@

i+l
1
k+1

§Z Z‘ 1 k+l -1
% ¥ 5Z:(u;—u)’[Z: Z] (i —u)

— i=k-1 i
311 121 i=k—1

i=k-1 i

1
JSD(k) = Elog

where

The minimization of the JSD profile across the scales h,
results in the most-stable-over-scales estimate (u*, Z*).

The robustness is due to two aspects of this algorithm.
First, the fixed-scale Gaussian fitting solution performs
robust model fitting with the outlier removal using the scale-
space mean shift convergence analysis. u is determined from
equation 1 for each h where the outlier is information not
estimated as part of the nodule. Convergence of m to a peak
with outlier removal more likely reduces the eftects of other
structures. This helps to mitigate the problem of juxtaposed
neighboring structures, such as ribs, chest walls or vessels.
Second, the usage of the stability-based scale selection robus-
tifies the fitting process even for intensity distributions that do
not follow the Gaussian assumption well. This facilitates the
electiveness of the solution for segmenting clinically signifi-
cant but technically challenging ground glass or other types of
nodules.

Despite the robustness, some juxtapleural or other cases
may result in inaccurate segmentation. The robust Gaussian
fitting solution or other segmentation estimation may be fur-
ther extended for handling not only solitary but also the
juxtapleural cases. The robust Gaussian fitting or other seg-
mentation estimation is performed, and the results are tested
in act 22, such as with a goodness-of-fit test. A processor tests,
automatically or semi-automatically, nodule estimation as a
function of scan data. The testing identifies the nodule esti-
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6

mation as associated with a possible juxtapleural nodule, such
as the testing identifying a possible wall attached nodule.

The computed tomography or other scan data is compared
to the pulmonary or other nodule segmentation. For example,
errors between the processor determined segmentation and
the scan data are analyzed. In one embodiment, chi-square
errors between the data and the model are calculated, but
other error calculations may be used. In another embodiment,
a linear DC bias is evaluated. Other heuristic tests, such as
using a trained neural network or other classifier, may be
used. Combinations of tests may be used, such as a chi-square
error analysis in combination with a linear DC bias test. Any
threshold or other determination for a segmentation to fail or
pass the test may be provided, such as error thresholds or
heuristic outcomes based on training or data sets with known
truths.

When the initial fitting results fail to pass the test in act 22,
a further process is performed to provide a possible more
accurate segmentation or nodule estimation. One or more
different further processes may be used, including any now
known or later developed processes. In general for the robust
Gaussian segmentation, most gross segmentation failures
detected by the chi-square error analysis in combination with
the linear DC bias goodness-of-fit test may be due to juxta-
pleural cases. The initial fitted Gaussians for such failures
may tend to approximate the wall and rib structures. Segmen-
tation solutions which employ the initial fitted Gaussian as an
input to their process may exploit these observations.

In one embodiment, the processor performs an alteration
with the further process in act 24. The scan data, nodule
estimation process, a parameter for the estimation process,
combinations thereof or other alterations are performed. In
one embodiment, scan data is altered as a function of a mor-
phological function based on the initial segmentation. In
another embodiment, subsequent segmentation estimation is
weighted away from the initial segmentation. The initial seg-
mentation is considered inaccurate by failing the test. This
failure may be used to influence later segmentation to identify
a nodule and not other structure. Other embodiments which
are or are not a function of the initial segmentation may be
used.

Inthe embodiment for altering scan data in act 24, scan data
not associated with undesired structure is selected, or scan
data associated with undesired structure is removed in act 26.
For example, wall removal is performed by three-dimen-
sional morphological opening. The selection or removal is a
function of a morphological function. The morphological
function is responsive to the scan data, such as being a func-
tion of the initial segmentation likely representing undesired
structure. Any morphological function may be used, such as
determining a filter shape as a function of scan data or as a
function of an ellipsoid responsive to the initial fitting.

The input sub-volume of the juxtapleural failure case may
contain lung wall regions. Such wall regions appear typically
as a large connected region with CT values higher than sur-
rounding pulmonary parenchyma. The juxtapleural nodule
may appear as a nodular structure partially embedded into the
wall. The wall regions are removed from the sub-volume
using the morphological operation. The robust Gaussian fit or
other segmentation is then performed on the wall-removed
scan data, resulting in an improved segmentation of the target
nodule.

FIG. 2 graphically represents one possible algorithm for
selection or removal of scan data dependent on a morphologi-
cal function. The inputs include the sub-volume V(x), the
marker x,,, and the fitted Gaussian (u*, £*) which failed the
goodness-of-fittest. The image at 34 shows the sub-volume in
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atwo-dimensional cross-section where the lighter region rep-
resents a nodule embedded on a wall. Scan data associated
with undesired structure, such as wall regions, is removed
from V(x), resulting in V,(x) represented at the image labeled
37.

As shown for the image at 35, the scan data is binarized or
converted to a binary representation. A threshold, such as a
value of 500 for scan data with a dynamic range of 0 to 4,095,
is applied to the scan data. The threshold is an intensity
threshold. Other thresholds or threshold values may be used.

The morphological function is calculated, at least in part,
based on the initial nodule estimation, a sphere, an ellipsoid,
combinations thereof or other shapes. For example, a three-
dimensional structural element is initialized as a function of
the initial nodule estimation if the average diameter is greater
than a threshold and as a function of a predetermined structure
if the average diameter is less than the threshold. An average
diameter d,,,, of the ellipsoid defined by the initial segmen-
tation covariance 2* is calculated. If the average diameter is
greater than a threshold, the morphological function is a
three-dimensional structure, E, defined by the initial segmen-
tation Z*, E=X*. Any threshold may be used, such as 16.6
voxels or a particular size. Otherwise, the three-dimensional
structure, E, is set to a three-dimensional sphere with a fixed
radius, such as 14 voxels or a particular size. Other thresholds,
radii, shapes or sizes may be used. Two-dimensional process-
ing may be used. This data-dependent ellipsoidal structuring
element is estimated for each sub-volume or possible undes-
ired structure. The structuring elements have a same or dif-
ferent sizes.

The structure, E, represents a filter shape. Filtering with the
data derived filter shape allows single or multiple pass
smoothing and/or sharpening to select or remove scan data.
The scan data is filtered as a function of the filter shape. The
filtering performs a morphological opening as a function of
the morphological function. For example, a three-dimen-
sional binary morphological opening is performed as a func-
tion of the three-dimensional structural element, E, resulting
in smoothed volume B (x) retaining only the large wall
region: B (X)=[B,(x) E] GE. The image at 36 shows the
results of the filtering the binary scan data as a function of the
structural element.

The scan data of the original sub-volume, represented at
34, is masked as a function of an output of the three-dimen-
sional binary morphological opening represented at 36. The
masking selects the data of interest or removes the undesired
data. For example, a wall removal is performed by masking
V(x) with the negative of B (x): V,(x)=V(x)xNOT[B(x)]. In
act 30, segmentation is performed on the altered scan data,
such as performing the robust Gaussian fitting algorithm on
V,(x) with x,,. The segmentation may provide improved nod-
ule segmentation (u,,,, Z,,,)-

In an alternative or additional embodiment in act 28 of FIG.
1, the segmentation estimation is biased away from the failed
segmentation or nodule estimation. The biasing may be per-
formed as disclosed in U.S. Pat. No. 7,680,335, filed Mar. 10,
2006, the disclosure of which is incorporated herein by ref-
erence, for juxtapleural cases. The convergence for a subse-
quent segmentation is influenced or pushed away from the
wrong result. For example, the ellipsoid output by the initial
segmentation influences the later segmentation. For a juxta-
pleural nodule, determination of the nodule estimation is
shifted away from wall or rib structure represented by the
computed tomography scan data and adjacent the possible
juxtapleural nodule. The initial nodule estimation is assumed
to be associated with the wall or rib structure. The subsequent
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nodule center is detected without an explicit removal of data
representing the walls and/or ribs.

In the Gaussian fitting-based segmentation, the mean shift
is constrained by a Gaussian repelling prior. The prior-con-
strained mean shift incorporates spatial prior information to
the data-driven mean shift analysis. A negative prior is
assigned to scan data for at least one location associated with
the initial nodule estimation or segmentation. The previous
robust Gaussian fitting is performed on the sub-volume V(x),
resulting in the nodule center and spread estimate (u*, Z*).
This fitted Gaussian is interpreted as a normal probability
distribution Q(x) indicating a likelihood of x being the esti-
mated center, represented as:

O(X)=N(x;u* %)= 2nZ*exp(-Ya(x—u*)Z "~ x-u*)) 3)

Q(x) has a highest value when x=u*. Failing the goodness-
of-fit test indicates that the estimated location u* is not at the
center of the target nodule and that the estimated spread X*
roughly expresses the extent of the (rib/wall) structure which
falsely attracted the mean shift convergence away from the
true nodule center. The nodule center may be re-estimated
with the constrained mean shift whose convergence is biased
by the knowledge of Q(x) so as to push the convergence away
from the failed estimate u*.

To incorporate such a repelling (negative) prior, equation 3
is inverted and applied as a parameter alteration in subsequent
segmentation or nodule estimation. The scan data, I(x), is
resampled or associated with weights to denote the notion
that some data points are more likely than others. Prior-
induced positive weights are defined by a negative of Q(x),
represented as:

woE)=1-121Z* 120 (x) 4

Incorporating the negative prior leads to the following resa-
mpled scale-space L(x; h) expressed in the discretized data
space:

i v )
Lo ) = ) wo ) 1)Ky (x = 0.
i=1

The mean shift m (x;h, Q) convergent to a mode in I'(x; h) is
the negative prior-constrained scale-space mean shift. The
negative prior-constrained scale-space mean shift is defined
by:

D xiKnlx = x)1x)wo () ©
s ) = e TG ()
The convergence property is maintained because
wo(X,)Z0Vx,.

With the negative prior, the segmentation is performed
again. For example, the Gaussian function is applied to the
computed tomography scan data as a function of biases asso-
ciated with the initial nodule estimation. A new Gaussian
fitting solution is constructed in act 30 by replacing the origi-
nal scale-space mean shift by the prior-constrained mean shift
(equation 1 replaced with equation 6) in the robust fitting
algorithm. Given an initial Gaussian (u*, 2*) failing the good-
ness-of-fit test, this new solution with m,(x; h, Q) is executed
on the original data V(x), resulting in an improved segmen-
tation with (u,,,,, 2,,.5)-
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Acts 26 and 28 may be used independently or together. The
results from both acts 26 and 28 may be combined, such as
averaged or a best fit to the results determined. The process of
act 26 may be used to guide or refine the process of act 28 or
vise versa. Alternatively, act 26 is performed without per-
forming act 28, or act 28 is performed without performing act
26.

In act 30, another processor determined segmentation or
nodule estimation is determined as a function of the altered
scan data, the altered parameter, the altered nodule estimation
or combinations thereof. The same or different segmentation
is performed, such as determining as a function of the three-
dimensional Gaussian fitting function. The subsequent seg-
mentation is determined as a function of negative priors or
scan data with removed or selected information. For removed
or selected data, the nodule is segmented as a function of the
filtered scan data masked to identify data more likely associ-
ated with a nodule. For biased data, the nodule is segmented
as a function of the scan data with the mean-shift influenced
by the prior segmentation. Alteration may allow better pul-
monary nodule segmentation of a juxtapleural nodule with
computed tomography data.

FIG. 3 shows some illustrative examples. The left-most
image includes an elliptical segmentation 42 with a center 41
on undesired structure next to a large nodule. The center
image illustrates subsequent segmentation 43 after removing
scan data corresponding to the structure. The right-most
image illustrates subsequent segmentation 44 after incorpo-
rating negative priors. The process is performed once, but
may be performed iteratively, such as where a nodule may be
adjacent multiple distractors. Different further processes for
alteration may perform better in different situations. The pro-
cess is applied independently for each marker, possible nod-
ule, or sub-volume (i.e., local region).

The morphological opening-based and prior-constrained
mean shift-based solution extended from the robust Gaussian
fitting approach may effectively segment juxtapleural cases.
‘When nodules are attached to or influenced by non-wall struc-
tures or very large nodules are attached to a thin part of the
lung wall, the use of negative priors may operate better than
morphological opening. The morphological opening may
perform better in other situations, such as for small juxtapleu-
ral cases. The method of FIG. 1 may test for a particular
situation and select an appropriate further process. Alterna-
tively, a same further process is performed regardless of the
reason for failing the test.

The segmentation may assist in diagnosis. For example,
proper segmentation may provide more accurate volumetric
measurement of nodules. The nodule volume, shape or varia-
tion may be clinically useful for diagnosis. For the Gaussian
fitting approach discussed above, an ellipsoidal boundary
approximation is used. However, further improvement of seg-
mentation quality may be possible by incorporating a non-
parametric segmentation with a Gaussian prior derived by
using the proposed methods in U.S. Patent Application Pub-
lication No. 2005/0201606, the disclosure of which is incor-
porated herein by reference. A nodule is approximated by a
Gaussian function. To obtain a finer level of segmentation, a
different segmentation is performed with the Gaussian fit
used as a prior. Other alterations or differences may be used.

In one embodiment, the method of FIG. 1 includes other
tests or acts. For example, a multiple layer or hierarchal
approach is applied. Different sized Gaussians may be used.
For example, two different sub-volumes and associated seg-
mentations are performed (e.g., 33x33x33 and 66x66x66).
The large sub-volume may be reduced, such as by smoothing
and down sampling, to apply the same parameters as for the
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smaller sub-volume. The smaller sub-volume is used first. If
segmenting the smaller volume fails, the larger sub-volume is
used to test for larger nodules. For example, if 2* is above a
threshold, the smaller segmentation may be determined as a
failure, and the larger segmentation applied.

FIG. 4 shows one embodiment of a system 50 for refined
segmentation of nodules in computer-aided diagnosis. The
system 50 is a workstation, personal computer, network,
server, computer-aided diagnosis system, imaging system,
computed tomography system, medical diagnostic imaging
system, or other now known or later developed processing
system. For example, a local or remote workstation receives
images for computer-assisted diagnosis. The system 50
implements the method of FIG. 1 or a different method.

The system 50 includes a processor 52, a memory 54, a
display 56, and a user input 58. Additional, different or fewer
components may be provided. For example, the system 50
does not include the user input 58 and/or display 56. As
another example, the system 50 includes a sensor, such as a
computed tomography image former. The components are
shown adjacent one another, such as in a same room, on a
same cart, or in a same housing. In other embodiments, one or
more components are remote, such as the memory 54 being a
remote database or the display 56 being on a networked or
wireless device.

The user input 58 is a keyboard, button, slider, mouse,
touch pad, touch screen, trackball, dial or other now known or
later developed input device. The user input 58 is part of a user
interface generated or controlled by the processor 52. The
user interacts with the computer-aided diagnosis system 50 to
identify nodules or to calculate quantities based on segmen-
tation. For example, the user input 58 receives a user input
nodule marker location.

The processor 52 is one or more general processors, digital
signal processors, application specific integrated circuits,
field programmable gate arrays, servers, networks, digital
circuits, analog circuits, combinations thereof, or other now
known or later developed device for processing medical
image data. The processor 52 implements a software pro-
gram, such as manually generated or programmed code or
such as a trained classification or model system. The software
identifies nodule boundaries. Alternatively, hardware or firm-
ware implements the identification. The processor 52 obtains
the scan data, operation instructions and/or other information
from the memory 54.

The processor 52 is operable to test a nodule segmentation
as a function of scan data. The scan data is computed tomog-
raphy data, but other types of data may be used. The scan data
represents a nodule, such as a tumor or other structure. One
example is a juxtapleural nodule in lung computed tomogra-
phy. For testing, the nodule segmentation is compared with
the computed tomography data. Any testing may be used,
such as fitting error or heuristic testing.

The processor 52 is operable to alter the scan data, a param-
eter or the scan data and a parameter where a previous seg-
mentation fails the testing. For example, the processor 52
selects scan data as a function of a morphological function. As
another example, the processor 52 biases the determination of
a subsequent segmentation away from the previous processor
determined segmentation, such as biasing away from a wall or
rib segmentation. The alteration may be a function of the scan
data used for the nodule estimation, such as using the previous
estimated nodule for altering.

The processor 52 is operable to determine the previous
and/or subsequent segmentation. A three-dimensional Gaus-
sian fitting is performed, but other segmentation algorithms
may be used. In one example, the processor 52 determines the



US 7,995,809 B2

11

subsequent segmentation as a function of selected scan data
with other scan data removed. In another example, the pro-
cessor 52 determines the subsequent segmentation as a func-
tion of the altered parameter or segmentation process, such as
associated with using a negative prior.

The memory 54 is a computer readable storage media.
Computer readable storage media include various types of
volatile and non-volatile storage media, including but not
limited to random access memory, read-only memory, pro-
grammable read-only memory, electrically programmable
read-only memory, electrically erasable read-only memory,
flash memory, magnetic tape or disk, optical media and the
like. The memory 54 stores the scan data for or during pro-
cessing by the processor 52. The scan data is input to the
processor 52 or the memory 54. In one embodiment, the scan
data is image data. In other embodiments, the scan data is data
before conversion to an image format, such as sensor data or
detected data.

In one embodiment, the memory 54 is a computer readable
storage media having stored therein instructions executable
by the programmed processor 52. The processor 52 imple-
ments automatic or semiautomatic operations discussed
herein, at least in part, with the instructions. The instructions
cause the processor 52 to implement any, all or some of the
functions or acts described herein. The functions, acts or tasks
are independent of the particular type of instructions set,
storage media, processor or processing strategy and may be
performed by software, hardware, integrated circuits, film-
ware, micro-code and the like, operating alone or in combi-
nation. Likewise, processing strategies may include multi-
processing, multitasking, parallel processing and the like.

In one embodiment, the instructions are stored on a remov-
able media drive for reading by a medical diagnostic imaging
system, a computer-aided diagnosis system, or a workstation
networked with imaging systems. An imaging system or
workstation uploads the instructions. In another embodiment,
the instructions are stored in a remote location for transfer
through a computer network or over telephone communica-
tions to the imaging system or workstation. In yet other
embodiments, the instructions are stored within the system on
a hard drive, random access memory, cache memory, buffer,
removable media or other device.

The display 56 is a monitor, CRT, LCD, plasma, flat screen,
touch screen, projector, printer, or other now know or later
developed display device. The display 56 outputs an indica-
tion of the segmentation. For example, the display 56 outputs
an image generated from the scan data with an overlaid
boundary based on the segmentation. As another example, the
display 56 outputs a value, such as a volume, based on the
segmentation. Other outputs may be provided.

While the invention has been described above by reference
to various embodiments, it should be understood that many
changes and modifications can be made without departing
from the scope of the invention. It is therefore intended that
the foregoing detailed description be regarded as illustrative
rather than limiting, and that it be understood that it is the
following claims, including all equivalents, that are intended
to define the spirit and scope of this invention.

We claim:

1. A method for refined segmentation of nodules in com-
puter assisted diagnosis, the method comprising:

testing, with a processor, a first processor-determined seg-

mentation of a nodule, the testing being a function of
computed tomography scan data used to segment the
first processor-determined segmentation of the nodule;
altering, with the processor, the scan data used to segment
the first processor-determined segmentation of the nod-
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ule, a parameter for segmenting, or the scan data and the
parameter where the first processor-determined segmen-
tation fails the testing; and

re-determining the segmentation of the nodule such that a

second processor-determined segmentation is deter-
mined from the scan data as a function of the altered scan
data, the altered parameter or the altered scan data and
the altered parameter.

2. The method of claim 1 further comprising:

determining the first processor-determined segmentation

as a pulmonary nodule segmentation as a function of the
scan data;

wherein testing comprises testing the pulmonary nodule

segmentation as a function of the computed tomography
data.

3. The method of claim 2 wherein determining the first
processor determined-segmentation comprises fitting as a
function of a nodule marker location and a three-dimensional
Gaussian function.

4. The method of claim 1 wherein determining comprises
fitting as a function of a three-dimensional Gaussian function.

5. The method of claim 1 wherein testing comprises testing
for a juxtapleural nodule.

6. The method of claim 1 wherein testing comprises:

analyzing errors between the first processor-determined

segmentation and the scan data;

performing a linear DC bias;

heuristically testing; or

combinations thereof.

7. The method of claim 1 wherein altering comprises
removing scan data as a function of a morphological function,
and wherein determining the second processor-determined
segmentation comprises determining as a function of the scan
data without the removed scan data.

8. The method of claim 7 wherein removing comprises:

determining the morphological function based, at least in

part, on the first processor-determined segmentation, a
sphere, or combinations thereof;,

performing a morphological opening as a function of the

morphological function; and

masking the scan data as a function of an output of the

morphological opening.

9. The method of claim 1 wherein altering comprises bias-
ing determination of the second processor-determined seg-
mentation away from the first processor-determined segmen-
tation.

10. The method of claim 9 wherein biasing comprises
assigning negative priors to scan data associated with the first
processor-determined segmentation, and wherein determin-
ing the second processor-determined segmentation com-
prises determining as a function of the negative priors.

11. The method of claim 9 wherein the scan data includes
a juxtapleural nodule, and wherein biasing comprises biasing
away from a wall or ribs.

12. A system for refined segmentation of nodules in com-
puter assisted diagnosis, the system comprising:

aprocessor operable to test a first segmentation of a nodule

as a function of scan data used to segment the first
segmentation, operable to alter the scan data used to
segment the first segmentation, a parameter for segment-
ing, or the scan data and the parameter where the first
segmentation fails the testing, and operable to re-deter-
mine a second segmentation of the nodule from the scan
dataand as a function of the altered scan data, the altered
parameter or scan data and the altered parameter; and

a display operable to output an indication of the second

segmentation.
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13. The system of claim 12 wherein the processor is oper-
able to determine the first segmentation as a nodule segmen-
tation as a function of the scan data, the scan data comprising
computed tomography data, and wherein being operable to
test comprises being operable to test the nodule segmentation
as a function of the computed tomography data.

14. The system of claim 13 further comprising:

a user input operable to receive a nodule marker location;

wherein the processor is operable to determine the first and

second segmentations as a function of three-dimen-
sional Gaussian fitting.

15. The system of claim 12 wherein the processor being
operable to alter comprises being operable to select scan data
as a function of a morphological function, and wherein the
processor being operable to determine the second segmenta-
tion comprises being operable to determine as a function of
the selected scan data.

16. The system of claim 12 wherein the scan data includes
a juxtapleural nodule and wherein the processor being oper-
able to alter comprises being operable to bias the determina-
tion of the second segmentation away from the first processor
determined segmentation, the bias being away from a wall or
ribs.

17. In a non-transitory computer readable storage media
having stored therein data representing instructions execut-
able by a programmed processor for refined segmentation of
nodules in computer-assisted diagnosis, the storage media
comprising instructions for:

testing a first nodule estimation of a nodule, the testing

being a function of scan data used to estimate the first
nodule estimation;

altering the scan data used to estimate the first nodule

estimation of the nodule, nodule estimation process, or
both the scan data and nodule estimation process if the
first nodule estimation fails the testing; and
re-determining the estimate of the nodule such that a sec-
ond nodule estimation is determined as a function of the
altered scan data, the altered nodule estimation or the
altered scan data and the altered nodule estimation.

18. The computer readable storage media of claim 17 fur-
ther comprising:

determining the first nodule estimation as a pulmonary

nodule segmentation of a juxtapleural nodule, the pul-
monary nodule segmentation determined as a function
of'a nodule marker location, a Gaussian fitting function,
and the scan data, the scan data comprising computed
tomography data;

wherein testing comprises testing the pulmonary nodule

segmentation as a function of the computed tomography
data; and

wherein determining the second nodule estimation com-

prises determining as a function of the Gaussian fitting
function.

19. The computer readable storage media of claim 17
wherein altering comprises selecting scan data as a function
of'a morphological function responsive to the scan data, and
wherein determining the second nodule estimation comprises
determining as a function of the selected scan data.

20. The computer readable storage media of claim 17
wherein altering comprises biasing determination of the sec-
ond nodule estimation away from the first nodule estimation
for a juxtapleural nodule.

21. In a non-transitory computer readable storage media
having stored therein data representing instructions execut-
able by a programmed processor for refined segmentation of
nodules in computer-assisted diagnosis, the storage media
comprising instructions for: determining a filter shape as a
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function of scan data; filtering the scan data as a function of
the filter shape; and segmenting a first nodule as a function of
the filtered scan data;
determining a second nodule segmentation as a function of
a Gaussian function fit to the scan data;

testing the second nodule segmentation as a function of
scan data; and performing the determining the filter
shape, filtering and segmenting if the second nodule
segmentation fails the testing, the determining the filter
shape and filtering comprising removing some scan
data, and the segmenting comprising determining the
first nodule segmentation as a function of another Gaus-
sian function fit to the scan data without the removed
scan data.

22. The computer readable storage media of claim 21
wherein determining the filter shape comprises fitting a Gaus-
sian function to the scan data, and determining the filter shape
as a function of an ellipsoid responsive to the fitting.

23. The computer readable storage media of claim 21
wherein the first nodule comprises a pulmonary nodule seg-
mentation of a juxtapleural nodule, the scan data comprising
computed tomography data.

24. The computer readable storage media of claim 21
wherein determining the filter shape comprises binarizing the
scan data as a function of a first threshold, determining an
average diameter of an initial nodule estimation, initializing a
three-dimensional structural element as a function of the ini-
tial nodule estimation if the average diameter is greater than a
second threshold and as a function of a predetermined struc-
ture if the average diameter is less than the second threshold,
the filter shape comprising the three-dimensional structural
element;

wherein filtering comprises performing a three-dimen-

sional binary morphological opening as a function ofthe
three-dimensional structural element and masking the
scan data as a function of an output of the three-dimen-
sional binary morphological opening; and

wherein segmenting the first nodule comprises estimating

the first nodule as a function of the masked scan data.

25. In a non-transitory computer readable storage media
having stored therein data representing instructions execut-
able by a programmed processor for refined segmentation of

nodules in computer-assisted diagnosis, the storage media

comprising instructions for: determining a first nodule
estimation of a nodule from scan data;

identifying the first nodule estimation as associated with a

possible juxtapleural nodule; and

biasing a process for determination of a second nodule

estimation of the nodule from the scan data away from
the first nodule estimation;

wherein determining the first nodule estimation comprises

fitting a Gaussian function to computed tomography
scan data, wherein biasing comprises shifting determi-
nation of the second nodule estimation away from wall
or rib structure represented by the computed tomogra-
phy scan data and adjacent the possible juxtapleural
nodule, the first nodule estimation associated with the
wall or rib structure, and wherein biasing comprises
fitting the Gaussian function to the computed tomogra-
phy scan data as a function of biases associated with the
first nodule estimation.

26. The computer readable storage media of claim 25
wherein biasing comprises assigning a negative prior to the
scan data for at least one location associated with the first
nodule estimation.



US 7,995,809 B2

15

27. The computer readable storage media of claim 25
wherein biasing comprises constraining a mean shift with a
Gaussian repelling prior.

28. The computer readable storage media of claim 25
wherein determining the first nodule estimation comprises
determining a function of a Gaussian function fit to the scan
data;

16

wherein identifying comprises testing the first nodule esti-
mation as a function of the scan data, the testing identi-
fying a possible wall attached nodule associated with the
first nodule estimation.



