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Provide approximate
locations of target structures.
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Use anisotropic Gaussian model for
precise estimation of target location.

1

Warp ellipsoids from Gaussian
model into 3D spherical surfaces.

74

Construct bounding manifold
from the warped 3D image.

75

Perform cluster analysis on bounding
manifold using an E-M algorithm.

76

Perform post processing.
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Provide approximate
locations of target structures.

Use anisotropic Gaussian model for
precise estimation of target location.

Warp ellipsoids from Gaussian
model into 3D spherical surfaces.

Construct bounding manifold
from the warped 3D image.

Perform cluster analysis on bounding
manifold using an E-M algorithm.

FIG. 7
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SYSTEM AND METHOD FOR LOCAL
PULMONARY STRUCTURE
CLASSIFICATION FOR COMPUTER-AIDED
NODULE DETECTION

CROSS REFERENCE TO RELATED UNITED
STATES APPLICATIONS

This application claims priority from “Local Pulmonary
Structure Classification for Computer-Aided Nodule Detec-
tion”, U.S. Provisional Application No. 60/761,927 of Bahl-
mann, et al., filed Jan. 25, 2006, the contents of which are
incorporated herein by reference.

TECHNICAL FIELD

This invention is directed to the classification of local
structure types in digitized medical images.

DISCUSSION OF THE RELATED ART

Lung cancer is responsible for over 160,000 deaths in the
past year in the United States alone. While not smoking is the
best prevention against lung cancer, early detection is the key
to improving patient prognosis. When the cancer is detected
early and surgery is performed, the 5-year survival rate for
patients with stage I non-small-cell lung cancer is 60% to
80%. However, patients who do not have surgery facea 5-year
survival rate of only 10%. 1

Imaging techniques such as computer tomography (CT)
scans offer noninvasive and sensitive approaches to early
detection. Computer-aided detection and diagnosis (CAD) of
lung nodules in thoracic CT scans decreases the possibility of
human error for a more efficient and standardized diagnostic
process. In CT scans, lung nodules appear as dense masses of
various shapes and sizes. They may be isolated from or
attached to other structures such as blood vessels or the
pleura.

Recently a number of techniques have been proposed for
automated detection and classification of nodules in thin-slice
CT including region growing and automatic threshold deter-
mination, template matching with Gaussian nodule models,
using 3D nodule selective and noise suppressing filters, nod-
ule matching, and deformable geometrical and intensity tem-
plates. However, a shortcoming of these state of the art CAD
systems is differentiating between nodules and other dense
structures such as blood vessels. Due to the circular-shape
assumptions used in most of the systems, curved vessels and
their junctions are often incorrectly detected as nodules,
resulting in false positive (FP) cases.

To reduce the number of such FPs, two types of solutions
have been proposed previously: correlation-based filters to
enhance the area of interest with fuzzy shape analysis for
vessel tree reconstruction, and utilizing tracking of vessel
medial axes given by Hessian-based analysis. The drawbacks
of'the former approach include its inflexibility. Simple struc-
tural templates used in the study will not handle many com-
plex vascular shapes and topologies. On the other hand, the
latter approach is computationally very expensive while
being able to handle more irregular structures.

SUMMARY OF THE INVENTION

Exemplary embodiments of the invention as described
herein generally include methods and systems for classifying
local structure types, such as nodules, vessels, and junctions,
in thoracic CT scans. This classification is useful for the
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computer aided detection (CAD) of lung nodules, and can be
used as a post-process component of any lung CAD system so
as to reduce false positives (FPs) caused by the vessels and
junctions. This classification thus assumes that positive can-
didates are provided by such a CAD system or from radiolo-
gist’s report, focusing on the problem of FP reduction. In such
a scenario, the classification results provide an effective
means of removing false positives caused by vessels and
junctions thus improving overall performance.

A method according to an embodiment of the invention
transforms the classification of various 3D topological struc-
tures into much simpler 2D data clustering classification, to
which more generic and flexible solutions are available in
literature, and which is better suited for visualization. Apart
from the computational benefits, such an approach has the
advantage of a more generic and flexible inventory of analysis
techniques and more illustrative visualization potentiality,
which is useful in the context of a possible interaction with the
radiologist.

Given a nodule candidate, first, an anisotropic Gaussian is
robustly fit to the data. The resulting Gaussian center and
spread parameters are used to affine-normalize the data
domain so as to warp the fitted anisotropic ellipsoid into a
fixed-size isotropic sphere. An automatic method can extract
a3D spherical manifold, containing the appropriate bounding
surface of the target structure. Scale selection is performed by
adata driven entropy minimization approach. The manifoldis
analyzed for high intensity clusters, corresponding to pro-
truding structures, using techniques such as EM-clustering
with automatic mode number estimation, directional statis-
tics, and hierarchical clustering with a modified Bhatta-
charyya distance. The estimated number of high intensity
clusters explicitly determines the type of pulmonary struc-
tures: nodule (0), attached nodule (1), vessel (2), junction
(>3). A method according to an embodiment of the invention
extends a Gaussian fitting method, including automatic mode
number selection, with the use of directional statistics, in
particular a multivariate wrapped Gaussian modeling.

Beyond the scope of lung CAD, a classification method
according to an embodiment of the invention can be used to
provide meaningful information of vascular structures in
various domains such as angiography. This local procedure is
more flexible and efficient than current state of the art and will
help to improve the accuracy of general lung CAD systems.
Further, volume-of-interest (VOI) representations chosen in
the parts of the modeling have beneficial visualization capa-
bilities, such as the unwrapped 2D bounding manifold, which
aids user (radiologist) interaction.

A qualitative study for selected examples of thoracic CT
images demonstrated favorable classification results in this
domain. An algorithm according to an embodiment of the
invention can robustly classify examples of nodules, attached
nodules, vessels and vessel junctions.

According to an aspect of the invention, there is provided a
method for classifying pulmonary structures in digitized
images, including providing approximate target structure
locations of one or more target structures in a digitized 3-di-
mensional (3D) image, fitting an anisotropic Gaussian model
about each said approximate target locations to generate more
precise 3D target models and center locations of said one or
more target structures, warping each said 3D target models
into a 3D sphere, constructing a bounding manifold about
each said warped 3D sphere, and identifying clusters on said
bounding manifolds wherein said one or more target struc-
tures are classified.
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According to a further aspect of the invention, the digitized
image comprises a plurality of intensities corresponding to a
domain of points on a 3-dimensional grid.

According to a further aspect of the invention, fitting an
anisotropic Gaussian model about an approximate target
location comprises using Gaussian scale-space mean shift
analysis and Jensen-Shannon divergence-based automatic
bandwidth selection generating a 3D ellipsoidal model of said
target structure, wherein the center and dimensions of'said 3D
ellipsoid correspond to the center and covariances of said
Gaussian model.

According to a further aspect of the invention, warping said
3D target model comprises affine-normalizing said 3D ellip-
soid wherein scaling directions and factors are obtained from
the structure covariance of said anisotropic Gaussian model.

According to a further aspect of the invention, constructing
a bounding manifold further comprises unwrapping the 3D
surface of the warped sphere into a 2D representation, and
determining a radius of an appropriate bounding manifold.

According to a further aspect of the invention, unwrapping
the 3D surface of the warped sphere into a 2D representation
comprises transforming the surface of said warped sphere
into spherical coordinates (0, ¢) wherein e[ -, 7] and Oe[ -,
7.

According to a further aspect of the invention, determining
a radius of an appropriate bounding manifold comprises con-
structing a plurality of spherical manifolds of different radii
about said warped sphere, unwrapping each spherical mani-
fold into a 2D representation, normalizing the intensity value
distribution on each said unwrapped spherical manifold, cal-
culating an intensity entropy for each said unwrapped spheri-
cal manifold wherein intensity values are treated as probabil-
ity values wherein an entropy distribution is defined, and
finding a radius that minimizes said entropy distribution.

According to a further aspect of the invention, identifying
clusters comprises using an expectation-maximization to fit a
mixture

»
Nul®) = ) e,NE(©)
p=1

of multivariate wrapped Gaussian distributions N, #(®) of a
vector variable =(8,, . . ., 8,) to objects protruding through
said bounding manifold subject to a minimum description
length criterion, wherein mixture component probabilities c,,
are estimated within the expectation-maximization, wherein
in each dimension 9, satisfies 9=x,=x mod 2me(-m,x], N, 7
(©) satisfies

NE(©) =

k{=—c0

Z NP(@ + 2rkyey + ... + 2nkper),
kp=—o0

wherein e,=(0, ...,0,1,0,...,0)7is the k" Euclidean basis
vector, with an entry of 1 at the k™ element and 0 elsewhere,
wherein estimates 1” and 27 of a mixture component p are
obtained within the expectation-maximization from a sample
set X={8P, ..., 8] based on a directional mean
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() = argl = > explid] ’)]
m=1
and covariance
- T
$ = QY g
9 M—1;

with

om’ — ((9(}") - (ﬁﬂ)f)mod 2,

and wherein observations X are drawn directly from a 2D
unwrapped image [(8, ¢), where the number of occurrences of
each sampled (0,,,9,,)e(-m, | x(-m,7] is set proportional to a
corresponding image matrix value I(0,,, ¢,,).

According to a further aspect of the invention, the method
comprises using agglomerative hierarchical clustering to
merge clusters within a predefined distance of each other,
using a distance metric for a pair of multivariate wrapped
Gaussian distributions equivalent to

Lo Jmod2. )T(zl+zz)—1(( Jmod2m) + L in Pt 22
g2 —p)mod 2n) | —— H2 — p1)mo + sIn—,
8 2 2 VI

wherein |, and 1, are the mean values of the pair of Gaussian
distributions, and 2, and 2, are their respective variances.

According to a further aspect of the invention, the pulmo-
nary structure class is determined by the number of wrapped
Gaussian component clusters associated with a target struc-
ture, wherein a solitary nodule has O clusters, an attached
nodule has 2 clusters, a vessel has 4 clusters, and a vessel
junction has 6 or more clusters.

According to another aspect of the invention, there is pro-
vided a program storage device readable by a computer, tan-
gibly embodying a program of instructions executable by the
computer to perform the method steps for classifying pulmo-
nary structures in digitized images.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(a)-(c) illustrate a method for pulmonary structure
classification, according to an embodiment of the invention.

FIGS. 2(a)-(g) depict the effects of unwrapped ellipsoids
of different radii r and the respective image intensity histo-
gram entropy, according to an embodiment of the invention.

FIG. 3 illustrates clustering with directional data, accord-
ing to an embodiment of the invention.

FIGS. 4(a)-(d) and 5(a)-(d) depict illustrative examples of
a pulmonary structure classification method of an embodi-
ment of the invention for thoracic CT scans.

FIGS. 6(a)-() illustrate examples of directional data,
according to an embodiment of the invention.

FIG. 7 is a flowchart of classification method according to
an embodiment of the invention.
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FIG. 81s ablock diagram ofan exemplary computer system
for implementing a classification method according to an
embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Exemplary embodiments of the invention as described
herein generally include systems and methods for classifying
local structure types in thoracic scans. Accordingly, while the
invention is susceptible to various modifications and alterna-
tive forms, specific embodiments thereofare shown by way of
example in the drawings and will herein be described in
detail. It should be understood, however, that there is no intent
to limit the invention to the particular forms disclosed, but on
the contrary, the invention is to cover all modifications,
equivalents, and alternatives falling within the spirit and
scope of the invention.

As used herein, the term “image” refers to multi-dimen-
sional data composed of discrete image elements (e.g., pixels
for 2-D images and voxels for 3-D images). The image may
be, for example, a medical image of a subject collected by
computer tomography, magnetic resonance imaging, ultra-
sound, or any other medical imaging system known to one of
skill in the art. The image may also be provided from non-
medical contexts, such as, for example, remote sensing sys-
tems, electron microscopy, etc. Although an image can be
thought of as a function from R? to R, the methods of the
inventions are not limited to such images, and can be applied
to images of any dimension, e.g. a 2-D picture or a 3-D
volume. For a 2- or 3-dimensional image, the domain of the
image is typically a 2- or 3-dimensional rectangular array,
wherein each pixel or voxel can be addressed with reference
to a setof 2 or 3 mutually orthogonal axes. The terms “digital”
and “digitized” as used herein will refer to images or volumes,
as appropriate, in a digital or digitized format acquired via a
digital acquisition system or via conversion from an analog
image.

A classification system according to an embodiment of the
invention includes (1) a module for anisotropic Gaussian
fitting, (2) a construction of a 2D manifold at the boundary of
the pulmonary structure, and (3) a robust cluster analysis of
this manifold. Part (2) uses a data driven scale selection based
on entropy minimization. Part (3) uses statistical analysis
methods, such as expectation-maximization (EM)-based
clustering with automatic mode number selection, directional
data modeling, and hierarchical clustering based on a variant
of the Bhattacharyya distance. The number of high intensity
clusters in this analysis will directly determine the pulmonary
structure class. Unlike other global methods such as vessel
tree reconstruction, this method allows for the localized flex-
ible examination of pulmonary structures.

In the setting of a nodule detection application, incorrectly
detected and segmented vessel and vessel branch structures
represent a false positive (FP) case. A classification method
according to an embodiment of the invention rejects all such
non-nodule structures, and, as a byproduct, to infer the cat-
egory of the type of pulmonary structure under consideration,
that is, nodule, attached nodule, vessel, or vessel junction.
Furthermore, a classification solution according to an
embodiment of the invention can serve as a post-process filter
within a lung CAD system so as to reduce FPs caused by the
vessels and junctions.

A flowchart of a pulmonary classification method accord-
ing to an embodiment of the invention is presented in FI1G. 7.
A method according to an embodiment of the invention
assumes that approximate locations of pulmonary structures
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are present, for instance, from a CAD system, a radiologists
manual reading, or reports, etc. A one-click nodule segmen-
tation algorithm can be used to locate and segment target
structures including nodules, attached nodules, vessels, and
vessel junctions. Referring now to the figure, nodule candi-
date locations, provided a priori at step 71, serve as initial-
ization to this semi-automatic segmentation solution. At step
72, an anisotropic Gaussian model is fit to the target structure
intensities, yielding more precise 3D ellipsoidal models of the
targets. These ellipsoids are warped into 3D spheres at step
73. Bounding manifolds are constructed from the warped 3D
spheres at step 74. According to an embodiment of the inven-
tion, this construction includes unwrapping the 3D surface of
the spheres into a 2D spherical coordinate representation,
followed by determining a radius of an appropriate bounding
manifold. Cluster analysis of the bounding manifold is per-
formed at step 75, followed by post-processing at step 76.
Details of these steps are described below.

Referring to step 72, an algorithm according to an embodi-
ment of the invention is based on robustly fitting an anisotro-
pic Gaussian-based intensity model to the data using Gauss-
ian scale-space mean shift analysis and Jensen-Shannon
divergence-based automatic bandwidth selection. These
techniques provide a precise estimate of target center from
imprecise CAD or manual initialization. An ellipsoidal mani-
fold in 3D is extracted from the target structure boundary.
Ellipsoid fitting is usually non-trivial, however, this task is
alleviated by the choice of the local structure segmentation,
which gives accurate estimates of center and ellipsoidal shape
of the nodule in terms of the Gaussian parameters mean and
covariance. The robustness of this estimation also allows
segmentation of non-nodule areas such as vessels and vessel
junctions/branches of interest.

In order to simplify the mathematical representation, the
original volume of interest (VOI) is affine-normalized at step
73. This involves warping the VOI to transform the segmented
anisotropic ellipsoid into a fixed-sized isotropic sphere,
placed at the center of the VOI. The parameters of the affine-
normalization, that is, scaling directions and factors, can be
straightforwardly obtained from an eigenvalue analysis of the
structure covariance estimated by the segmentation module.

FIGS. 1(a)-(c) illustrate an exemplary pulmonary structure
classification, according to an embodiment of the invention.
FIG. 1(a) shows the original volume of interest (VOI) and
segmented nodule candidate, with an ellipsoid fitted nodule
structure, here a vessel. The ellipsoid fitting is obtained from
the anisotropic Gaussian fitting module. FIG. 1(5) represents
an affine normalization of the original VOI, in that the ellip-
soid is warped to an isotropic sphere. FIG. 1(c) represents a
bounding manifold of the segmented structure at distance
Thoumas UNWrapped to a 2D image and parameterized by the
spherical polar coordinates 6 and ¢. The image grayscale
values were obtained via tri-linear interpolation.

Referring again to FIG. 7, the category of the type of
pulmonary structure under consideration is determined at
step 74 by a cluster analysis of an appropriate manifold,
computed from the bounding area of the target structure. A
spherical manifold according to an embodiment of the inven-
tion is constructed from the affine-normalized 3D image.
Geometrically, it is aimed to represent a spherical layer
slightly beyond the target structure bounding surface, such
that it contains information about protruding objects passing
through the surface. Its shape is assumed ellipsoidal in the
original VOI, in particular, proportional to the ellipsoid
obtained from the anisotropic Gaussian-based segmentation.
Hence, in the affine-normalized representation it corresponds
to an isotropic spherical shape as well, defined by the center
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point (2,0 Prowna) and radius r,,,,.,. Whereas the center
point is identical with the one of the segmented ellipsoid, the
spherical radius r,,,,,; Will be determined in a data driven
way, explained below.

Assuming a fixed r,,,,,,,» the bounding manifold represen-
tation can be transformed from Cartesian (X, y, z) to the
spherical coordinates (0, ¢). Here, 0 refers to the azimuth, and
¢ to the polar angle. The result is an “unwrapped” represen-
tation of the affine-normalized ellipsoid as a 2D image matrix
1(0, ¢). FIG. 1(¢) illustrates the result for pulmonary structure
example. Note that, contrary to common convention, the
polar angle ranges over an interval of Interval ;=2 (instead of
), that is, ¢e[—m,mt], resulting in a double occurrence of the
Cartesian voxels. The reason for introducing this redundancy
is that clustering, which will be introduced below, requires a
periodic behavior of 1(8, ¢) in both parameters over their
respective intervals Intervaly and Intervaly, that is, I(6+Inter-
valg, ¢+Interval,)=I(6, ¢). For the case of spherical coordi-
nates, this is obviously not fulfilled if Interval,=sm.

According to an embodiment of the invention, the deter-
mination of the appropriate radius r,,,,,; uses a data driven
approach, based on the entropy of the intensity distributions.
To motivate this approach, consider FIGS. 2(a)-(f), each of
which illustrates the unwrapped ellipsoid representation in
the (0, ¢)-domain with different radii r, as indicated in the
figures. FIG. 2(g) shows the respective image histogram
entropy E,, computed on image intensities, for radii
re{1,...,32}. An exemplary image entropy can be computed
from the image intensities 1(0, ¢) according to

10, ¢) 10, ¢)
E=- 1 .
} :[ 3 1(0/,¢/>]X OE[QZ 1(9’,30’)]

, Z,

60\, ¢

The unwrapped manifold image is treated as a 2D likelihood
function after normalizing the image intensity value distribu-
tion appropriately. Then intensity entropy is computed
directly with the normalized intensity values interpreted as
probability values. Radius selection involves automatically
choosing a radius such that high intensity clusters, due to
protruding structures, appear most distinctively in the corre-
sponding manifold. Such a manifold image, consisting of a
few clusters as shown in FIG. 2(d), should have lower entropy
than images with smaller and larger radii due to the following
intuitive arguments. The smaller radii makes the correspond-
ing bounding ellipsoids go through inside target structures,
resulting in high entropy values with more flat likelihoods as
shown in FIGS. 2 (a)-(b). On the other hand, the larger radii
also causes high entropy due to appearance of other “non-
target” structures located nearby as shown in FIGS. 2(e)-(f).
Therefore the appropriate radius r,,,,,; forms a local mini-
mum of the entropy distribution E,. In this respect, r,,,,,; 1S
chosen to be located at the first appearance of a positive
difference quotient

AE,
Ar”’

that is,
Foound = min{r | Eppy > Ep}
Having transformed parts of the 3D pulmonary structure to

a 2D image, one can apply well-studied, efficient, and easily
visualizable 2D image analysis techniques. As can be seen
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from FIG. 1(¢), the bounding manifold contains valuable
information for pulmonary structure classification. In fact,
the number of high intensity clusters exposes the type of the
pulmonary structure, being equivalent to the number of pro-
truding objects passing through the defined boundary. A clas-
sification of an embodiment of the invention builds upon this
observation, having the following domain assumptions in
mind:

0 clusters in the bounding manifold indicate a lack of
connected adjacent structure, hence, the segmented structure
corresponding to a solitary nodule;

1 cluster in the bounding manifold indicates a single con-
nection to an attached structure, which in many cases origi-
nates from a nodule attached to larger structures, like the lung
wall, etc.;

2 clusters indicates two connections, which is most often
observed for blood vessels; and

>3 clusters indicate a vessel junction.

According to an embodiment of the invention, the number
of high intensity clusters is identified through a clustering
analysis, performed at step 75 of FIG. 7. A clustering strategy
of'an embodiment ofthe invention is based on an expectation-
maximization (EM)-based fitting of Gaussians. In addition to
the standard EM Gaussian clustering properties, a clustering
algorithm of an embodiment of the invention needs to reflect
the continuities in the (0, ¢)-domain that appear at the edge of
the 2D bounding manifold image. In particular, a bounding
manifold representation parameterized by the spherical angu-
lar variables (0, ¢) corresponds to directional data. For an
illustration of directional data, consider the simplified illus-
tration of FIG. 3. An appropriate clustering algorithm in the
directional (0, ¢)-domain should recover a single cluster.
However, with a linear instead of directional modeling, each
of'the three observable structures would form an independent
cluster. Furthermore, clustering algorithm of an embodiment
of'the invention should be able to automatically determine the
number of modes.

Directional data may be visualized as points on the surface
of'a hypersphere, in two dimensions on the circumference of
acircle. FIGS. 6(a)-(b) illustrate examples of directional data.
A situation that arises with directional data is as follows. For
a circular variable 0, an addition “a+b” becomes “(a+b)mod
2m”, where angles are represented in the interval (-, it]. Note
that under this assumption the mod operator also maps to (-,
7t]. Let the variables pgand Vs denote the circular counter-
parts of mean and variance. Reasonable definitions for g
and Vs should remain invariant under a shift of the zero direc-
tion which is expressed by #=(9-v)mod 2. The invariances
for a circular variable should be

H5 = (45 — v)mod 2,

Ve = V5.

However, it can easily be verified from the example in FIG.
6 that the desired invariance is violated. F1G. 6 depicta simple
set of circular observations, with ©={0.17,0.27,0.6x} in FIG.
6(a), and ©={0.67,0.77,-0.97} in FIG. 6(b), which corre-
sponds to v=-0.5r. For these observations, unbiased maxi-
mum likelihood (ML) estimates for mean and variance can be
computed to 18=0.37, 39=0.267, 19~0.137, and 59~0.90m,
which obviously violate shift invariance. In the figures, values
of mean and variance are illustrated by the location of the
black dot and the length of the accompanying arc, respec-
tively. Thus, for circular data the linear definitions of mean
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and variance are highly dependent on the zero direction,
which is an inappropriate behavior and demands for a suitable
handling.

To handle this situation, assume a circular random variable
0 with a PDF p(0). In agreement with standard statistical
properties, the PDF should satisfy p(6)=0 and

f”p(O)d0=1.

The variable 0 is represented as a complex number ¢ and
employs the notation of circular mean direction L, and cir-
cular variance Vg° defined by

Peexp (ite”)=E[exp(i0)]

with Vg“=1—-pg. The quantity pg is called the resultant length.
Figuratively speaking, 11, is the expected phase and pg the
expected length of €. V,%[0,1] measures the amount of
dispersion. It can be shown that these definitions of mean and
variance fulfill the desired shift invariance and can be utilized
as suitable counterparts for the linear mean and variance.

A number of models that have been proposed for the sta-
tistical modeling of directional data. According to an embodi-
ment of the invention, the multivariate wrapped Gaussian
distribution is used, which is an extension of the wrapped
Gaussian distribution. A Gaussian distribution N(x) of a vari-
able x on the line can be “wrapped” around the circumference
of a circle of unit radius. That is, the wrapped Gaussian
distribution N, (8) of the wrapped variable

& =x, =x mod2x € (-7, 7]
is

o

No(®) = Z N + 2kn).

k=—c0

A multivariate wrapped Gaussian distribution of a vector
variable ©=(9,, . . ., 9,)7 can be defined similarly as

ki ® M

Npy(©) = . Z N(© + 2rkier + ... + 2nkrer),

where e,=(0, ..., 0,1,0,...,0)7is the k* Euclidean basis
vector, with an entry of 1 at the k™ element and 0 elsewhere.
FIG. 3 illustrates an example of a two dimensional multivari-
ate wrapped Gaussian.

It has been shown that, given an appropriately small vari-
ance in the directional variables, accurate mean and covari-
ance estimates 18 and 38 for BQ. (1) can be obtained from a
sample set X={%, ... 9] ysing

1M - (2)
(), =ar M;expu&f'")

and
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-continued

1 ¥ r 3
S = QY g
T M- 121

with
om’ — ((9(}") - (ﬁﬂ)f)mod 2,

i*=-1, and “arg” being the phase of a complex number. For
simplicity, a periodicity of 2 and range of .e(-x, ] has
implicitly been assumed for all dimensions f in ©.

An expectation-maximization (EM) algorithm is a class of
statistical procedures for finding maximum likelihood esti-
mates of parameters in probabilistic models, where the model
depends on unobserved latent variables. EM alternates
between performing an expectation (E) step, which computes
an expectation of the likelihood by including the latent vari-
ables as if they were observed, and a maximization (M) step,
which computes the maximum likelihood estimates of the
parameters by maximizing the expected likelihood found on
the E step. The parameters found on the M step are then used
to begin another E step, and the process is repeated. An EM
algorithm will iteratively improve an initial estimate 6, and
construct new estimates 6, ...,0,.

Ify denotes incomplete data consisting of values of observ-
able variables and x denotes the missing data, then x and y
together form the complete data set. Let p be the joint prob-
ability distribution function of the complete data with param-
eters given by the vector 0: p(y, x10). This function provides
the complete data likelihood. Then, using the Bayes rule, the
expectation given the conditional distribution of the unob-
served variables is

ply. x|0) __Pu | x, O)px|0)
P10 [p(y|3, Op&|OdR

plxly, 0) =

This formulation only requires knowledge of the observation
likelihood given the unobservable data p(yIx, 0), as well as the
probability of the unobservable data p(x10). An individual
maximization step that derives 0,,, , from 0, is:

n+1

Ons1 = argmgaxEx[Ing(y, x|0)]y]

where E.| | denotes the conditional expectation of log p(y,
x10) being taken with O in the conditional distribution of x
fixed at 0,. The log-likelihood log p(y.x10) is often used
instead of true likelihood p(y,xI0) because it leads to easier
formulas, but still attains its maximum at the same point as the
likelihood. In other words, 6,,,, is the value that maximizes
(M) the conditional expectation (E) of the complete data
log-likelihood given the observed variables under the previ-
ous parameter value. Typically, the maximum is found by
forming a Lagrangian function of the log-likelihood, and then
evaluating derivatives with respect to the mean and covari-
ance.

In the context of the EM clustering algorithm, the regular,
linear Gaussian model can be replaced with the above
sketched multivariate wrapped Gaussian model. In particular,
EQ. (1) on the one hand and EQS. (2) and (3) on the other
hand replace the original linear equivalents in the E and the M
step, respectively.
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According to an embodiment of the invention, a model for
mode number selection can be found from a modified EM
clustering algorithm that uses a finite mixture of Gaussian
estimation and model selections subject to a minimum
description length (MDL) criterion to minimize the number
of components in the mixture. In general, the input to an EM
clustering algorithms is a sample set X={(8,, ¢,), . . ., (O,
¢,0} of observations, whereas the present data is the 2D
(image) matrix 1(0, ¢). To overcome this incompatibility,
observations X are drawn directly from 1(0, ¢), where the
number of occurrences of each sampled (0,,, ¢,,) e(-m, w[x
(-m, ] is set proportional to the corresponding image matrix
value 1(0,,, $,,)-

One concern with the Gaussian EM clustering arises when
one of the true protruding structure shapes in the bounding
manifold does not correspond to the elliptical Gaussian
shape. In such cases, it is expected that the EM algorithm fits
this structure with a set of Gaussian components. Such an
effect would clearly affect the classification adversely, where
the number of components plays an integral role.

Referring again to FIG. 7, according to an embodiment of
the invention, post-processing is applied at step 76 to merge
appropriate components. In particular, this post-processing of
an embodiment of the invention can be seen as a second
cluster analysis, which analyzes the set of all EM-fitted Gaus-
sian components and merges subsets to a single cluster, up to
a certain scale. One technique well known in the art for such
situations is agglomerative hierarchical clustering. In hierar-
chical clustering, the cluster space is expressed in terms of
distances of its elements. In the present case the elements are
multivariate wrapped Gaussian functions, and statistical
descriptors are used for the geometric shapes. A suitable (and
analytically computable) statistical distance measure for
Gaussian distributions is the Bhattacharyya distance

(Zl +2Zp\” |2 + 2o

) f yo ol
o — ) + sln—m—
2 2 VElz

1
Dpan(pi1, L1 pi2, Z2) = §(M2 -

However, Dy,,,., does not take into account the directional
characteristics of the wrapped Gaussians. Hence, according
to an embodiment of the invention, modified variant of D, ..
is proposed, the “wrapped Bhattacharyya distance™:

Dpan (i1, Ly, pi2, L) =

1% + 2
o P 1

2 VI

1 IS
5z = pmod2m) (S (2 =y )mod 2) +

Finally, the number of wrapped Gaussian component clusters
determines the class of the pulmonary structure: 0 for a soli-
tary nodule, 2x1=2 for an attached nodule, 2x2=4 for a vessel,
and >2x3=6 for vessel junction. The factor of 2 is due to the
double interval in the polar coordinate A, as discussed above.

A limitation of the method of an embodiment of the inven-
tionis the fact that scales are position dependent within the (0,
¢)-domain. One alternative according to an embodiment of
the invention would be modeling the directional data with von
Mises-Fisher distribution could circumvent this problem. The
von Mises-Fisher distribution for a d-dimensional unit ran-
dom vector takes the form

Pl o=c ()exp k),
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where ||y|=1, k=0, and d=2. The normalizing constant ¢ (k)
is given by

Kd/Z—l

cqlk) = 7(27rﬂ/21d/2,1(1<)’

where () represents a modified Bessel function of the first
kind of order r. The distribution is parameterized by the mean
direction p and concentration parameter K, which character-
izes how strongly the unit vectors drawn according to f(xIy,
K) are concentrated about the means direction . However,
parameter estimation for the von Mises-Fisher distribution
involves solving an implicit equation of a ratio of Bessel
functions, for which no analytic solution exists, in general.

According to an embodiment of the invention, qualitative
experiments were performed for the proposed pulmonary
structure classification. FIGS. 4 and 5 show illustrations of
the classification for thoracic CT images, two examples for
each of the classes “nodule”, « vessel”,

“vessel junction”.

FIGS. 4(a)-(d) and 5(a)-(d) depict illustrative examples of
a pulmonary structure classification method of an embodi-
ment of the invention for thoracic CT scans. Each row corre-
sponds to the segmentation and verification of one example.
The first two rows of FIG. 4 are with respect to a nodule
object, the last two rows are with respect to nodules attached
to the lung wall, while rows 1 and 2 of FIG. 5 show vascular
structures, and rows 3 and 4 vessel junctions. Column (a)
illustrates the CT VOI in three orthogonal cross sections. The
segmentation result is illustrated by the ellipses. Column (b)
represents the affine-normalization of the original VOI, such
that the 3D ellipsoid becomes warped into a sphere. Column
(c) shows the constructed bounding manifold unwrapped in
the (0, ¢)-domain. Note, however, that an additional intensity
thresholding has been introduced. This step is applied as a fast
and simple means for eliminating low-intensity structures,
which may confuse the Gaussian EM clustering. The figures
in column (d) show the results of the Gaussian mixture model
fitting by the EM-based algorithm. Dashed ellipses corre-
spond to EM-based clustered Gaussian components, and
solid ellipses describe the clusters after post-processing.

(LIS

attached nodule”,

As presented in Column (a), the 3D segmentation can
segment all solitary and attached nodules, as shown in FIG. 4,
as well as the false positive blood vessels and vessel junctions,
as shown in FIG. 5. In column (d) the bounding manifold
image is transformed to a sampled data set X, as it has been
described in Section 2.2.1. Further, column (d) shows the
result of the EM-based wrapped Gaussian clustering, that is,
mean and covariance of the k components are illustrated by
the dashed ellipses. In particular, note the continuities at the
edges of the (0, ¢)-domain in FIG. 4, row 3 and 4, and FIG. 5,
row 3 and 4. For visualization purposes, an illustration of the
hierarchical clustering post-processing has been included.
Clusters from this post-processing are represented by the k,
solid ellipses, the center point and spread of which corre-
spond to mean and covariance computed from means of all
wrapped Gaussians within one post-processed cluster. Note
that this illustration may lead to degenerated ellipses, for
instance in FIG. 5, row 2, if the cluster cardinality is low.
Inferring the structure class from the component number k,,
it can be verified that the presented classification gives correct
answer for all eight examples. Similar results were obtained
with other cases.



US 7,764,819 B2

13

It is worthwhile to point out limitations of the classifica-
tion, which may lead to misclassifications in some situations.
Structures at the poles of the manifold 3D sphere (corre-
sponding to 6=0 and ¢=m) become disproportionately large in
the 6-dimension of the 2D image after the unwrapping. This
situation can be compared with a phenomenon from cartog-
raphy where arctic and antarctic regions occupy comparably
larger regions on a 2D Mercator projection world map than on
the 3D spherical world globe. In the examples illustrated
above, this behavior can be observed in FIG. 5, row 4, where
the high intensity structure at ¢~ extends over the entire
range (-7, ] in 6. As a consequence, caution is advised, when
drawing conclusions from scale relations in the unwrapped
manifold, in particular, for those pole regions. This is, in fact,
a drawback of the wrapped Gaussian modeling, in particular,
the unwrapping. At this point, it shall be noted that a von
Mises-Fisher modeling circumvents this phenomenon,
because no unwrapping is assumed.

It is to be understood that the present invention can be
implemented in various forms of hardware, software, firm-
ware, special purpose processes, or a combination thereof. In
one embodiment, the present invention can be implemented
in software as an application program tangible embodied on a
computer readable program storage device. The application
program can be uploaded to, and executed by, a machine
comprising any suitable architecture.

FIG. 81s ablock diagram ofan exemplary computer system
for implementing a classification method according to an
embodiment of the invention. Referring now to FIG. 8, a
computer system 81 for implementing the present invention
can comprise, inter alia, a central processing unit (CPU) 82, a
memory 83 and an input/output (I/0) interface 84. The com-
puter system 81 is generally coupled through the I/O interface
84 to a display 85 and various input devices 86 such as a
mouse and a keyboard. The support circuits can include cir-
cuits such as cache, power supplies, clock circuits, and a
communication bus. The memory 83 can include random
access memory (RAM), read only memory (ROM), disk
drive, tape drive, etc., or a combinations thereof. The present
invention can be implemented as a routine 87 that is stored in
memory 83 and executed by the CPU 82 to process the signal
from the signal source 88. As such, the computer system 81 is
a general purpose computer system that becomes a specific
purpose computer system when executing the routine 87 of
the present invention.

The computer system 81 also includes an operating system
and micro instruction code. The various processes and func-
tions described herein can either be part of the micro instruc-
tion code or part of the application program (or combination
thereof) which is executed via the operating system. In addi-
tion, various other peripheral devices can be connected to the
computer platform such as an additional data storage device
and a printing device.

It is to be further understood that, because some of the
constituent system components and method steps depicted in
the accompanying figures can be implemented in software,
the actual connections between the systems components (or
the process steps) may differ depending upon the manner in
which the present invention is programmed. Given the teach-
ings of the present invention provided herein, one of ordinary
skill in the related art will be able to contemplate these and
similar implementations or configurations of the present
invention.

While the present invention has been described in detail
with reference to a preferred embodiment, those skilled in the
art will appreciate that various modifications and substitu-
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tions can be made thereto without departing from the spirit
and scope of the invention as set forth in the appended claims.

What is claimed is:

1. A method for classifying pulmonary structures in digi-
tized images, comprising the steps of:

providing approximate target structure locations of one or

more target structures in a digitized 3-dimensional (3D)
image;

fitting an anisotropic Gaussian model about said approxi-

mate target locations to generate more precise 3D target
models and center locations of said one or more target
structures;

warping each said 3D target models into a 3D sphere;

constructing a bounding manifold about each said warped

3D sphere; and

identifying clusters on said bounding manifolds wherein

said one or more target structures are classified.

2. The method of claim 1, wherein said digitized image
comprises a plurality of intensities corresponding to a domain
of points on a 3-dimensional grid.

3. The method of claim 1, wherein fitting an anisotropic
Gaussian model about an approximate target location com-
prises using Gaussian scale-space mean shift analysis and
Jensen-Shannon divergence-based automatic bandwidth
selection generating a 3D ellipsoidal model of said target
structure, wherein the center and dimensions of said 3D ellip-
soid correspond to the center and covariances of said Gauss-
ian model.

4. The method of claim 3, wherein warping said 3D target
model comprises affine-normalizing said 3D ellipsoid
wherein scaling directions and factors are obtained from the
structure covariance of said anisotropic Gaussian model.

5. The method of claim 1, wherein constructing a bounding
manifold further comprises unwrapping the 3D surface of the
warped sphere into a 2D representation, and determining a
radius of an appropriate bounding manifold.

6. The method of claim 5, wherein unwrapping the 3D
surface of the warped sphere into a 2D representation com-
prises transforming the surface of said warped sphere into
spherical coordinates (8, ¢) wherein ¢e[-m, 7] and Be-m, 7).

7. The method of claim 5, wherein determining a radius of
an appropriate bounding manifold comprises constructing a
plurality of spherical manifolds of different radii about said
warped sphere, unwrapping each spherical manifold into a
2D representation, normalizing the intensity value distribu-
tion on each said unwrapped spherical manifold, calculating
an intensity entropy for each said unwrapped spherical mani-
fold wherein intensity values are treated as probability values
wherein an entropy distribution is defined, and finding a
radius that minimizes said entropy distribution.

8. The method of claim 1, wherein identifying clusters
comprises using an expectation-maximization to fit a mixture

,
Nul©) = )" c,NE(O)
=1

of multivariate wrapped Gaussian distributions N, 7(®) of a
vector variable ®=(8,, . . ., 8,)" to objects protruding through
said bounding manifold subject to a minimum description
length criterion, wherein mixture component probabilities c,,
are estimated within the expectation-maximization, wherein
in each dimension 9, satisfies 9=x,,=x mod 2mne(~m, x|, N, 7
(®) satisfies
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) Z NP(@ + 2nhyey + ... + 2nkper),
kF:—oo

NJ(©) =

kj=—c0

wherein e,=(0, ..., 0,1,0,...,0)"is the k” Euclidean basis
vector, with an entrAy of l at the k? element and 0 elsewhere,
wherein estimates (1,7 and 2 of a mixture component p are
obtained within the expectation-maximization from a sample
set X={8P, ..., 8] based on a directional mean

1M
Py — ;)
(MQ)f = ar Mm;exp(u?f )]

and covariance

=

- 1 o' T
— (m)” lm)
2= =1 E " O

m=1

with 877 =(8~(19)))mod 27, and wherein observations X
are drawn directly from a 2D unwrapped image 1(6, ¢), where
the number of occurrences of each sampled (0,,, ¢,,)e(-m,
wt|x(-m, 7| is set proportional to a corresponding image
matrix value 1(0,,, ¢,,).

9. The method of claim 1, further comprising using
agglomerative hierarchical clustering to merge clusters
within a predefined distance of each other, using a distance
metric for a pair of multivariate wrapped Gaussian distribu-
tions equivalent to

T+, L2 + 2
—<<m — pmod 27) (—) (420 mod )+ 3l
1 2

wherein |, and 1, are the mean values of the pair of Gaussian
distributions, and X, and 2, are their respective variances.
10. The method of claim 1, wherein the pulmonary struc-
ture class is determined by the number of wrapped Gaussian
component clusters associated with a target structure,
wherein a solitary nodule has O clusters, an attached nodule
has 2 clusters, a vessel has 4 clusters, and a vessel junction has
6 or more clusters.
11. A method for classitying pulmonary structures in digi-
tized images, comprising the steps of:
providing target locations of one or more 3D spheres in a
digitized 3-dimensional (3D) image, said image com-
prising a plurality of intensities corresponding to a
domain of points on a 3-dimensional grid, each 3D
sphere representing a target structure in said image;
constructing a plurality of spherical manifolds of different
radii about said 3D sphere;
calculating an intensity entropy for each said spherical
manifold wherein intensity values are treated as prob-
ability values wherein an entropy distribution is defined;
finding a radius that minimizes said entropy distribution,
wherein said minimizing radius defines a bounding
manifold;
unwrapping the surface of bounding manifold into a 2D
spherical coordinate (8, ¢) representation wherein ¢e
[-mt, ] and Be[-m, w];

10

15

20

25

30

35

40

45

50

55

60

65

16

using expectation-maximization to fit a mixture

,
Nu(@) = ) e,NJ(©)

p=1

of multivariate wrapped Gaussian distribution N (©) of
a vector variable @=(8, . . ., )7, wherein mixture
component probabilities ¢, are estimated within the
expectation-maximization, wherein 8=(6,, ¢,) to clus-
ters of target structures protruding through said bound-
ing manifold, and wherein a pulmonary structure is clas-
sified by a number of protruding clusters.

12. The method of claim 11, further comprising normaliz-
ing the intensity distribution on each of said plurality of
spherical manifolds.

13. The method of claim 11, wherein providing target
locations of one or more 3D sphere comprises providing
approximate target structure locations of said one or more
target structures in said digitized 3-dimensional (3D) image;
fitting an anisotropic Gaussian model about said approximate
target locations to generate more precise 3D ellipsoidal target
models and center locations of said ellipsoidal models; and
affine-normalizing said ellipsoidal models into a 3D sphere.

14. The method of claim 11, wherein in each dimension 9,
satisfies 9=x,,=x mod 2me(~mx, ], N, (©) satisfies

o

whereine,=(0,...,0,1,0,. 0) is the k” Euclidean basis
vector, with an entry of l at the k™ element and 0 elsewhere,
wherein estimates 19 and $8 of a mixture component p are
obtained within the expectation-maximization from a sample
set X={9Y .. 9 based on a directional mean

. L
() = argl = > explid] ’)]
m=1
and covariance

s 1o o g’
- M—IZ

with §"'=(8,7~(118) ;)mod 27, and wherein observations X
are drawn directly from a 2D unwrapped image (6, ¢), where
the number of occurrences of each sampled (0,,, ¢,,)e(—m,
wt|x(—m, 7| is set proportional to a corresponding image
matrix value 1(0,,, ¢,,).

15. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform the method steps for classifying
pulmonary structures in digitized images, said method com-
prising the steps of:

providing approximate target structure locations of one or

more target structures in a digitized 3-dimensional (3D)
image;
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fitting an anisotropic Gaussian model about said approxi-
mate target locations to generate more precise 3D target
models and center locations of said one or more target
structures;

warping each said 3D target model into a 3D sphere;

constructing a bounding manifold about each said warped

3D sphere; and

identifying clusters on said bounding manifold wherein

said one or more target structures are classified.

16. The computer readable program storage device of
claim 15, wherein said digitized image comprises a plurality
of intensities corresponding to a domain of points on a 3-di-
mensional grid.

17. The computer readable program storage device of
claim 15, wherein fitting an anisotropic Gaussian model
about an approximate target location comprises using Gaus-
sian scale-space mean shift analysis and Jensen-Shannon
divergence-based automatic bandwidth selection generating
a 3D ellipsoidal model of said target structure, wherein the
center and dimensions of said 3D ellipsoid correspond to the
center and covariances of said Gaussian model.

18. The computer readable program storage device of
claim 17, wherein warping said 3D target model comprises
affine-normalizing said 3D ellipsoid wherein scaling direc-
tions and factors are obtained from the structure covariance of
said anisotropic Gaussian model.

19. The computer readable program storage device of
claim 15, wherein constructing a bounding manifold further
comprises unwrapping the 3D surface of the warped sphere
into a 2D representation, and determining a radius of an
appropriate bounding manifold.

20. The computer readable program storage device of
claim 19, wherein unwrapping the 3D surface of the warped
sphere into a 2D representation comprises transforming the
surface of said warped sphere into spherical coordinates (0, ¢)
wherein ¢e[-m, t] and B[ -, 7).

21. The computer readable program storage device of
claim 19, wherein determining a radius of an appropriate
bounding manifold comprises constructing a plurality of
spherical manifolds of different radii about said warped
sphere, unwrapping each spherical manifold into a 2D repre-
sentation, normalizing the intensity value distribution on each
said unwrapped spherical manifold, calculating an intensity
entropy for each said unwrapped spherical manifold wherein
intensity values are treated as probability values wherein an
entropy distribution is defined, and finding a radius that mini-
mizes said entropy distribution.

22. The computer readable program storage device of
claim 15, wherein identifying clusters comprises using an
expectation-maximization to fit a mixture

,
Nu©) = )" c,NE©)
=1

of multivariate wrapped Gaussian distributions N 7(®) of a
vector variable @=(9,, . . ., 8,) to objects protruding through
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said bounding manifold subject to a minimum description
length criterion, wherein mixture component probabilities c,,
are estimated within the expectation-maximization, wherein
in each dimension 9, satisfies 9=x,,=x mod 2mne(-m, x|, N, 7
(®) satisfies

o

NE@©) = Z NP(© + 2nkjey + ... + 2nkper),

ky=—oc0 kp=—c0

whereine,=(0, ...,0,1,0,...,0)" is the k” Euclidean basis
vector, with an entry of 1 at the k” element and 0 elsewhere,
wherein estimates [ and 24” of a mixture component p are
obtained within the expectation-maximization from a sample
set X={9Y .. 9 based on a directional mean

1 M
(fte); = arg{MZ exp(:w‘;"’)]

m=1

and covariance

s - 1o o g’
9 M—l;

with 8'=(8,"~(18))mod 27, and wherein observations X
are drawn directly from a 2D unwrapped image (6, ¢), where
the number of occurrences of each sampled (0,,, ¢,,)e(—m,
wt|x(—m, 7| is set proportional to a corresponding image
matrix value 1(0,,,, ¢,,)-

23. The computer readable program storage device of
claim 15, the method further comprising using agglomerative
hierarchical clustering to merge clusters within a predefined
distance of each other, using a distance metric for a pair of
multivariate wrapped Gaussian distributions equivalent to

1(( ) dZﬂ)T(Zl +Zz)’1(( Jmod27) + 11 12 + 2|
2 WH2 — (p)mo - Mz — H1)mod 2r) + Zin————,
8 2 2 VI

wherein |, and 1, are the mean values of the pair of Gaussian
distributions, and 2, and Z, are their respective variances.

24. The computer readable program storage device of
claim 15, wherein the pulmonary structure class is deter-
mined by the number of wrapped Gaussian component clus-
ters associated with a target structure, wherein a solitary
nodule has 0 clusters, an attached nodule has 2 clusters, a
vessel has 4 clusters, and a vessel junction has 6 or more
clusters.
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