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VOLUMETRIC CHARACTERIZATION USING
COVARIANCE ESTIMATION FROM
SCALE-SPACE HESSIAN MATRICES

This application claims priority to U.S. Provisional Appli-
cation Ser. No. 60/508,094, filed on Oct. 2, 2003, which is
herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to volumetric image data
characterization, and more particularly to a system and
method for covariance estimation in the presence of margin-
truncation for volumetric characterization.

DISCUSSION OF RELATED ART

Object detection and tracking methods have incorporated
non-linear optimization techniques for determining objects in
image data. The non-linear optimization methods include, for
example, the Levenberg-Marquardt method and the Trust-
region method. These methods locally approximate a cost
function by a quadratic model defined by the Hessian, reduc-
ing the problem’s complexity. Other methods have employed
a series of feature detection methods using scale selection
with second derivative functions have been used. In the field
of medical imaging, a number of studies exploited eigen
values of the Hessian for classifying local structures such as
vessels. These methods did not, however, exploit the exact
analytical relationship of fully parameterized covariance and
Hessian in the context of robust covariance estimation.

Therefore, a need exists for a system and method for cova-
riance estimation in the presence of margin-truncation.

SUMMARY OF THE INVENTION

According to an embodiment of the present disclosure, a
method for determining a volume of interest in data includes
determining fixed-bandwidth estimations of a plurality of
analysis bandwidths, wherein the estimation of the fixed-
bandwidth comprises, providing an estimate of a mode loca-
tion of the volume of interest in the data, and determining a
covariance of the volume of interest using a local Hessian
matrix. The method further includes determining the volume
ofinterest as a most stable fixed-bandwidth estimation across
each of the plurality of analysis bandwidths.

The estimate of the mode location is provided manually.
Providing the estimate of the mode location comprises deter-
mining a mean shift estimation of the volume of interest
within each analysis bandwidth.

Determining the covariance further includes determining a
scale-space representation at the mode location, determining
a scale-space Hessian at the mode location, and determining
the covariance of the volume of interest from the scale-space
Hessian. The covariance is determined based on a truncated
Gaussian fitted to the volume of interest, the truncated Gaus-
sian comprising a plurality of arbitrarily missing tails.

The data is volumetric image data. The volume of interest
is determined as a confidence ellipsoid of the fitted Gaussian
in the data.

According to an embodiment of the present disclosure, a
program storage device readable by machine, tangibly
embodying a program of instructions executable by the
machine to perform method steps for determining a volume of
interest in data. The method includes determining fixed-
bandwidth estimations of a plurality of analysis bandwidths,
wherein the estimation of the fixed-bandwidth comprises,
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providing an estimate of a mode location of the volume of
interest in the data, and determining a covariance of the vol-
ume of interest using a local Hessian matrix. The method
further includes determining the volume of interest as a most
stable fixed-bandwidth estimation across each of the plurality
of analysis bandwidths.

According to an embodiment of the present disclosure, a
method for determining a covariance of a volume of interest
includes determining a scale-space representation at a given
mode location, determining a scale-space Hessian at the
given mode location, and determining the covariance of the
volume of interest from the scale-space Hessian, wherein the
covariance defines a spread of the volume of interest. The
covariance is determined based on a truncated Gaussian fitted
to the volume of interest, the truncated Gaussian comprising
a plurality of arbitrarily missing tails.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will be
described below in more detail, with reference to the accom-
panying drawings:

FIG.1 is a flow chart illustrating a method for determining
a covariance estimation according to an embodiment of the
present disclosure;

FIG. 2 is an illustration of a system according to an
embodiment of the present disclosure;

FIG. 3 is a flow chart illustrating a method for determining
an estimation of volumetric characterization according to an
embodiment of the present disclosure;

FIGS. 4A-F are images of covariance estimates of two-
dimensional synthetic Gaussian according to an embodiment
of the present disclosure;

FIG. 5 is a graph depicting errors of various covariance
estimates with respect to a ground-truth in terms of Frobenius
norm according to an embodiment of the present disclosure;
and

FIGS. 6 A-6F illustrate and example of a three-dimensional
location, spread and orientation estimation according to an
embodiment of the present disclosure.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

According to an embodiment of the present disclosure, a
method for characterizing anisotropic spread and orientation
of local structures in a d-variate multi-modal non-negative
function evaluated in continuous scale-space utilizes a class
of blob-like structures that can be locally approximated by a
Gaussian-based model. Such blob-like structures appear fre-
quently in practical situations and represent significant
objects of interest such as tumors in volumetric medial
images and storm locations in radar data to name a few.
According to an embodiment of the present disclosure, the
mean vector and the covariance matrix of a Gaussian function
represents the center-location and the anisotropic spread of
the blob-like structure, respectively. Therefore, the covari-
ance estimation with Gaussian model that best fits given local
structures provides a direct means for characterization the
spread of the local structures.

One difficulty in this scenario is the problem of margin-
truncations induced by nearby structures. Margin-truncation
may arise when multiple structures are clustered tightly in a
data space so that surrounding structures impose estimation
bias for the targeted structure. To avoid such bias, a truncated
Gaussian whose tails are arbitrarily missing needs to be fitted
to the targeted structure.
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According to an embodiment of the present disclosure, the
margin-truncation problem is resolved by inducing semi-glo-
bal spread (covariance) information from local curvature
(Hessian) information measured at a mode location. Refer-
ring to FIG. 1, a closed-form analytical formula of the cova-
riance matrix 103 has been derived as a function of the Hes-
sian matrix 102 determined at a mode location within a scale-
space representation 101. Since the Hessian captures only
local information in the proximity of the mode, the truncation
will not cause the estimation bias in the Hessian. Thus, the
covariance directly induced from Hessian should not suffer
from the truncation problem.

A robust estimation method is employed based on a con-
tinuous scale-space theory to cope with sensitivity to noises in
signals and errors in mode estimates 102. Resulting multi-
scale analysis framework relates the covariance to the scale-
space Hessian 103, a Hessian matrix determined with a signal
evaluated in the continuous scale-space. The Hessian realizes
robust association between the accurate global spreads and
the noise-sensitive curvatures 104. Using a Hessian matrix
according to an embodiment of the present disclosure, the
robustness of the covariance estimation is improved in the
presence of the margin-truncation. Preliminary studies have
been conducted to evaluate a method according to an embodi-
ment of the present disclosure.

It is to be understood that the present invention may be
implemented in various forms of hardware, software, firm-
ware, special purpose processors, or a combination thereof. In
one embodiment, the present invention may be implemented
in software as an application program tangibly embodied on
a program storage device. The application program may be
uploaded to, and executed by, a machine comprising any
suitable architecture.

Referring to FIG. 2, according to an embodiment of the
present disclosure, a computer system 201 for determining
volume of interest using a covariance estimation in the pres-
ence of margin-truncation can comprise, inter alia, a central
processing unit (CPU) 202, a memory 203 and an input/
output (I/O) interface 204. The computer system 201 is gen-
erally coupled through the I/O interface 204 to a display 205
and various input devices 206 such as a mouse and keyboard.
The support circuits can include circuits such as cache, power
supplies, clock circuits, and a communications bus. The
memory 203 can include random access memory (RAM),
read only memory (ROM), disk drive, tape drive, etc., or a
combination thereof. The present invention can be imple-
mented as a routine 207 that is stored in memory 203 and
executed by the CPU 202 to process the signal from the signal
source 208, such as a CT scanner. As such, the computer
system 201 is a general-purpose computer system that
becomes a specific purpose computer system when executing
the routine 207 of the present invention.

The computer platform 201 also includes an operating
system and microinstruction code. The various processes and
functions described herein may either be part of the microin-
struction code or part of the application program (or a com-
bination thereof), which is executed via the operating system.
In addition, various other peripheral devices may be con-
nected to the computer platform such as an additional data
storage device and a printing device.

It is to be further understood that, because some of the
constituent system components and method steps depicted in
the accompanying figures may be implemented in software,
the actual connections between the system components (or
the process steps) may differ depending upon the manner in
which the present invention is programmed. Given the teach-
ings of the present invention provided herein, one of ordinary
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skill in the related art will be able to contemplate these and
similar implementations or configurations of the present
invention.

From FIG. 1, the covariance estimation from scale-space
Hessian derives from a closed-form formula of the covariance
matrix of a Gaussian-based model induced directly from a
scale-space Hessian matrix measured at the mode location.

Suppose a d-dimensional multi-modal continuous non-
negative function f(x) represents an image signal of interest:
using the symbol u for describing one of the spatial extrema of
f in the sense of image analysis or modes in the sense of
density estimation. Suppose that the local region of f around
u can be approximated by a product of a d-variate Gaussian
function and a positive multiplicative parameter,

f) = @ XP(x; u, L) |res,

Dl u, Z) = (Zn)’d/lel’l/zexp(— % -yt x - u)],

where S is a set of data points which belong to the neighbor-
hood u and whose function values are consistent with the
structural characteristics of the local data. In practical sce-
narios this is a reasonable approximation, given an appropri-
ate definition of S. The problem of interest can now be under-
stood as the parametric model fitting and the estimation of the
model parameters: mean u, covariance X, and amplitude c.

Referring to FIG. 1, box 101, the scale-space theory states
that, given a d-dimensional continuous signal f:Rd—R, the
scale-space representation F:R xR,—R of f, is the unique
solution to the diffusion equation, 3, F=Y5V>F, or equivalently
the convolution of the signal with d-variate Gaussian
kernels ®(x;0,H) with various analysis bandwidth (or scale)
matrix HeR™?,

FloH)=f0)*® (5,0, H). 3)

Referring to FIG. 1, box 102, a scale-space Hessian matrix
is defined as dxd Hessian matrix of F(H) at x, which will be
indicated by the symbol P. The Hessian can be written as
convolution of f with the second-order derivatives of Gauss-
ian kernel (VV')®, since differential operators commute
across convolution operations,

Plx; H) = (YV)F(x; H) )

= f(x)=(VV)O(x; H)

= f(x)«D(x; H)H  (xx' — H)H L.

Eq. (4) provides a means for determining the scale-space
Hessian directly from the signal f.

Referring to FIG. 1, box 103, a closed-form formula of the
Gaussian covariance is derived as a function of the scale-
space Hessian determined at a mode. By substituting Eq. (1)
to Eq. (3) and Eq. (4), analytical formula of F and P are given
as a function of a Gaussian with enlarged covariance 2Z+H,

Fix;H)=axD(x;u,2+H), )

P Hy=ox®(x;u, 2+ H)X (SHH) ™ [(4-x) (u-x)'—(S+H)]

@™ ©)
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Eq. (5) and Eq. (6) collapse into the following forms without
the exponential when evaluated at the mode location u,

FlusH)=a(2m)y 2 2+H ™12 7

P(u H)=-02m)y V2= +HI"V2(Z+H) ™ (8)

Eq. (8) expresses the relationship of the scale-space Hes-
sian matrix P(u;H) and the covariance matrix 2 of the Gaus-

sian model that locally approximates the function f around u. 0

Recall that P(u;H) can be determined directly from the signal
f(x) using Eq. (4). Therefore, transforming Eq. (8) to the form
of 2=g(P) will provide a direct formula of interest. The fol-
lowing analytically derives such function g. Considering a
symmetric Schur decomposition of 2+H and P,

S+H=UAU, ©)

P=VTV,

UU=¥V=I. (10)
By definition, X and H are confined to be symmetric positive
definite. P is symmetric negative definite if the mode uis ata
stable critical point of —f. Eq. (8) holds when the mode u is at
a peak F, not on a saddle point. When P is numerically mea-
sured from f, assurances are needed that u satisfies the con-
dition and equivalently that P is negative definite. When these
conditions meet, A and I" are diagonal matrices with positive
and negative components, respectively. And the orthogonal
based U and V become equivalent.

Next, A is determined as a function of I'. Substituting the
decompositions Eq. (9) and Eq. (10) into Eq. (8) and assum-
ing U=V yields

T = o ¥2aA A

Manipulating this equation while maintaining the equality
provides,

2 L 11
A = @2 2n(-D) 7 #F2 (-I)! 4

Combined Eq. (11) with the decompositions Eq. (9) and Eq.
(10) results in,

T+H= U[w%un(—r)*lrzi*z o (12)

2 oL
= ad 2 2a(- VIV @2 vy

2 _ L
@& 2 2n(-P) T F2 (-P)7!

2 1
o L= 2a(-P) | #2(-P) - H

Eq. (12) yields a desirable form of the formula, however it is
cumbersome to have the multiplicative factor a as a free
parameter to be estimated. The margin-truncation problem
also makes direct estimation of an o difficult. Addressing this
issue, a solution has been determined that vanishes o.. Rewrit-
ing Eq. (12) as follows,
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2
I+ H=a@1Q, 13

0 =pr-Pri @ P, 4

where Q is a matrix function that depends only on the scale
space Hessian matrix P. Substituting this to Eq. (7) yields,

12 (15)

Flu; H) = w(zﬂ)—d/2|w23*2 Q|7

2
= @2 (27 7|

2
= ad+2 = 20 P|QI"AF(u; H)

It can be seen that a is vanished from Eq. (12) by substituting
Eq. (15),

L= 0" Fw hig* Q- H (16

Q = [27(- Pl H))’ll"d’% (— Pl H))™.

Note that F(u;H) can be numerically computed from the sig-
nal f using Eq. (3) without imposing much computational
burden similar to the case for P. Thus, Eq. (16) gives a result.

Referring to FIG. 3, the multi-scale analysis includes a
mode estimation for the scale-space representation. The
above framework assumes that the mode locations, e.g., loca-
tions of tumors in medial image data, are given by another
means, for example, provided manually by a radiologist.
Robust mode seeking methods based on the mean shift pro-
cedure 302 may be employed prior to the covariance estima-
tion 303. A sampling method, including mode and covariance
estimates, may be used given a rough initial estimate of u and
a variable-bandwidth mean shift procedure without such
information. Both methods, the mode seeking methods and
sampling method, exploit an extended mean shift for the
continuous function of interest,

VF(x; H) = f(x)=VO(x; H) = H F(x; Hym(x; H), 17

fx’<1>(x -5 H)f(x)dx' 18

fd)(x —x's H) f(x)dx'

mix; H) =

Eq. (18) gives the extended fixed-bandwidth mean shift vec-
tor for f. The mean shift procedure 302 is defined as iterative
updates of a data point x, until convergence; y,, ,=m(y ;H)+y,
given y,=%,. The convergence point y” from a number of
starting points defines a mode estimate u, in F(H). The set S,
describing the neighborhood of the estimate u,, is given by
combining all data points that converge into the same mode.
The mode is a center location for the volume of interest, e.g.
a tumor.

The D-dimensional spread and orientation of the volume of
interest whose center location as a spatial extremum is esti-
mated (see FIG. 1). Such geometrical information of D-di-
mensional local surfaces can be characterized by a covariance
matrix estimated at the extrema.
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Turning now to the scale selection criterion, the multi-scale
analysis treats H, analysis bandwidth, as a variable parameter.
It supposes a set of analysis bandwidth H, . .. ,H  is given a
priori. The estimation is performed independently for each
bandwidth H, 301. The bandwidth that provides the optimal
among K estimates is sought by a certain criterion. A stability
test can be used as a scale selection criterion. Given a set of
estimates {(u;,2,)}, a form of the Jensen-Shannon divergence
(IS(k)) is defined by,

a9

1 k+a kta —1
EZ (u,,-—m’[Z Zj] (=)
= J a

=k —

where

and o is a neighborhood parameter. Note that the form of this
divergence measurement for two adjacent scales reduces to
the Bhattacharyya distance. The most stable estimate across
the analysis bandwidth provides a local minimum of the
divergence profile. Such an estimate may be treated as a final
estimation of the multi-scale analysis 304. The final estimate
defines a volume in the scale-space determined to be an object
of interest, such as a tumor in medical image data.
Experimental data has been gathered using an embodiment
of'the present disclosure. A two-dimensional (2D) implemen-
tation of an embodiment ofthe present disclosure is evaluated
with a 2D synthetic Gaussian data. In order to investigate its
robustness against the margin-truncation problem, test data
was symmetrically truncated at its tails along the main axis.
The covariance estimates achieved were compared with those
by the standard sample estimation method. The covariance
estimates were derived for three analysis bandwidth h=1,2,3
where H=hl. The sample estimate is given with the marginal
density directly computed form f normalized by the total
probability mass. FIGS. 4A-4F illustrate various covariance
estimates of a 2D synthetic Gaussian with the ground-truth
covariance [40 -40;40 100] and o=10. The extent of the
truncation is quantified by a factor to the main eigen value A
of'the ground-truth covariance. FIG. 4A: 0.2A, FIG. 4B: 0.6},
FIG. 4C: 1.0A, FIG. 4D: 1.4\, FIG. 4E: 1.8}, FIG. 4F: 2.2).
Each estimate is shown as a 90% confidence ellipse. The
results, and in particular FIGS. 4B and 4C have shown clear
advantage of a method according to an embodiment of the
present disclosure against the sample estimation. In FIGS.
4A-4F, where estimates overlap, a signal line in the figure
may be designated with multiple labels. The ground truth is
designated 401 and the sample estimate is designated 402.
h=1, h=2 and h=3 are designated 403, 404 and 405 respec-
tively. The result was substantially identical when the ampli-
tude parameter oo was changed. Also, similar results were
obtained when the data was truncated asymmetrically and
isotropically. FIG. 5 shows errors of the various covariance

10

15

20

25

30

35

40

45

50

55

60

65

8

estimates with respect to the ground-truth in terms of Frobe-
nius norm. These errors are plotted against the truncation
extent quantified by a factor to the margin eigen value A of the
ground-truth covariance.

A three-dimensional (3D) implementation of the covari-
ance estimation according to an embodiment of the present
disclosure is incorporated to the multi-scale analysis frame-
work. The implementation was evaluated with the high-reso-
Iution computed-tomography (HRCT) images showing lung
tumors. Beyond the margin-truncation problem, these data
impose the non-Gaussianity effect, with which the data signal
deviates largely from the used Gaussian model. Clinically it
has been shown that the non- and part-solid nodules, showing
high non-Gaussianity, have a higher chance of becoming
malignant over time. Thus, it is important that any solution is
also robust against this effect. FIGS. 6A-6F illustrate an
example of the 3D analysis results with a part-solid nodule.
The correct tumor center and spread estimate indicates
robustness against both margin-truncation and non-Gaussi-
anity effects. The cross 601 indicates a rough initial estimate
of'u. The cross 602 and ellipse 603 indicate the location and
spread estimates. Having a determined location and spread of
a volume of interest, where the volume is a tumor may allow
for more precise diagnosis, analysis, and treatment (e.g., aid-
ing the complete removal of the tumor while minimizing
removal or damage to surrounding tissue given knowledge of
the tumor spread). While examples, have been given related to
determining a tumor, the examples are not intended to be
limiting. Embodiments of the present disclosure may be
applied to other areas, including for example, storm analysis,
and astronomy. For applications related to determining a
location and spread of a storm, more precise modeling of
storm tracking and damage estimates may be gleamed.

Having described embodiments for a system and method
for covariance estimation in the presence of margin-trunca-
tion, it is noted that modifications and variations can be made
by persons skilled in the art in light of the above teachings. It
is therefore to be understood that changes may be made in the
particular embodiments of the invention disclosed which are
within the scope and spirit of the invention as defined by the
appended claims. Having thus described the invention with
the details and particularity required by the patent laws, what
is claimed and desired protected by Letters Patent is set forth
in the appended claims.

What is claimed is:
1. A computer-implemented method for determining a vol-
ume of interest in data comprising:
determining, by a processor, fixed-bandwidth estimations
of a plurality of analysis bandwidths, wherein the esti-
mation of the fixed-bandwidth comprises,
providing an estimate of a mode location of the volume
of interest in the data, and
determining a covariance of the volume of interest using
a local Hessian matrix, comprising determining a
scale-space representation of the volume of interest;
determining a scale-space Hessian of the volume of
interest at the mode location given the scale-space
representation; and
determining the covariance of the volume of interest
from the scale-space Hessian,
wherein the covariance defines a boundary of the vol-
ume of interest around the mode location, wherein
the covariance is determined based on a truncated
Gaussian fitted to the volume of interest, the trun-
cated Gaussian comprising a plurality of arbitrarily
missing tails; and
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determining, by the processor, the volume of interest as a
most stable fixed-bandwidth estimation across each of
the plurality of analysis bandwidths.

2. The method of claim 1, wherein the estimate of the mode

location is provided manually.
3. The method of claim 1 wherein providing the estimate of
the mode location comprises determining a mean shift esti-
mation of the volume of interest within each analysis band-
width.
4. The method of claim 1, wherein the data is volumetric
image data.
5. The method of claim 4, wherein the volume of interest is
determined as a confidence ellipsoid of a fitted Gaussian in
the data.
6. A non-transitory computer readable medium embodying
a program of instructions executed by a processor to perform
method steps for determining a volume of interest in data, the
method comprising:
determining fixed-bandwidth estimations of a plurality of
analysis bandwidths, wherein the estimation of the
fixed-bandwidth comprises,
providing an estimate of a mode location of the volume
of interest in the data, and

determining a covariance of the volume of interest using
a local Hessian matrix comprising

determining a scale-space representation of the volume
of interest;
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determining a scale-space Hessian of the volume of
interest at the mode location given the scale-space
representation; and

determining the covariance of the volume of interest
from the scale-space Hessian, wherein the covariance
defines a boundary of the volume of interest around
the mode location, wherein the covariance is deter-
mined based on a truncated Gaussian fitted to the
volume of interest, the truncated Gaussian compris-
ing a plurality of arbitrarily missing tails; and

determining the volume of interest as a most stable fixed-

bandwidth estimation across each of the plurality of

analysis bandwidths.

7. The computer readable medium of claim 6, wherein the
estimate of the mode is provided manually.

8. The computer readable medium of claim 6, wherein
providing the estimate of the mode comprises determining a
mean shift estimation of the volume of interest within each
analysis bandwidth.

9. The computer readable medium of claim 6, wherein the
data is volumetric image data.

10. The computer readable medium of claim 9, wherein the
volume of interest is determined as a confidence ellipsoid of
a fitted Gaussian in the data.
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