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PRIOR-CONSTRAINED MEAN SHIFT
ANALYSIS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application Ser. No. 60/665,126, filed Mar. 25, 2005 and
entitled “Prior-Constrained Mean Shift”, which is incorpo-
rated herein by reference in its entirety.

BACKGROUND

Mean shift is a popular optimization framework for ana-
lyzing the structure of kernel-smoothed function surfaces.
The mean shift procedure is an adaptive gradient ascent algo-
rithm with automatic step-size selection and is convergent to
a mode of the kernel-smoothed estimate of the function sur-
face. The mean shift framework provides an efficient solution
to the general data-clustering problem. See K. Fukunaga,
Introduction to Statistical Pattern Recognition, Academic
Press, San Diego, 1990; Y. Cheng, Mean shift, mode seeking,
and clustering, IEEE Trans. Pattern Anal. Machine Intell.,
17(8):790-799, 1995; D. Comaniciu and P. Meer, Mean shift:
A robustapproach toward feature space analysis, IEEE Trans.
Pattern Anal. Machine Intell., 24(5):603-619, 2002.

The mode-seeking property of the mean shift algorithm has
been successtfully applied to a wide range of vision problems
such as tracking and segmentation. See D. Comaniciu, V.
Ramesh, and P. Meer, Real-time tracking of non-rigid objects
using mean shift, In IEEE Conf. Computer Vision and Pattern
Recognition, pages 142-149, 2000; R. T. Collins, Mean-shift
blob tracking through scale space, In IEEE Conf. Computer
Vision and Pattern Recognition, pages 11:234-240, 2003; D.
Comaniciu and P. Meer, Mean shift analysis and applications,
In Int. Conf. Computer Vision, pages 1197-1203, 1999; K.
Okada, D. Comaniciu, and A. Krishnan, Robust anisotropic
Gaussian fitting for volumetric characterization of pulmonary
nodules in multislice CT, IEEE Trans. Medical Imaging,
24(3):409-423, 2005. Unfortunately, such formulations have
difficulty with hard-to-discover weak modes in multimodal
data, for example.

SUMMARY

These and other drawbacks and disadvantages of the prior
art are addressed by an exemplary system and method for
prior-constrained mean shift analysis.

An exemplary system for prior-constrained mean shift
analysis of a data array includes a processor, an input adapter
in signal communication with the processor for receiving at
least one data array, and a prior constraints unit in signal
communication with the processor for performing a prior-
constrained mean shift analysis on the at least one data array.

An exemplary method for prior-constrained mean shift
analysis of a data array includes a processor receiving initial-
ization data, selecting an initial point relative to the initializa-
tion data, Gaussian fitting with a prior-constrained mean shift
responsive to the initial point to parse a structure, and setting
the parsed structure as a prior constraint.

These and other aspects, features and advantages of the
present disclosure will become apparent from the following
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2

description of exemplary embodiments, which is to be read in
connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure teaches a system and method for
prior-constrained mean shift analysis in accordance with the
following exemplary figures, in which:

FIG. 1 shows a schematic diagram of a system for prior-
constrained mean shift analysis in accordance with an illus-
trative embodiment of the present disclosure;

FIG. 2 shows a flow diagram of a method for prior-con-
strained mean shift analysis in accordance with an illustrative
embodiment of the present disclosure;

FIG. 3 shows a graphical diagram of a prior-constrained
mean shift for a synthetic bimodal case in accordance with an
illustrative embodiment of the present disclosure;

FIG. 4 shows a graphical diagram of a prior-constrained
mean shift with one-dimensional (1D) bimodal data in accor-
dance with an illustrative embodiment of the present disclo-
sure;

FIG. 5 shows a graphical diagram of local data parsing by
an inhibition of return (IOR) algorithm in accordance with an
illustrative embodiment of the present disclosure;

FIG. 6 shows a graphical diagram of a two-step IOR-based
data analysis evaluated with two-dimensional (2D) synthetic
data in accordance with an illustrative embodiment of the
present disclosure; and

FIG. 7 shows a graphical diagram of exemplary results in
accordance illustrative embodiments of the present disclo-
sure.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

A system and method are provided for prior-constrained
mean shift analysis. A prior-constrained mean shift frame-
work is disclosed for incorporating prior information from
independent sources with a mean shift-based data-driven
mode analysis. When the prior information is represented
using adata point with a corresponding Gaussian distribution,
the modified mean shift mode seeker can be pulled towards a
desired location in the data-space, known as an attractive
prior, or pushed away from such a location, known as a
repulsive prior. Using a variational optimization formulation
via construction of quadratic lower and upper bounds, the
prior constrained mean shift step can be understood as an
information fusion of the data, known as density or scale-
space mean shift, with the prior in the sense of the Best Linear
Unbiased Estimator (BLUE).

An Inhibition Of Return (IOR) algorithm is provided to
parse the modes of multimodal data using the disclosed
framework. Apart from the obvious use in deriving data-
driven maximum a posteriori estimators, the above formula-
tion offers flexible control of the data-driven mean shift algo-
rithm and is useful for semi-automatic segmentation tasks in
Computer-Aided Diagnosis (CAD) and data parsing. These
aspects of the disclosed formulation are described and dem-
onstrated with an exemplary application for semi-automatic
segmentation of lung nodules. In particular, results demon-
strate that the algorithm can successfully segment the difficult
wall-attached cases.

As shown in FIG. 1, a system for prior-constrained mean
shift analysis, according to an illustrative embodiment of the
present disclosure, is indicated generally by the reference
numeral 100. The system 100 includes at least one processor
or central processing unit (CPU) 102 in signal communica-
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tion with a system bus 104. A read only memory (ROM) 106,
a random access memory (RAM) 108, a display adapter 110,
an [/O adapter 112, a user interface adapter 114, a communi-
cations adapter 128, and an imaging adapter 130 are also in
signal communication with the system bus 104. A display unit
116 is in signal communication with the system bus 104 via
the display adapter 110. A disk storage unit 118, such as, for
example, a magnetic or optical disk storage unit is in signal
communication with the system bus 104 via the 1/O adapter
112. A mouse 120, akeyboard 122, and an eye tracking device
124 are in signal communication with the system bus 104 via
the user interface adapter 114. An imaging device 132 is in
signal communication with the system bus 104 via the imag-
ing adapter 130.

A prior constraint unit 170 and an inhibition of return
(IOR) unit 180 are also included in the system 100 and in
signal communication with the CPU 102 and the system bus
104. While the prior constraint unit 170 and the inhibition of
return unit 180 are illustrated as coupled to the at least one
processor or CPU 102, these components are preferably
embodied in computer program code stored in at least one of
the memories 106, 108 and 118, wherein the computer pro-
gram code is executed by the CPU 102.

In alternate embodiments of the apparatus 100, some or all
of the computer program code may be stored in registers
located on the processor chip 102. In addition, various alter-
nate configurations and implementations of the prior con-
straint unit 170 and the inhibition of return unit 180 may be
made, as well as of the other elements of the system 100.

Turning to FIG. 2, a method for prior-constrained mean
shift analysis is indicated generally by the reference numeral
200. The method includes a start block 210 that passes control
to a first input block 212. The first input block 212 receives
initialization data and passes control to a function block 214.
The function block 214 displays the received data and passes
control to a second input block 216. The second input block
216 selects an initial point Xp and passes control to a function
block 218. The function block 218 performs Gaussian fitting
with prior-constrained mean shift and passes control to a
function block 220. The function block 220, in turn, sets the
parsed structure as a prior constraint and passes control to a
function block 222. The function block 222 performs a good-
ness of fit and passes control to a decision block 224. The
decision block 224 determines whether there are more struc-
tures near Xp, and if so, passes control back to the function
block 218. If not, the decision block passes control to a
function block 226. The function block 226 parses modes of
the image using inhibition of return (IOR) and passes control
to an end block 228.

Thus, the algorithm uses initialization data and an initial
point Xp, and loops until no structure is found near Xp. It
performs Gaussian fitting with the prior-constrained mean
shift constrained by prior repellers. It sets the m-th parsed
structure, the m+1-th prior, and performs a goodness of fit test
after the first iteration based on a chi-square measure. If the
initial fit is verified as a good fit, no further process is per-
formed. This IOR-based algorithm results in a set of blob
structures located near Xp.

Turning now to FIG. 3, a conceptual illustration of the
prior-constrained mean shift with a synthetic bimodal case is
indicated generally by the reference numeral 300. Here, the
schematic point A represents a repulsive or negative prior
constraint. The schematic point B represents an attractive or
positive prior constraint. The trajectory 310 indicates a data-
driven convergence, while the trajectory 312 indicates a prior-
constrained convergence.
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As shown in FIG. 4, a prior-constrained mean shift with
one-dimensional (1D) bimodal data is indicated generally by
the reference numeral 400. The input data 410 consists of two
Gaussian components centered at -1 and 3. The curves 412
with a 0.5 vertical bias show the scale-space function to be
optimized for each case. The “x” iterations 414 are initialized
at 3. The “+” 416 indicates convergence. At the top-left, a
scale-space mean shift (SSMS) 420 with a large bandwidth is
shown. At the top-right, another SSMS 430 with a small
bandwidth is shown. At the bottom-left, a variational attrac-
tor-constrained mean shift 440 is shown. The bottom-middle
shows a resampling-based repeller-constrained mean shift
450. The bottom-right shows a variational repeller-con-
strained mean shift 460.

Turning to FIG. 5, local data parsing by the inhibition of
return (IOR) is indicated generally by the reference numeral
500. Here, the center and the boundary of the target are
characterized by the mean and the covariance of the fitted
Gaussian. The basin of attraction of the mean by the scale-
space mean shift defines a data space neighborhood where the
model’s approximation is valid. In order to handle a range of
target sizes, a multiscale analysis with a set of discrete analy-
sis scales is carried out. For each analysis scale, the center and
the anisotropic spread are estimated by the mean shift proce-
dure followed by mode analysis using Gaussian fitting. The
mean is estimated by the convergence of the majority of data
points sampled around a point Xp by using the scale-space
mean shift. The spread is estimated by a constrained least-
squares solution to a set of linear matrix equations consisting
of L-normalized scale-space derivatives. The derivatives are
sampled along the convergent trajectories of the scale-space
mean shifts initialized at points around the estimated center.
The above scale-space analyses result in a set of estimate
pairs.

A stability-based scale/bandwidth selection process uses a
normal form of the Jensen-Shannon divergence criterion to
select the most stable estimate from among this set, and the
neighborhood parameter is set to 1. The resulting multiscale
Gaussian model fitting solution is robust against i) the influ-
ence from non-target neighboring structures by the robust
estimation technique to remove outliers using the mean shift
convergence, ii) the non-Gaussianity of the data by using a
stability-based scale selection criterion that is insensitive to
such modeling errors, and iii) the variations due to the initial-
ization Xp by using a robust extension to the least-squares
approach.

Turning now to FIG. 6, a two-step IOR-based data analysis
evaluated with 2D synthetic data is indicated generally by the
reference numeral 600. From is top-left to bottom-right: A)
input data, B) result of the initial Gaussian fit from the initial
point “+”, C) result of the second step with the prior-con-
strained MS capturing the tumor correctly, D) result of the
second step with the same data with white noise and different
initialization, E) initial weights, F) weights constrained by the
repulsive prior. When the initial fit fails according to the
measure, however, a repulsive prior is set and the next itera-
tion of the IOR algorithm is carried out. For example, two
iterations may be used.

As shown in FIG. 7, eight illustrative examples are indi-
cated generally by the reference numeral 700. The left three
columns show the original failed segmentation results in three
orthogonal cross-sections, respectively, while the right three
columns show the segmentation results with the prior con-
straints. Note that the original and the present results are
shown in different cross sections of the same volumes thus
they appear differently.
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In operation of preferred embodiments, a generalization of
the mean shift framework operates by providing a mechanism
to incorporate spatial priors for controlling where the mean
shift converges. The resultant formulation can be used to
incorporate other sources of information that are independent
of the data sample. Embodiments may include, for example,
1) user-assisted control in Computer-Aided Diagnosis (CAD)
through a user interface (UI), ii) incorporation of priors con-
structed from the information provided by domain-experts,
and iii) recursive parsing of multimodal data through post-
process convergence diagnostics. A key advantage of the
disclosed formulation is to detect hard-to-discover weak
modes in multimodal data. Mean-shift seeks data-modes
through kernel smoothing of the associated density function.
The analysis bandwidth may be chosen to optimize a perfor-
mance criterion and is dictated by global statistical properties
of data, such as noise, smoothness, and the like. Such smooth-
ing can, therefore, mask smaller modes located close to larger
ones. The small or weak modes might be very important in
certain situations, such as, for example, in CAD for detecting
convex-shaped tumors or nodules attached to large wall-like
or tubular structures. The present formulation enables the
mean shift algorithm to detect these weak modes.

Referring back to FIG. 3, such a situation is illustrated
using a bimodal density function with a weak and a strong
mode located nearby. Although initialization is carried out
nearer to the desirable mode, the data-driven convergence,
with the best choice of the bandwidth matrix, is to the farther
but stronger mode. The path of convergence is charted with
the solid arrow. Disclosed are two different types of priors: 1)
a repulsive prior, depicted as an ellipse and a data location by
point A, which pushes the convergence away from the data-
driven convergence, and ii) an attractive prior, depicted by
point B, which pulls the convergence towards the small target
mode. The dashed arrow shows the convergence path to the
desired mode for the prior-constrained mean shift. These
priors are modeled using a data point with a corresponding
region of confidence or distribution around it. More specifi-
cally, this distribution is modeled as a Gaussian function. This
results in a modified mean shift algorithm, each step of which
is a fusion of information from the data density mean shift and
the prior in the Best Linear Unbiased Estimator (BLUE)
sense.

There are several sources of information that can be incor-
porated through constructing priors. It is of great interest to
automatically construct such priors from the data itself for
recursively parsing the multimodal data. To address this task,
an Inhibition Of Return (IOR) algorithm is presented, which
recursively seeks data modes using the prior-constrained
mean shift algorithm. At each mode of convergence, robust
Gaussian model fitting is performed to construct a repulsive
prior, which enables the IOR algorithm to sequentially visit
all the data modes near the initialization point. This algorithm
is similar to the JOR-based visual attention model. The dis-
closed formulation is developed for the mean shift approach
as applied to the Gaussian scale-space. In alternate embodi-
ments, a more general framework may be used, such as, for
example, subsuming the Gaussian scale-space. These and
other modifications and embodiments will be apparent to
those of ordinary skill in the pertinent art based on the
description of exemplary embodiments provided herein.

The scale-space mean shift itself, together with automatic
scale selection, provides a powerful tool for vision problems
such as medical image segmentation, and scale and affine
invariant feature detection. The usefulness of the disclosed
framework is demonstrated for semi-automatic three-dimen-
sional (3D) segmentation of lung tumor nodules. In particu-
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6

lar, the results show that preferred embodiments can success-
fully segment the difficult wall-attached cases that other state-
of-the-art systems fail to segment.

In subsequent sections, the present disclosure summarizes
the general mean shift framework, and then describes the
prior-constrained mean shift formulation. Data-driven kernel
density estimates are modified to incorporate independent
priors and variational optimization theory is used to construct
bounds on the likelihood functions to derive provably con-
vergent mean-shift like mode-seeking algorithms. An exem-
plary problem domain, semi-automatic 3D segmentation of
lung tumor nodules, is introduced as the application test bed.
In addition, an IOR-based data-parsing algorithm is
described, which uses prior-constrained mean shift to address
the above problem. Empirical evaluation for the application
test bed shows the utility of the disclosed formulation in
segmenting the difficult wall-attached lung tumor nodules.

Mean Shift Algorithms are summarized here in terms of the
general mean shift framework. Kernel density estimation
(KDE) or Parzen windows is a data-driven nonparametric
technique for estimating the generative probability distribu-
tion associated with data samples. Given a sample set from a
random variable X, the kernel estimate for the underlying
density of the random variable X is a function of the associ-
ated bandwidth. Mean-shift is a popular hill-climbing algo-
rithm for iteratively seeking modes of such distributions and
clustering data according to the modes.

From an optimization-theory perspective, mean shift is a
variational optimization algorithm. For a class of density
kernels having convex profiles, the convexity property yields
quadratic lower bounds of the density. These quadratic lower
bound functions are then readily optimized to derive the next
location in the mean shift algorithm and guaranteed to con-
verge to a local maximum of the density function from any
given point in the data space. For the Epanechnikov kernel,
the algorithm is the well-known mean shift algorithm. For
other kernels, such as the Gaussian kernel, for example, it
leads to a mean shift step in the form of a weighted arithmetic
mean.

Beyond kernel density estimation, the mean shift frame-
work discussed above can be applied to a general class of
functions constructed using kernel smoothing. Since the
Gaussian scale-space can also be interpreted as a family of
kernel-smoothed functions, it is possible to derive a mean
shift algorithm in this domain.

Positive-valued image data may be analyzed with coordi-
nates indicating data pixel and/or voxel location. Gaussian
scale-space provides a solution to the diffusion equation with
an initial condition. It takes the form of convolution of the
image data with a Gaussian kernel. Scale-space mean shift
may be derived by maximizing the quadratic lower bound
constructed using the convexity of a profile, resulting in the
form proportional to the spatial gradient of the scale-space.

An iterative procedure over the discretized data space is
defined analogous to the density mean shift. The scale-space
mean shift vector can be understood as a mean shift with
positive-valued weights of intensity, by definition. The con-
vergence of such a weighted mean shift to the local maximum
of the scale-space L is also guaranteed.

Mean-shift analysis presented above is data-driven. That
is, it is not constrained by any top-down prior knowledge.
This section develops models for those scenarios when such
knowledge is indeed available, using mean shift constrained
by Gaussian priors.

Classical or density mean shift can be interpreted in the
following Maximum Likelihood (ML) sense. Given data
samples, a kernel density estimate is used to predict the like-
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lihood distribution of X. A mean-shift algorithm can then be
understood as an ML estimator if the distribution is unimodal.
In case of a multimodal distribution of X, each locally maxi-
mum likelihood location can be parsed and the ML estimate
can be found. Mode parsing is discussed later in this disclo-
sure.

Suppose now that the present embodiments have another
source of information for X. Under the condition of indepen-
dence, the likelihood from this source can then be multiplied
to constrain the likelihood from the kernel density estimator.
The constrained mean shift formulae for Gaussian scale-
space is derived by treating L.(x;h) as a pseudo-likelihood.
However, the results can be readily extended to the general
true likelihoods such as the original density mean shift.

For the case of an attractive prior, let such a prior for X be
given by a Gaussian distribution. This prior can be used to
bias or attract the solution towards a pre-conceived point in
the data space. Hence the present embodiments call it an
attractive prior. The Gaussian scale-space function can be
rewritten in the discretized data space as a Gaussian-weighted
image intensity function summed over N, the number of data
points or pixels. By treating the Gaussian scale-space as a
likelihood function, the present embodiments multiplica-
tively modify the likelihood with the prior, resulting in the
constrained scale-space function. When there are multiple
independent priors, the likelihood function can be determined
by using the same method sequentially. The constrained mean
shift vector is derived as a variational quadratic bound opti-
mizer of the constrained scale-space likelihood.

The convergence of the associated mean shift procedure is
guaranteed. Note the equivalence of the constrained mean
shift step to the Best Linear Un-biased Estimator (BLUE)
with two independent Gaussian information sources. Thus,
each derived step can be interpreted as a BLUE fusion of the
Gaussian prior and the data-driven scale-space mean shift.
The confidence level the present embodiments associate with
the prior can be controlled by varying the parameters. As the
present embodiments decrease a parameter, the confidence in
the prior increases. With the highest confidence, the solution
reduces to the most likely spatial point indicated by the prior.
On the other hand, as the parameter increases, the confidence
in the prior decreases. The mean shift step converges to the
original scale-space mean shift step.

In some situations, the prior information available can be in
form of a negation or repulsive prior. That is, it is unlikely for
a certain parameter to take some specific values. Such a prior
can be used to repel or push away the convergence from a
given point. Thus the present embodiments call it a repulsive
prior and define it with the inverse Gaussian form using the
positive Gaussian prior appropriately truncated and normal-
ized over a finite domain.

To incorporate the repulsive prior, the present embodi-
ments draw from the theory of data resampling. One way to
incorporate priors is to resample, or to associate weights to
already available data to denote the notion that some data
points are more likely to occur than others. This second option
of associating weights lets us define kernel density estimates
that are biased by prior knowledge. With each observation, let
us associate prior-induced positive weights. For the case with
multiple priors, the present embodiments may define multiple
weights. For a single repulsive Gaussian prior, the modified
scale-space function can be derived. For the mean shift vector
with the repulsive or negative Gaussian constraint, it is
straightforward to show the mean shift step.

The convergence property is maintained for the mean shift
procedure with this form of optimizer steps. On the other
hand, the present embodiments can treat a pseudo-likelihood
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by imposing an appropriate normalization. Therefore, it is
possible to consider constraining the kernel-smoothed likeli-
hood multiplicatively as described above, resulting in a con-
strained likelihood.

Variational optimization is not as straightforward since the
second negative term cannot be lower-bounded by using the
convex property of the exponential kernel. In fact, a quadratic
upper bound of the exponential is required for the desired
variational transformation. An analytic expression of such a
quadratic upper bound can be derived by constructing the
first-order Taylor series expansion of the kernel function. The
quadratic Lagrange remainder term is then maximized over
the free variable to yield a quadratic upper bound for the
remainder term. Since this upper bound provides a quadratic
lower bound to the negative term, the present embodiments
can derive a mean-shift formulation to seek the mode along
lines similar to the positive prior case.

The derived optimizer step can be interpreted as the BLUE
fusion of two Gaussian sources with more complex mean and
covariance terms than the attractive case. Note that when the
current point XQ is asymptotically far from the prior located
at the point “a”, the mean-shift step reduces to be the simpli-
fied BLUE fusion of the data-driven scale-space mean shift
step and “a”.

Referring back to FIG. 4, a prior-constrained mean shift
with 1D bimodal data. The input data 410 consists of two
Gaussian components centered at —1 and 3. The solid curve
412 with a 0.5 vertical bias show the function to be optimized
for each case. This synthetic example shows 1D simulation of
the prior-constrained mean shift algorithms with the attrac-
tive and repulsive priors. The 1D bimodal image data illus-
trates a situation similar to that of FIG. 3. As shown in the
figure, the initialized scale-space mean shift converges to the
stronger right peak (top-left), missing the weaker left peak
that can be found with a smaller analysis bandwidth (top-
right). Using the same bandwidth, the prior-constrained mean
shift algorithms are controlled to converge to the weaker peak
by setting the attractive (bottom-left) and repulsive (bottom-
middle and bottom-right) priors appropriately (shown in dot-
dashed curves).

As a practical application of the above framework, the
present embodiments apply the prior-constrained mean shift
algorithm to the semi-automatic segmentation problem, or
semi-automatic blob segmentation using robust Gaussian fit-
ting. The present embodiments follow the robust scale-space
Gaussian fitting approach and describe it briefly below. The
problem is to segment a multivariate blob-like target structure
indicated roughly by a single initialization marker Xp placed
by a user. The segmentation is provided by a process that finds
blob structures in the data and uses mean shift to robustly fit
a following Gaussian-based model.

Referring back to FIG. 5, local data parsing by the inhibi-
tion of return is discussed. Here, the center and the boundary
of the target is characterized by the mean and the covariance
of'the fitted Gaussian. The basin of attraction of the mean by
the scale-space mean shift defines a data space neighborhood
where the model’s approximation is valid. In order to handle
a range of target sizes, a multiscale analysis with a set of
discrete analysis scales is carried out. For each analysis scale,
the center and the anisotropic spread are estimated by the
mean shift procedure followed by mode analysis using Gaus-
sian fitting. The mean is estimated by the convergence of the
majority of data points sampled around Xp by using the
scale-space mean shift. The spread is estimated by a con-
strained least-squares solution to a set of linear matrix equa-
tions consisting of [.-normalized scale-space derivatives. The
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derivatives are sampled along the convergent trajectories of
the scale-space mean shifts initialized at points around the
estimated center.

The above scale-space analyses result in a set of estimate
pairs. A stability-based scale/bandwidth selection process
uses a normal form of the Jensen-Shannon divergence crite-
rion to select the most stable estimate from among this set,
and the neighborhood parameter a is set to 1. The resulting
multiscale Gaussian model fitting solution is robust against i)
the influence from non-target neighboring structures by the
robust estimation technique to remove outliers using the
mean shift convergence, ii) the non-Gaussianity of the data by
using a stability-based scale selection criterion that is insen-
sitive to such modeling errors, and iii) the variations due to the
initialization Xp by using a robust extension to the least-
squares approach.

Local data parsing by inhibition of return is now discussed.
Automatic data and mode parsing algorithms are useful for
representing and processing structures in multimodal data.
However they suffer from the same inability to detect weak
data modes as was discussed in the background. In an earlier
section, the present embodiments disclosed the prior-con-
strained mean shift as a solution to detect these modes. To
solve the parsing problem, the present embodiments disclose
anovel inhibition of return (IOR) framework using the prior-
constrained mean shift. The idea here is to iteratively perform
the aforementioned Gaussian fitting-based segmentation by
successively setting repulsive priors at the consecutive points
of mean shift convergence. The present embodiments use the
resampling-based repulsive prior disclosed above.

Use of the variational repulsive prior in this context and its
comparative analysis is also of interest. This procedure
traverses from mode to mode starting from an arbitrary initial
point, parsing all the blob-like data structures located nearby
as illustrated in FIG. 5. This parsing process is efficient
because each detected mode is inhibited from being revisited
by setting a repulsive prior. This IOR concept was first sug-
gested for a computational model of visual attention. How-
ever, that neural network-based implementation is unlike the
present approach.

Referring back to FIG. 2, the following describes the algo-
rithm using initialization data and initial point Xp. Loop until
no structure is found near Xp. Perform Gaussian fitting with
the prior-constrained mean shift constrained by repellers,
followed by saving the m-th parsed structure and setting the
m+]-th prior. This IOR-based algorithm results in a set of
parsed blob structures located near Xp.

In an exemplary lung nodule segmentation application, the
present embodiments apply a 3D implementation of the [OR-
based local data analysis to semi-automatic segmentation of
Iung nodules. In the past decades, a large amount of work has
been done in computer-aided detection and segmentation of
lung nodules towards improving mortality rates of lung can-
cers. Recently, more sophisticated solutions for this purpose
have been disclosed by taking advantage of increased image
quality and resolution with the enhanced computed tomogra-
phy (CT) scanners. Despite the improvements, however, the
problem remains open due to the data’s natural complexity.
For example, many lung nodules are attached or located
nearby other non-target structures such as lung wall and ves-
sels. Because the intensity values of these structures can be
similar to those of the nodules, separating them from such
structures is not trivial.

The scale-space Gaussian fitting solution described in a
section above addresses this issue by incorporating geometric
constraints, however it still fails to segment many nodules
located near or attached to neighboring structures as shown in
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FIG. 5. These failures are caused because the target nodules
are located near rib bones, which have much higher intensity
values than nodules, thus falsely attracting the scale-space
mean shift convergence. This is precisely the situation, as
illustrated in FIG. 3, in which the prior-constrained mean shift
framework is designed to be effective. The present embodi-
ments disclose an IOR-based solution for this purpose. After
the first iteration, the present embodiments perform a good-
ness of fit test based on chi-square measure after the step 2. If
the initial fit is verified as a good fit, no further process is
performed.

Referring back to FIG. 6, a two-step IOR-based data analy-
sis evaluated with 2D synthetic or toy data will be addressed.
For testing the feasibility, the present embodiments first
evaluated a 2D version of the system on synthetic data as
shown in FIG. 6. Emulating the wall-attached nodule case, the
data is constructed with a step function for lung wall, a large
Gaussian with higher intensity for bone, and a small truncated
Gaussian with lower intensity for wall-attached nodule. The
results demonstrate that our solution correctly finds and seg-
ments the difficult target structure with the presence of a
stronger mode, white noise, and variation in the initialization
as shown in the middle row of FIG. 6.

A 3D implementation of the two-step IOR data-parsing
algorithm is applied to a clinical data set of the thin-section
(1.25 mm slice thickness) chest high-resolution computed
tomography (HRCT) images, including 39 patients with a
total 0f 1310 nodules. The data is recorded with Multislice CT
scanners and anonymatized. Each volumetric image consists
of 12-bit positive values over an array of 512x512 lattices.
The implementation of the Gaussian fitting algorithm follows
the settings described. This resulted in 106 verified failure
cases. Most of these failures were the wall-attached cases and
they were correctly segmented by our data parsing solution
with the prior-constrained mean shifts.

Referring back to FIG. 7, eight illustrative examples for
such cases are shown. The eight examples of 3D tumor seg-
mentation results are shown with and without the repulsive
prior. Each row shows the results for each example. The left
three columns show the original failed segmentation results in
three orthogonal cross-sections, respectively, while the right
three columns show the segmentation results with the prior
constraints. The ellipses indicate an image-plane intersection
0t'35% confidence ellipsoid of the estimated Gaussian. Note
that the original and our results are shown in different cross
sections of the same volumes, thus they appear differently.

The present disclosure has introduced a novel framework
for incorporating spatial priors to the mean shift-based data-
driven mode analysis. The present embodiments introduce
attractive and repulsive priors in the Gaussian form into the
scale-space mean shift framework. The present embodiments
also disclose two novel, provably convergent, modified mean-
shift algorithm embodiments. Variational optimization tech-
niques are used to derive the algorithms by finding quadratic
bounds to the Gaussian kernel. In particular, the present
embodiments disclose a novel quadratic upper bound to the
Gaussian kernel. Further, the present embodiments disclose a
mode-parsing algorithm based on the IOR approach using the
prior-constrained mean shift formulation. This algorithm is
then successfully applied to the semi-automatic 3D lung
tumor segmentation problem to segment difficult wall-at-
tached cases. Another contribution is the result showing that
the prior-constrained mean shift step can be understood as an
information fusion of the data for scale-space mean shift, and
the prior in the sense of the Best Linear Unbiased Estimator.

The present disclosure sets forth a general framework for
combining data-driven statistical analysis with prior informa-
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tion in order to provide effective and usable vision solutions.
The contributions of the present disclosure are general, and
the disclosed formulation can be extended in at least the
following ways in alternate embodiments: i) defining the
prior-constrained mean shift in the kernel density estimate
domain, ii) modeling the prior with a mixture of Gaussians,
iii) applications other than segmentation such as tracking, and
iv) adapting the IOR-based mode parsing algorithm to more
flexible visual search by updating the initialization at each
convergence.

It is to be understood that the teachings of the present
disclosure may be implemented in various forms of hardware,
software, firmware, special purpose processors, or combina-
tions thereof. Most preferably, the teachings of the present
disclosure are implemented as a combination of hardware and
software.

Moreover, the software is preferably implemented as an
application program tangibly embodied on a program storage
unit. The application program may be uploaded to, and
executed by, a machine comprising any suitable architecture.
Preferably, the machine is implemented on a computer plat-
form having hardware such as one or more central processing
units (CPU), a random access memory (RAM), and input/
output (I/O) interfaces.

The computer platform may also include an operating sys-
tem and microinstruction code. The various processes and
functions described herein may be either part of the microin-
struction code or part of the application program, or any
combination thereof, which may be executed by a CPU. In
addition, various other peripheral units may be connected to
the computer platform such as an additional data storage unit
and a printing unit.

It is to be further understood that, because some of the
constituent system components and methods depicted in the
accompanying drawings are preferably implemented in soft-
ware, the actual connections between the system components
or the process function blocks may differ depending upon the
manner in which the present disclosure is programmed.
Given the teachings herein, one of ordinary skill in the perti-
nent art will be able to contemplate these and similar imple-
mentations or configurations of the present disclosure.

Although illustrative embodiments have been described
herein with reference to the accompanying drawings, it is to
be understood that the present disclosure is not limited to
those precise embodiments, and that various changes and
modifications may be effected therein by one of ordinary skill
in the pertinent art without departing from the scope or spirit
of the present disclosure. All such changes and modifications
are intended to be included within the scope of the present
disclosure as set forth in the appended claims.

What is claimed is:

1. A method for identifying a structure of interest within
image data, comprising:

receiving image data;

receiving an initial point within the received image data;

transforming the received image data into a scale-space;

performing geometric fitting using prior-constrained mean
shift on the scale-space image data to identify a structure
candidate in a vicinity of the initial point;

using the identified structure candidate to set up a prior

constraint for subsequent iterations;

presenting the identified structure candidate to a user and

querying the user to determine whether the identified
structure candidate is a structure of interest; and

when the identified structure candidate is determined to not

be a structure of interest, repeating the steps of perform-
ing geometric fitting using prior-constrained mean shift
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and presenting an identified structure candidate until it is
determined that an identified structure candidate is a
structure of interest,

wherein the above steps are performed by a computer
system.

2. The method of claim 1, wherein each time the step of
geometric fitting is performed, a new point is selected in place
of a previous point, the new point being in proximity to the
previous point such that a non-repetitive sequence of geomet-
ric structures are identified within the image data via an
automatic exploration of the image data that starts from the
initial point.

3. The method of claim 2, wherein a repulsive prior is used
to ensure that each selected new point is different from pre-
viously selected points.

4. The method of claim 2, wherein an attractive prior is
used to ensure that each selected new point is different from
previously selected points.

5. The method of claim 1, wherein the geometric fitting is
a Gaussian fitting.

6. The method of claim 1, wherein repeating the steps of
performing geometric fitting and presenting an identified
structure candidate utilizes inhibition of return (IOR) using a
repulsive prior to ensure that geometric fitting provides a
different identified structure candidate at each repetition.

7. The method of claim 1, wherein a goodness fit is per-
formed on the identified structure candidate prior to present-
ing the identified structure candidate.

8. The method of claim 1, wherein the step of geometric
fitting includes utilizing an adaptive gradient ascent tech-
nique with automatic step-size selection that is convergent to
a mode of a kernel-smoothed estimate of a Gaussian function
surface.

9. The method of claim 1, wherein the identified structure
candidate is a mode in the scale-space representation of the
image data.

10. The method of claim 1, wherein the identified structure
candidate is a mode in a kernel density estimate on data
sample corresponding to the image data.

11. The method of claim 1, wherein the image data com-
prises three-dimensional computed tomography (CT) data
and the identified structure candidate is indicative of a lung
nodule.

12. The method of claim 11, wherein the identified the
structure candidate comprises semi-automatic segmentation
of wall-attached lung nodules.

13. A system for identifying a structure of interest within
image data, comprising:

an image receiving unit for receiving image data;

a first graphical user interface for displaying the received
image data and soliciting an initial point within the
received image data from a user;

an image processing unit for transforming the received
image data into a scale-space for performing geometric
fitting using prior-constrained mean shift on the scale-
space image data to identify a structure candidate in a
vicinity of the initial point and for setting up a prior
constraint for subsequent iterations; and

a second graphical user interface for presenting the identi-
fied structure candidate to a user and querying the user to
determine whether the identified structure candidate is a
structure of interest,

wherein when the identified structure candidate is deter-
mined to not be a structure of interest, performing geo-
metric fitting using prior-constrained mean shift and
presenting an identified structure candidate are repeated
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until it is determined that an identified structure candi-
date is a structure of interest.

14. The system of claim 13, wherein each time the step of
geometric fitting is performed, a new point is selected in place
a previous point, the new point being in proximity to the
previous point such that a non-repetitive sequence of geomet-
ric structures are identified within the image data via an
automatic exploration of the image data that starts from the
initial point.

15. The system of claim 13, wherein the geometric fitting is
a Gaussian fitting.

16. The system of claim 13, wherein repeating the steps of
performing geometric fitting and presenting an identified
structure candidate utilizes inhibition of return (IOR) using a
repulsive prior to ensure that geometric fitting provides a
different identified structure candidate at each repetition.

17. The system of claim 13, wherein a goodness fit is
performed on the identified structure candidate prior to pre-
senting the identified structure candidate.

18. The system of claim 13, wherein the geometric fitting
includes utilizing an adaptive gradient ascent technique with
automatic step-size selection that is convergent to a mode of
a kernel-smoothed estimate of a Gaussian function surface.

19. A computer system comprising:

aprocessor; and

aprogram storage device readable by the computer system,

embodying a program of instructions executable by the

25

14

processor to perform method steps for identifying a
structure of interest within image data, the method com-
prising:

receiving image data;

receiving an initial point within the received image data;

transforming the received image data into a scale-space;

performing geometric fitting using prior-constrained mean
shift on the scale-space image data to identify a structure
candidate in a vicinity of the initial point;

using the identified structure candidate to set up a prior

constraint for subsequent iterations;

presenting the identified structure candidate to a user and

querying the user to determine whether the identified
structure candidate is a structure of interest; and

when the identified structure candidate is determined to not

be a structure of interest, repeating the steps of perform-
ing geometric fitting using prior-constrained mean shift
and presenting an identified structure candidate until it is
determined that an identified structure candidate is a
structure of interest.

20. The computer system of claim 19, wherein each time
the step of geometric fitting is performed, a new point is
selected in place of the initial point, the new point being in
proximity to the initial point such that a non-repetitive
sequence of geometric structures are identified within the
image data via an automatic exploration of the image data that
starts from a vicinity of the initial point.

#* #* #* #* #*
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