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SCALE SELECTION FOR ANISOTROPIC
SCALE-SPACE: APPLICATION TO
VOLUMETRIC TUMOR
CHARACTERIZATION

This application claims priority to U.S. Provisional Appli-
cation Ser. No. 60/523,129, filed on Nov. 18, 2003, which is
herein incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to volumetric image data
characterization, and more particularly to a system and
method for treating a scale selection problem in the anisotro-
pic scale-space.

2. Description of Related Art

Gaussian scale-space theory offers a general paradigm for
analyzing various image features of arbitrary size. One of its
useful attributes is the maximum-over-scales property of the
y-normalized derivatives. Under the maximum-over-scales
approach, the characteristic scale of a feature at the spatial
local maximum location corresponds to the bandwidth of the
Gaussian kernel that provides the local maximum of the nor-
malized derivatives over the varying bandwidths at the loca-
tion. This is a proposed solution to the general scale selection
problem: given a set of analysis scales (bandwidths), find the
analysis scale that provides the best estimate of the local
feature’s scale or other properties. The theory has been stud-
ied extensively and applied to various problems. However,
the main focuses have been on the scale-space functions that
model either the isotropic homogeneous or anisotropic inho-
mogeneous diffusion processes.

Therefore, a need exists for a system and method for treat-
ing a scale selection problem in the anisotropic scale-space

SUMMARY OF THE INVENTION

According to an embodiment of the present disclosure, a
method for determining a structure in volumetric data com-
prises determining an anisotropic scale-space for a local
region around a given spatial local maximum, determining
L-normalized scale-space derivatives in the anisotropic scale-
space, and determining the presence of noise in the volumet-
ric data and upon determining noise in the volumetric data,
determining the structure by a most-stable-over-scales deter-
mination, and upon determining noise below a desirable
level, determining the structure by one of the most-stable-
over-scales determination and a maximum-over-scales deter-
mination.

The most-stable-over-scales determination comprises
determining a plurality of covariance estimates over an analy-
sis scale set, and determining a covariance estimate from
among the plurality of covariance estimates having a mini-
mum Jensen-Shannon divergence, wherein the covariance
estimate defines a spread of the structure. The analysis scale
set is a given set of bandwidths over the volumetric data.

The a maximum-over-scales determination comprises
determining Gamma- and L-normalized scale-space deriva-
tives over an analysis scale set, and selecting a scale having a
maximum normalized scale-space derivative, wherein the
scale is a covariance defining a spread of the structure. The
Gamma- and L-normalized scale-space derivatives are deter-
mined with a constant normal having a Gamma- equal to Y5.
The analysis scale set is a given set of bandwidths over the
volumetric data.
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The spatial local maximum indicates a location of the
structure in the volumetric data.

According to an embodiment of the present disclosure a
method for determining a structure in volumetric data com-
prises providing an analysis scale set over the volumetric
data, determining a plurality of covariance estimates over the
analysis scale set, and determining a covariance estimate
from among the plurality of covariance estimates having a
maximum stability, wherein the covariance estimate defines a
spread of the structure. The analysis scale set is a set of
bandwidths over the volumetric data. The maximum stability
is determined according to a minimum Jensen-Shannon
divergence. Each covariance estimate corresponds to a mea-
surement pair around a spatial local maximum, wherein a
sampling range of the measurement pairs is measured by a
signal variance.

According to an embodiment of the present disclosure, a
program storage device is provided readable by machine,
tangibly embodying a program of instructions executable by
the machine to perform method steps for determining a struc-
ture in volumetric data. The method steps comprises deter-
mining an anisotropic scale-space for a local region around a
given spatial local maximum, determining [.-normalized
scale-space derivatives in the anisotropic scale-space, and
determining the presence of noise in the volumetric data and
upon determining noise in the volumetric data, determining
the structure by a most-stable-over-scales determination, and
upon determining noise below a desirable level, determining
the structure by one of the most-stable-over-scales determi-
nation and a maximum-over-scales determination.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will be
described below in more detail, with reference to the accom-
panying drawings:

FIG. 1 is a flow chart illustrating a method according to an
embodiment of the present disclosure;

FIG. 2 is a diagram of a system according to an embodi-
ment of the present disclosure;

FIGS. 3A-B is a flow chart illustrating a method according
to an embodiment of the present disclosure;

FIGS. 4A-D are graphs of results obtains using a maxi-
mum-over-scales method according to an embodiment of the
present disclosure;

FIGS. 5A-C are graphs of results obtains using a most-
stable-over-scales method according to an embodiment of the
present disclosure;

FIGS. 6A-C are graphs illustrating 1D synthetic data with
noise according to an embodiment of the present disclosure;

FIGS. 7A-C are graphs illustrating a variance estimation
obtained using a maximum-over-scales for first order (i) and
second order (ii) and (iii) methods according to an embodi-
ment of the present disclosure;

FIGS. 8A-C are graphs illustrating a variance estimation
obtained using a most-stable-over-scales method where the
variance or the target is estimated from samples within +0.10
(1), £1.00 (ii), and +2.00 (iii) according to an embodiment of
the present disclosure;

FIGS. 9A-C are graphs illustrating average variance esti-
mation errors of a most-stable-over-scales method according
to an embodiment of the present disclosure;

FIGS. 10A-H are images illustrating 2D synthetic data
including a target and random noise according to an embodi-
ment of the present disclosure; and
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FIGS. 11A-H are images illustrating 3D spread estima-
tions of lung tumors in 3D HRCT data using a most-stable-
over-scales method according to an embodiment of the
present disclosure.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

According to an embodiment of the present disclosure, a
scale selection problem in an anisotropic scale-space may be
treated. The anisotropic scale-space is a generalization of the
classical isotropic Gaussian scale-space by considering the
Gaussian kernel with a fully parameterized analysis scale
(bandwidth) matrix.

Referring to FIG. 1, for an anisotropic scale-space is deter-
mined around a local region and a given spatial local maxi-
mum in image data 101. The spatial local maximum, e.g., a
location of a tumor in the image data, may be, for example,
provided manually by a radiologist. Alternatively, a mode
seeking method based on a mean shift procedure may be
employed to determine a spatial local maximum prior to the
covariance estimation. The maximum-over-scales 103 and
the most-stable-over-scales 104 criteria are constructed by
employing the [.-normalized scale-space derivatives 102. The
L-normalized scale-space derivatives are response-normal-
ized derivatives in the anisotropic scale-space. This extension
allows for directly analyzing the anisotropic (ellipsoidal)
shape of local structures. According to an embodiment of the
present disclosure, the norm of the y- and L.-normalized aniso-
tropic scale-space derivatives with a constant y='2 are maxi-
mized regardless of the signal’s dimension if the analysis
scale matrix is equal to the signal’s covariance. The most-
stable-over-scales criterion with the isotropic scale-space
outperforms the maximum-over-scales criterion in the pres-
ence of noise. At block 105, upon determining noise in the
data, the most-stable-over-scales method may be selected.
Where noise is not determined to be present, either maxi-
mum-over-scales methods or most-stable-over-scales meth-
ods may be implemented. The determination of whether noise
is present in the data may be made for example, manually or
determined according to a threshold local variance of the
data. One of ordinary skill in the art would appreciate that
various methods for determining noise in data may be used.

Experiments with 1D and 2D synthetic data have been
preformed. 3D implementations of the most-stable-over-
scales methods are applied to the problem of estimating
anisotropic spreads of pulmonary tumors shown in high-
resolution computed tomography (HRCT) images. First- and
second-order methods have been demonstrated.

It is to be understood that the present invention may be
implemented in various forms of hardware, software, firm-
ware, special purpose processors, or a combination thereof. In
one embodiment, the present invention may be implemented
in software as an application program tangibly embodied on
a program storage device. The application program may be
uploaded to, and executed by, a machine comprising any
suitable architecture.

Referring to FIG. 2, according to an embodiment of the
present disclosure, a computer system 201 for determining a
scale selection for an anisotropic scale-space can comprise,
inter alia, a central processing unit (CPU) 202, a memory 203
and an input/output (I/O) interface 204. The computer system
201 is generally coupled through the 1/O interface 204 to a
display 205 and various input devices 206 such as a mouse
and keyboard. The support circuits can include circuits such
as cache, power supplies, clock circuits, and a communica-
tions bus. The memory 203 can include random access
memory (RAM), read only memory (ROM), disk drive, tape
drive, etc., or a combination thereof. The present invention
can be implemented as a routine 207 that is stored in memory
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203 and executed by the CPU 202 to process the signal from
the signal source 208, such as a CT scanner. As such, the
computer system 201 is a general-purpose computer system
that becomes a specific purpose computer system when
executing the routine 207 of the present invention.

The computer platform 201 also includes an operating
system and microinstruction code. The various processes and
functions described herein may either be part of the microin-
struction code or part of the application program (or a com-
bination thereof), which is executed via the operating system.
In addition, various other peripheral devices may be con-
nected to the computer platform such as an additional data
storage device and a printing device.

It is to be further understood that, because some of the
constituent system components and method steps depicted in
the accompanying figures may be implemented in software,
the actual connections between the system components (or
the process steps) may differ depending upon the manner in
which the present invention is programmed. Given the teach-
ings of the present invention provided herein, one of ordinary
skill in the related art will be able to contemplate these and
similar implementations or configurations of the present
invention.

According to an embodiment of the present disclosure,
anisotropic scale-space as a solution to the anisotropic homo-
geneous diffusion equation. The anisotropic scale-space is
characterized by a fully parameterized analysis scale matrix
and is a generalization of the classical isotropic Gaussian
scale-space. This extension allows for the directly analysis of
the anisotropic (ellipsoidal) shape of the local structures. The
scale-space analysis can be interpreted as the covariance esti-
mation of signals locally modeled by a Gaussian-based func-
tion.

Scale selection frameworks according to an embodiment
of'the present disclosure may be divided into maximum-over-
scales 103 and most-stable-over-scales 104 criteria, con-
structed from L-normalized scale-space derivatives 102,
which are response-normalized derivatives in the anisotropic
scale-space. For practical consideration, the isotropic scale-
space is employed for constructing the most-stable-over-
scales 104 criterion. By considering local Gaussian-like
(blob-like) structures, a number of scale selection solutions
are derived from the first- and second-order normalized
derivatives. In applications, the second-order blob feature
may provide information about target structures such as
tumors in medical imaging or faces in surveillance applica-
tions.

The norm of the y- and L-normalized anisotropic scale-
space derivatives with a constant y="2 exhibit the maximum-
over-scales property regardless of the signal’s dimension for
both the use of the first- and second-order derivatives. Further,
the most-stable-over-scales criterion with the isotropic scale-
space outperforms the maximum-over-scales criterion in the
presence of noise. Experiments with 1D and 2D synthetic
data are conducted to validate these findings. 3D implemen-
tations of the proposed methods have been applied to the
problem of estimating anisotropic spreads of pulmonary
tumors shown in high-resolution computed-tomography
(HRCT) images. Comparison of the first- and second-order
methods indicates the advantage of exploiting the second-
order information.

Referring to the anisotropic scale-space, given a d-variate
continuous positive signal f(x), the local region of f forming
a Gaussian like structure around a spatial local maximum u
can be approximated by a product of a d-variate Gaussian
function and a positive multiplicative parameter,

Fx)=axd(x; u, 2)lxes ®

where S is a set of data points in the neighborhood of u,
belonging to the basin of attraction of u, and ®(x;u,2)=
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(2 21217 2exp(-Va(x—u)2 ™! (x—1)). The co-variance T of
@ describes the spread of the local Gaussian like structure. Its
anisotropy can be specified only by a fully parameterized
covariance.

The Gaussian scale-space is a one-parameter family of a
d-variate continuous signal f provided by a convolution with
isotropic Gaussian kernels ®(x;0,H=hI) with varying analy-
sis scales (bandwidths) h=0.

L(x; H)y=§(x)*®(x; 0, H) @
Such a linear scale-space is known to be a solution of the
isotropic diffusion equation 3,1 =/2V>L.

The anisotropic scale-space may be defined as a generali-
zation of Eq. (2) by considering a fully parameterized sym-

metric positive definite analysis scale matrix H e SPD € R,
where SPD denotes the set of symmetric positive definite
matrices. The anisotropic scale-space 101 is a solution to the
anisotropic homogeneous diffusion 8,1 =%%VV‘L. It should
not be confused with the well-known anisotropic diffusion,
which models inhomogeneous diffusion processes.

The nth-order derivatives of L(x;H) can be derived by
convolving the signal f(x) with the nth-order Gaussian deriva-
tive kernels since the differential operators commute across
the convolution operations. Thus, scale-space gradient vector

G(x;H) € R? and scale-space Hessian matrix P(x;H) e R4
are defined by,

G(x; Hy=VLix; H) 3
= f(x)x®(x; HH ' (-x)
P(x; H)=VV' Lix; H) )

= f) =D HYH (o' — H)H !

By substituting Eq. (1) to Eq. (2), Eq. (3), and Eq. (4), ana-
lytical formula of the scale-space L and its derivatives G and
P are derived as functions of a Gaussian with a covariance
matrix 2+H,

L(x; H=ad(x; u, Z+H) (5)

G(x; Hy=o®(x; u, Z+H) S+H) ' (u-x) (6)

P(x; H) = (7

adx; u, 2+ HE+ H e —x)wu—x) —E+H]E+H)™

L-normalized derivatives 102 defined by the point-wise
division of the scale-space derivatives are introduced by the
corresponding scale-space. [.-normalized scale-space gradi-
ent vector G, and Hessian matrix P, are defined by,

Gilx; )_G!:(;”) ( )1(_) ®
1(x; H) = - )_§+H Uu—Xx

Px; H 9
Pix; H) = E ; ®

=C+H)  wu-u-xC+H) " -+ H)!

They are response-normalized derivatives in the scale-space
and vanish both the multiplicative parameter and the expo-
nential term from the derivative formulae. Both L-normalized
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6

scale-space gradient and Hessian may be determined since
L(x;H) is non-zero within a finite range with positive f(x).

Given a Gaussian scale-space, some scale-space derivative
functions normalized by the analysis scale raised to the power
of'a real upper-bounded value y assume their local maximum
at the characteristic scale of the target feature. For the d-vari-
ate local Gaussian-like structures, the y-normalized Lapla-
cian with y=(d+2)/4 evaluated at a spatial local maximum,
tr(H“*2*P(u;H)), is locally maximized over scales when the
analysis scale his equal to the signal’s variance o2, where “tr”
denotes the trace of a dxd matrix, H=hI, and ==c°1. This
maximum-over-scales property holds for the anisotropic
scale-space with fully parameterized H and Z.

Referring to FIG. 3A, a maximum-over-scales criterion is
constructed with the norm of the y-normalization of the
L-normalized scale-space derivatives 301. According to an
embodiment of the present disclosure, a constant y=V% gives
rise to the maximum-over-scales property regardless of the
signal’s dimensions for both the first- and second-order cases
302. The spatial local maximum location u is assumed to be
known hereafter. For notational simplicity, the function argu-
ments of G,(x;H) and P,(x;H) are omitted unless they are
evaluated at a specific location.

For the first-order determination, using Eq. (8), a y-normal-
ization of the L-normalized scale-s}pace gradient vector with
1=Y4 is expressed by HY?G~H"?E+H)-1(u-x). The L,
norm of the normalized gradient is considered,

2G| =S ™ =5l (10)
Rewriting this equation with the mean shift vector m(x;H)
results in |[H2G,|,=||H~*"2m]|,. This demonstrates that the L,
norm is equivalent with the magnitude of the bandwidth-
normalized mean shift vector. The theorem states that such
magnitude exhibits the maximum-over-scales property with
H=Z. Thus, the L, norm of the y- and L-normalized scale-
space gradient vector possesses the maximum-over-scales
property. This criterion holds at arbitrary locations x € S
except at u as shown in FIG. 4A.

Referring now to the second-order determinations, two
types of second-order scale selection methods are considered.
First, a solution only with the Hessian matrix is examined.
Using Eq. (9), the y-normalization of the [.-normalized scale-
space Hessian matrix with y=V5 is expressed by H"2P ">
G,G,/~H"(Z+H)™'. When evaluated at the spatial maximum
u, the normalized Hessian is reduced to the following form
since G, becomes zero: HY?P,(u;H)=-H"*Z+H)™!. The
Frobenius matrix norm of this derivative matrix function is
given by,

WP (u; E)le= |24 | an

The following maximum-over-scales method is obtained
using Eq. (11),

Proposition 1

The Frobenius norm of the y- and L-normalized scale-
space Hessian matrix with y=1% is maximized when the fully
parameterized analysis scale matrix H € SPD is equal to Z.

Proof

Defining (H)=]|[H"?P,(u;H)||; the proposition must be
true if n(2)*-n(H)? is greater or equal to zero with equality if
H=2. Recall that ¥ and H are symmetric positive definite
matrices. Thus,

n®? =k = |[ERE 2 - e 7 @b

= %tr(Z’”zZ’”z) —(E+H ' HE+ ™Y
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-continued
1
= Ztr(Z’l A+ H)'HE+H™

- %n((z +HYYHES - DS+ HY Y

Since X and H are positive definite, all the matrices inside
the trace in Eq. (21) are also positive definite. Since the trace
of a positive definite matrix is positive valued, N(Z)*-n
(H)*z0. The equality holds if H=X.

Proposition 1 is true at the spatial maximum u as shown in
FIG. 4C. The d-variate y-normalized Laplacian can be
expressed as a matrix trace:

tr(H 24P H))=-Lu;H)r(H 2 4Z+H)™). Also the

Frobenius norm in Eq. (11) can be expressed by

IH2P,(u;H)||;>=tr(C+H)'"HE+H)™"). As compared in

FIG. 3B and FIG. 4C, both methods behave similarly
despite the difference in their functional forms.

Second, a solution that includes both gradient and Hessian
is examined. From Eq. (9), the y- and L-normalization of a
derivative function G,G,'-P, with y=4 is given by H"*(G,G /-
P)=H"2(Z+H)™'. And its Frobenius norm is,

|H(G,G/-P))|o=IH"*(Z+H) || 12
Consequently, the following maximum-over-scales method
is obtained,

Proposition 2

Consider a scale-space derivative matrix function of a sum
of'the outer-product of the L.-normalized scale-space gradient
vector and the negated L-normalized scale-space Hessian
matrix. The Frobenius norm of the y-normalization of this
matrix function with y=% is maximized when the fully
parameterized analysis scale matrix H € SPD is equal to X
303.

Proof:

For all x € S, [H"*(G,G/~PJ|~[H">E+H)" ~n(H).
From the proof of Proposition 1, n(2)*-n(H)*Z0 with
equality H=2.

As shown in FIG. 4D, this determination is invariant
against the locations and its maximum-over-scales property
holds for all the locations x € S.

FIGS. 4A-D illustrates examples of the maximum-over-
scales methods. A centered 1D Gaussian signal with 6®=2 is
used as target. FIG. 4A illustrates the first-order method with
Eq. (10), FIG. 4B illustrates the y-normalized Laplacian, FIG.
4C llustrates the second-order method with Eq. (11), FIG. 4D
illustrates the second-order method with Eq. (12). Each plot
displays the norm evaluated at locations x=0, 0.1, . . ., 2 over
the analysis scales h=0.1,0.11, . . ., 3. Dash lines denote the
ground-truth scale. “O” and “x” indicate the maximum-over-
scales for the spatial maximum (x=0) and for the non-maxi-
mum (x=0), respectively.

According to an embodiment of the present disclosure, the
most-stable-over-scales criterion has been constructed by
employing the -normalized scale-space derivatives. This
approach exploits the fact that the scale selection with the
anisotropic scale-space can be seen as fully parameterized
covariance estimation. Each derived method includes 1) a
least-squares estimation of the signal’s covariance Z(h) for
each isotropic analysis scale h and 2) a divergence-based
stability test for obtaining the most stable estimate over the
scales 2=X(h*=argmin div{Z(h)}).

The maximum-over-scales criterion becomes impractical
when high-dimensional anisotropic structures are consid-
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ered. In such cases, a dense sampling of a multivariate product
space is needed, resulting in prohibitively large search space.
For this practical reason, this criterion employs isotropic

analysis scales H=hI(h € %>0). This is possible because the
direct covariance estimators are valid with arbitrary scale
matrices H (see below). Furthermore, estimation errors due to
noise can be reduced by combining a set of estimates derived
from different locations within the basin of attraction of u
since the direct estimators are also satisfied at arbitrary loca-
tions X € S.

For the stability test, the Jensen-Shannon divergence is
employed given a set of ordered analysis scales {h s=1, .. .,
S},

JS(s) = (13)

sta
1

1
Za+1 Z‘ =)
zlog sta
2 [ I

where

s+a sta -1
5 tuth) = u)’[z wm] (u(h) =0

s—a

sta

1
”=2a+1§”(h")

and a is a neighborhood parameter.

Explicit estimators of the signal’s covariance X used for
constructing the stability-based scale selection criterion are
derived for the direct covariance estimators. The L-normal-
ized scale-space derivatives can be numerically determined
from the given signal f(x) by using Eq. (2), Eq. (3), and Eq.
(4). The resulting equations are satisfied with any given aniso-
tropic analysis scale matrices H € SPD.

A covariance estimator with the normalized gradient G, is
derived by manipulating Eq. (8) while maintaining its equal-
ity,

G =u-x-HG, (14)
The resulting equation of an unknown 2 is under-complete,
requiring at least two independent samples for the unique
determination. Given a sufficient number of independent
samples, an over-complete normal equation can be formed
and solved by a constrained least-squares method. This equa-
tion can also be expressed as a function of the fixed bandwidth
mean shift vector m(x;H)=HG,(x;H), i.e., SH'm=u-x-m.
This assumes exactly the same form as the constrained least-
squares formulation. Both equations become singular when
G; goes to zero at x=u.

Another covariance estimator with the normalized Hessian
P, is derived by manipulating Eq. (9) while maintaining its
equality,

2=(GG/-P) -H (15)
This equation exploits both first- and second-order deriva-
tives. Unlike the first-order equation, the equality holds at
arbitrary locations X € S.



US 7,616,792 B2

9

Atthe spatial maximum u, Eq. (15) collapses into the form
only with the Hessian matrix,

=P ) ' -H (16)

= L(w; H)(~P(u; H)™' - H

The resulting form is similar to the well-known Hessian based
covariance estimator, except the second negative term
included due to its scale-space nature. Note that, for the
second-order case, the magnitude parameter o can be
expressed analytically. The analytical form of the scale-space
Hessian matrix evaluated at the spatial maximum u is given
by: P(u;H)=—cu(2m)"?IZ+HI"*(Z+H)~". This equation can
be solved for X since H+X e SPD, ie., =022 2n(-P
()™~ (=P(u:H) "' -H

Since this and Eq. (16) are equivalent, the following formula
may be obtained,

o=y 12(~Py H)) ML (u:HYE" a7
The scale-space Hessian P(x;H) is symmetric negative defi-
nite if X is at a stable critical point of -L(x;H). When P(u;H)
is numerically determined by using Eq. (4), it needs to be
assured that u satisfies this condition so that the estimated
by Eq. (16) satisfies the positive definite constraint and Eq.
(17) remains as real-valued.

The first-order most-stable-over-scales method exploiting
the direct covariance estimator of Eq. (14) 304 uses a similar
method as a mean shift-based method:

Given the spatial maximum locations u(h) in L(x;hl), a set
of K measurement pairs {(xk,Gl(xk;hD))Ik=1, . . . , K} are
sampled within the basin of attraction of u. These samples are
used to construct an over-complete normal equation AZ=B
where A=(Gy,, . . . Gp) and B=(u-%,-hGy,, . . . u—x,~
hGyx)". The constrained least-squares determination of the
normal equation for the unknown X e SPD is given by finding
the minimizer Y* of an area criterion ||AY-BY~|,* where Y
is Cholesky factorization of 2=YY”. The closed-form of this
determination is expressed by a function of symmetric Schur
decompositions of

P=A'A given Q = LpULQU,Zp, (13)

= UpLp! UpZy U'Qz,:l us
P=UpZiUs

) — 2 7t
Q= UQZQUQ

Applying these equations to a given set of analysis scales
results in a set of estimates {(u(h), Z(h))}. The most stable
estimate is found by the stability test with the Jensen-Shan-
non (JS) divergence in Eq. (13) 305.

The second-order most-stable-over-scales method exploits
the direct estimator of Eq. (15) or Eq. (16). Similar to the
first-order method, a set of K measurement pairs {(G(x,;hl),
P,(x;;hD)} are sampled within the neighborhood of u. A least-
squares covariance estimator is given by averaging the local
estimates,

1 & (19)
I= —Z {(Gilws RDGvs hIY = Pylas kD)™ — hi)
Kk: ’ ’ ’
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The second-order equation provides a full covariance esti-
mate for each sample location. Thus a valid estimator with a
single sample at the spatial local maximum location u can be
obtained by using Eq. (16) 306. The stability-based scale
selection is achieved by the same manner as the first-order
method,

= u(h*) (20)

S =3(h)
K = argmin JS(u(h), Z(h))

FIGS. 5A-C illustrates examples of the most-stable-over-
scales methods and compares the first- and second-order
most-stable-over-scales methods with the 1D synthetic Gaus-
sian data with additive random noise. Three different sam-
pling ranges were evaluated. Both methods achieve accurate
scale estimation given an appropriate choice of the sampling
range. The results also suggest that the first-order method
favors a larger sampling range while the second-order method
prefers a smaller one. When using the data without the noise,
both methods resulted in estimates with no errors.

InFIGS.5A-C, a centered 1D Gaussian signal of 0=2 with
additive random noise (randn*0.01) is used as target. At each
analysis scale, the variance of the target is estimated from a
set of samples within: FIG. 5A £0.10, FIG. 5B +1.00, and
FIG. 5C £3.00. Dash lines: the ground-truth scale 503 (0°=2).
Dot-Dash lines: the first-order estimates by Eq. (14) 501.
Solid lines: the second-order estimates by Eq. (15) 502. “+”
and “x” denote the most stable estimates by the first- and
second-order methods, respectively.

Scale selection methods according to an embodiment of
the present invention have been studied with 1D synthetic
data with the presence of noises. The target feature is the
centered 1D Gaussian with 0°=2. As shown in FIGS. 6A-C,
three types of additive noise are used: FIG. 6 A neighboring
structure (a Gaussian centered at u=—5 with 0®=0.5 superim-
posed to the target), FIG. 6B strong random noise
(randn*0.04), FIG. 6C illustrates the data FIG. 6 A with the
same additive noise in FIG. 6B.

FIGS. 7A-C illustrate results achieved using maximum-
over-scales criterion according to an embodiment of the
present disclosure. The maximum-over-scales criterion is
susceptible to the noises, the first-order methods are more
sensitive to the random noise than the second-order methods,
and the second-order methods are more sensitive to the neigh-
boring structure than the first-order methods. These observa-
tions can be explained by the fact that the support of the
Gaussian derivative kernels is larger for the higher order
derivatives. Thus, the second-order methods are more sensi-
tive to the neighboring structure or the signal truncation than
the first-order method. The most accurate estimate obtained
by the first-order method occurred when the data without the
random noise were evaluated at points far from the non-target
structure, as shown in FIG. 7A(i).

FIGS. 7A-C illustrate a variance estimation by the maxi-
mum-over-scales criterion for the signals shown in FIG. 6.
FIGS. 7A(1), 7B(i) and 7C(3) illustrate the first-order method
with Eq. (10). FIGS. 7A(ii), 7B(i1) and 7C(ii) illustrate the
second-order method with Eq. (11). FIGS. 7A(iii), 7B(iii) and
7C(iii) illustrate the second-order method with Eq. (12). The
legend is the same as FIG. 4.

FIGS. 8A-C illustrate results achieved using most-stable-
over-scales criterion according to an embodiment of the
present disclosure. The first-order (dot lines 801) and second-
order (solid lines 802) methods are compared by using the
same data as FIGS. 7A-C. At each analysis scale, the target’s
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variance is estimated from samples within three different
sampling ranges: +0.10, £1.00, and £2.00. The crosses “+”
and “x” denote the estimates by the first- and second-order
methods, respectively. The results demonstrate that the most-
stable-over-scale criterion are more accurate than the maxi-
mum-over-scales criterion depending on the sampling range.
For the data in FIGS. 8 A(i)-(ii1), both methods were accurate
using only samples within the basin of attraction. For the data
in FIGS. 8B(i)-(iii), the first-order (second-order) method
gave better results with a larger (smaller) range. For the data
in FIGS. 8C(i)-(iii), the second-order method with a very
small sampling range was most accurate. The first-order esti-
mate in FIG. 8B(i) and the second-order estimates in FIG.
8A(ii) and FIG. 8C(iii) were out of range. With the large
sampling range, the scale estimates for data in FIGS. 8A(i)-
(iii) and FIGS. 8C(i)-(iii) were corrupted because of the
samples located near the edge of or out of the target’s basin of
attraction. The second-order method with the very small sam-
pling range resulted in the overall best accuracy across the
different types of noise. FIGS. 9A-C illustrate an average
variance estimation errors of the most-stable-over-scales
methods over 100 independent tests. The same types of data
in FIGS. 6A-C with different random noise are used for each
test. The errors are plotted against varying sampling ranges.
Dot 901 and solid lines 902 denote errors by the first- and the
second-order methods, respectively. The errors are plotted
against continuously varying sampling ranges and compared
with the aforementioned three data types. It demonstrates that
both the first- and second-order methods achieve much higher
accuracy than the maximum-over-scales criterion within the
+2.20 sampling range that roughly corresponds to the target’s
basin of attraction. Also observed was a tendency that the
first-order (second-order) method is more accurate with a
larger (smaller) sampling range.

FIGS. 9A-C illustrate a variance estimation by the most-
stable-over-scales methods for the signals in FIGS. 6 A-C. At
each analysis scale, the variance of the target is estimated
from samples within: 1st row: £0.10, 2nd row: £1.00, 3rd
row: £2.00. The legend is the same as FIG. 2.

FIGS. 10A-H illustrate 2D examples comparing scale
selection methods. The test data consists of a centered target
Gaussian with additive random noise and a neighboring struc-
ture as shown in FIG. 10A. FIGS. 10B-E show results with the
maximum-over-scales methods. A set of 144 analysis scale
matrices were used sampled along the two eigenvectors of the
ground-truth scale with the corresponding eigenvalues mul-
tiplied by (1, 2, . . . 12). FIGS. 10F-H show results with the
most-stable-over-scales methods. A set of 80 isotropic analy-
sis scales were used from 0.1 to 8 with a 0.1 interval. One
Mahalanobis distance is used as the sampling range. The
results suggest that the most-stable-over-scales methods out-
perform the maximum-over-scales methods, confirming the
finding from the 1D case. The three most-stable-over-scales
methods resulted in similar accuracy. The second-order case
(FIG.10G) with both gradient and Hessian, however, gave the
best accuracy in terms of the Frobenius norm of the error
(0.69).

More particularly, examples with 2D synthetic data includ-
ing a target centered Gaussian with a neighboring structure
centered at (-3, 3) and additive random noise are shown in
FIG. 10A. FIGS. 10B-E illustrate the maximum-over-scales
methods. FIG. 10B shows a first-order method evaluated at
(2, -2), FIG. 10C shows a second-order method at the non-
maximum location, FIG. 10D shows a second-order method
evaluated at (0, 0), FIG. 10E shows a y-normalized Laplacian
at the maximum location. FIGS. 10F-H illustrate the most-
stable-over-scales methods. FIG. 10F shows a first-order
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method, FIG. 10G shows a second-order gradient and Hes-
sian method, FIG. 10H shows a second-order Hessian only
method. The ground-truth and scale estimates are denoted by
90% confidence ellipses with dash (1001) and solid lines
(1002), respectively.

3D implementations of the most-stable-over-scales meth-
ods are applied to the problem of estimating anisotropic
spreads of pulmonary tumors shown in high-resolution com-
puted tomography (HRCT) images of lung tissue. Each volu-
metric image consists of 12-bit positive values over an array
of 512x512 lattices. The first-order and the second-order
(Hessian only) methods have been compared. For both meth-
ods, a set of 18 isotropic analysis scales h=(0.50%,0.75%, . . .,
4.75%) are used. The locations of the local spatial maxima u(h)
are estimated by using the mean shift-based mode seeking
method with the extended mean shift vector. Markers indi-
cating rough tumor locations are given a priori. The conver-
gence point of the majority of data points sampled around the
marker provides the spatial maximum estimate u(h). The
neighborhood width of the divergence formula is set to a=1.
The system is implemented in C language and process a
32-voxel volume-of-interest by an average of two seconds
with a 2.4 GHz Intel CPU.

HRCT data of 14 patients displaying the total of 77 pul-
monary tumors were used for this evaluation. The second-
order method resulted in less failures (10 cases) than the
first-order method (14 cases). All the solitary tumors were
correctly estimated by both methods. Most of the failures
were due to small nodules that are attached to the lung wall
(on-the-wall).

Examples of the 3D spread estimation of lung tumors in 3D
HRCT data by using the most-stable-over-scales scale selec-
tion methods are shown in FIGS. 11A-H. FIGS. 11A-D show
the results of first-order methods. FIGS. 11E-H show those of
second-order (Hessian only) methods. “+” denotes the
marker locations. The local spatial maxima and 3D spread
estimates are denoted by “x” and 2D intersections of 50%
confidence ellipsoids, respectively. Both methods resulted in
similar estimates (e.g., FIGS. 11A-E and FIGS. 11C-G).
However, second-order methods provided more accurate
spread estimates in some cases (e.g., FIGS. 11B-F). Further-
more, some cases failed by the first-order method were cor-
rectly estimated by the second-order method.

A unified approach for treating the scale selection problem
in the anisotropic scale-space has been presented for evalu-
ating local Gaussian-like structures resulting in a number of
the first- and second-order determinations. The maximum-
over-scales criterion with the [.-normalized anisotropic scale-
space derivatives offers elegant scale selection determina-
tions with the constant y value, exploiting the analytical
simplicity of the Gaussian function. For realistic application
scenarios with the presence of noise, experimental results
demonstrate that the second-order most-stable-over-scales
methods with the isotropic scale-space outperform others.

Having described embodiments for a system and method
for treating a scale selection problem in the anisotropic scale-
space, it is noted that modifications and variations can be
made by persons skilled in the art in light of the above teach-
ings. It is therefore to be understood that changes may be
made in the particular embodiments of the invention dis-
closed which are within the scope and spirit of the invention
as defined by the appended claims. Having thus described the
invention with the details and particularity required by the
patent laws, what is claimed and desired protected by Letters
Patent is set forth in the appended claims.



US 7,616,792 B2

13

What is claimed is:

1. A computer readable medium embodying instructions
executable by a processor to perform method steps for deter-
mining a structure in volumetric data, the method steps com-
prising:

determining an anisotropic scale-space for a local region

around a given spatial local maximum;

determining [-normalized scale-space derivatives in the

anisotropic scale-space; and

determining the presence of noise in the volumetric data,

upon determining noise in the volumetric data, deter-
mining the structure by a most-stable-over-scales deter-
mination, and upon determining noise below a desirable
level, determining the structure by one of the most-
stable-over-scales determination and a maximum-over-
scales determination according to a size of a sampling
range, wherein the maximum-over-scales is used when
the sampling range is greater than a basin of attraction a
spatial local maximum.

2. The method of claim 1, wherein the most-stable-over-
scales determination comprises:

determining a plurality of covariance estimates over an

analysis scale set; and

determining a covariance estimate from among the plural-

ity of covariance estimates having a minimum Jensen-
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Shannon divergence, wherein the covariance estimate
defines a spread of the structure and the structure is
determined in the volumetric data corresponding to the
spread.

3. The method of claim 2, wherein the analysis scale set is
a given set of bandwidths over the volumetric data.

4. The method of claim 1, wherein the a maximum-over-
scales determination comprises:

determining Gamma- and L-normalized scale-space

derivatives over an analysis scale set;

selecting a scale having a maximum normalized scale-

space derivative, wherein the scale is a covariance defin-
ing a spread of the structure and the structure is deter-
mined in the volumetric data corresponding to the
spread.

5. The method of claim 4, wherein the Gamma- and L-nor-
malized scale-space derivatives are determined with a con-
stant normal having a Gamma- equal to V5.

6. The method of claim 4, wherein the analysis scale set is

20 a given set of bandwidths over the volumetric data.

7. The method of claim 1, wherein the spatial local maxi-
mum indicates a location of the structure in the volumetric
data.



