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SYSTEM AND METHOD FOR VOLUMETRIC
TUMOR SEGMENTATION USING JOINT
SPACE-INTENSITY LIKELIHOOD RATIO
TEST

CROSS REFERENCE TO RELATED UNITED
STATES APPLICATIONS

This application claims priority from “Volumetric Tumor
Segmentation using Space-Intensity Joint Likelihood Ratio
Test”, U.S. Provisional Application No. 60/608,499 of
Okada, et al., filed Sep. 9, 2004, and from “Blob Segmenta-
tion using Joint Space-Intensity Likelihood Ratio Test: Appli-
cation to 3D Tumor Segmentation”, U.S. Provisional Appli-
cation No. 60/625,027 of Okada, et al., filed Nov. 4, 2004, the
contents of both of which are incorporated herein by refer-
ence.

TECHNICAL FIELD

This invention is directed to object segmentation in digi-
tized medical images.

DISCUSSION OF THE RELATED ART

The diagnostically superior information available from
data acquired from current imaging systems enables the
detection of potential problems at earlier and more treatable
stages. Given the vast quantity of detailed data acquirable
from imaging systems, various algorithms must be developed
to efficiently and accurately process image data. With the aid
of computers, advances in image processing are generally
performed on digital or digitized images.

Digital images are created from an array of numerical
values representing a property (such as a grey scale value or
magnetic field strength) associable with an anatomical loca-
tion points referenced by a particular array location. The set of
anatomical location points comprises the domain of the
image. In 2-D digital images, or slice sections, the discrete
array locations are termed pixels. Three-dimensional digital
images can be constructed from stacked slice sections
through various construction techniques known in the art. The
3-D images are made up of discrete volume elements, also
referred to as voxels, composed of pixels from the 2-D
images. The pixel or voxel properties can be processed to
ascertain various properties about the anatomy of a patient
associated with such pixels or voxels.

The process of classifying, identifying, and characterizing
image structures is known as segmentation. Once anatomical
regions and structures are identified by analyzing pixels and/
or voxels, subsequent processing and analysis exploiting
regional characteristics and features can be applied to rel-
evant areas, thus improving both accuracy and efficiency of
the imaging system. The wide variety of object appearance
characteristics and boundary geometry makes image segmen-
tation a very difficult task. In past decades, a number of
promising general-purpose approaches, such as classifica-
tion/labeling/clustering and curve-evolution, have been pro-
posed to solve this problem. In practice, however, structural
assumptions of the target objects are often available before-
hand thus can be exploited as a prior. The successful incor-
poration of such prior information plays a key role for real-
izing efficient and accurate segmentation solutions in general.

The development of medical data segmentation solutions
as applied to computer aided diagnosis applications empha-
sizes the overall system performance, including user-interac-
tion factors. In such context, semi-automatic solutions,
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requiring minimal user interactions, can be preferred to fully
automated solutions for achieving better overall perfor-
mance. For this reason, a one-click figure-ground segmenta-
tion approach is preferred, where a user can provide a data
point which roughly indicates a target/figure blob to be seg-
mented out of arbitrary background. A successful solution
depends on (1) robustness against variation of the user-given
initialization and the different scan settings to relieve the
user’s labor, (2) run-time efficiency, even with the high-di-
mensional data, to enhance the user-interactivity, and (3) high
accuracy so that the user-interaction results in better perfor-
mance than a fully automated solution.

SUMMARY OF THE INVENTION

Exemplary embodiments of the invention as described
herein generally include methods and systems for semi-auto-
matic figure-ground segmentation solution for blob-like
objects in multi-dimensional images. The blob-like structure
include various objects of interest that are hard to segment in
many application domains, such as tumor lesions in 3D medi-
cal data. The embodiment of the present invention are moti-
vated towards computer-aided diagnosis medical applica-
tions, justifying a semi-automatic figure-ground approach.
An efficient segmentation is realized by combining anisotro-
pic Gaussian model fitting and a likelihood ratio test (LRT)-
based nonparametric segmentation in joint space-intensity
domain. The robustly fitted Gaussian is exploited to estimate
the foreground and background likelihoods for both spatial
and intensity variables. The LRT with the bootstrapped like-
lihoods is the optimal Bayesian classification while automati-
cally determining the LRT threshold. A 3D implementation of
one embodiment is applied to the lung nodule segmentation in
CT data and validated with 1310 cases. A target nodule is
segmented in less than 3 seconds in average.

According to an aspect of the invention, there is provided a
method for segmenting a digitized image comprising the
steps of providing a digitized volumetric image comprising a
plurality of intensities corresponding to a domain of points in
an N-dimensional space, providing an approximate location
of a target structure in said image, estimating a foreground
spatial-intensity likelihood function about said target struc-
ture, estimating a background spatial-intensity likelihood
function about said target structure, and using said fore-
ground and background spatial-intensity likelihood functions
to segment said target structure by determining whether a
point about said target structure is inside said target structure.

According to a further aspect of the invention, the method
comprises determining an estimated center and an estimated
spread of said target structure by fitting an N-dimensional
anisotropic Gaussian function to a volume of interest cen-
tered about the approximate location and determining the
center and the anisotropic spread of said Gaussian function.

According to a further aspect of the invention, the fore-
ground spatial-intensity likelihood function can be factored
into a product of a foreground spatial likelihood function and
a foreground intensity likelihood function, and said back-
ground spatial-intensity likelihood function can be factored
into a product of a background spatial likelihood function and
a background intensity likelihood function.

According to a further aspect of the invention, the fore-
ground spatial likelihood function is proportional to said
anisotropic Gaussian function, and said background intensity
likelihood function is a complement of said foreground spa-
tial likelihood function.

According to a further aspect of the invention, the method
comprises imposing a window about said target structure,
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wherein said window is defined as those points whose Mahal-
anobis distance from said mean of said Gaussian is less than
a predetermined constant value, wherein said Mahalanobis
distance is computed using said spread of said Gaussian.

According to a further aspect of the invention, the constant
value is determined by solving

1S(e)l
22Az 2

-1
|27rZ|’1/2fS(C)exp(— % (x— u)’z (x— u)]dx =

wherein Z is said spread, c is said constant value, S(c) is said
window, X is a point in said window, and u is the center of said
target structure, and

|S(c)|:f dx.
Ste)

According to a further aspect of the invention, the fore-
ground intensity likelihood function is proportional to a fore-
ground intensity difference function weighted by said fore-
ground spatial likelihood function sampled within said
window, and said background intensity likelihood function is
proportional to a background intensity difference function
weighted by said background spatial likelihood function
sampled within said window. According to a further aspect of
the invention, the proportionality constant is equal to one half
the norm of the window.

According to a further aspect of the invention, the fore-
ground and background intensity difference functions com-
prise Dirac delta functions.

According to a further aspect of the invention, the fore-
ground and background intensity difference functions com-
prise Parzen functions.

According to a further aspect of the invention, the step of
determining whether a point about said target structure is
inside said target structure is repeated for every point neigh-
boring said target structure to determine which points com-
prise said target structure.

According to a further aspect of the invention, determining
whether a point is inside said target structure comprises com-
paring a ratio of said foreground and background spatial-
intensity likelihood functions calculated at said point to a
preset threshold, wherein said point is classified as inside said
target structure if said ratio is greater than said threshold.

According to a further aspect of the invention, determining
whether a point is inside said target structure comprises com-
paring said foreground spatial-intensity likelihood function
Ff(x, alin) to said background spatial-intensity likelihood
function f(x, alout), wherein said point x is classified as
inside said target structure if f(x, atlin)>f(x, ctlout).

According to a further aspect of the invention, determining
whether a point is inside said target structure comprises com-
paring a function F of a ratio of said foreground likelihood
function to said background likelihood function to F(1) at the
point location, wherein the function F is a member of a family
of functions F:R—R that are monotonically and strictly
increasing, wherein said point is classified as inside said
target structure if the function of said ratio is greater than F(1).

According to a further aspect of the invention, determining
whether a point is inside said target structure comprises com-
paring a function F of said foreground likelihood function
F(x, alin) to a function F of said background likelihood func-
tion f(x, clout) at the point location X, wherein the function F
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is a member of a family of functions F:R—R that are mono-
tonically and strictly increasing, and wherein the point x is
classified as inside said target structure if F(f(x, alin))ZF(f
(x, alout).

According to another aspect of the invention, there is pro-
vided a program storage device readable by a computer, tan-
gibly embodying a program of instructions executable by the
computer to perform the method steps for segmenting a digi-
tized image.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(a)-(f) illustrate the likelihood estimation pro-
cesses for a 1D example, according to an embodiment of the
invention.

FIG. 2 depicts a flow chart of a joint space-intensity like-
lihood ratio test based segmentation method, according to an
embodiment of the invention.

FIGS. 3(a)-(d) illustrate examples of segmentation results
for four tumor cases, according to an embodiment of the
invention.

FIGS. 4(a)-(d) shows the intensity likelihood models esti-
mated for the four cases in FIGS. 3(a)-(d), according to an
embodiment of the invention.

FIG. 5 illustrates examples of 2D views of 3D segmenta-
tion results for five tumor cases, according to an embodiment
of the invention.

FIG. 6is ablock diagram of an exemplary computer system
for implementing a joint space-intensity likelihood ratio test
based segmentation method, according to an embodiment of
the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Exemplary embodiments of the invention as described
herein generally include systems and methods for an efficient
segmentation solution for a class of blob-like structures cap-
tured in multi-dimensional medical images. Although an
exemplary embodiment of this invention is discussed in the
context of segmenting a CT lung nodule, it is to be understood
that the object segmentation and shape characterization meth-
ods presented herein have application to other multi-dimen-
sional imaging modalities.

As used herein, the term “image” refers to multi-dimen-
sional data composed of discrete image elements (e.g., pixels
for 2-D images and voxels for 3-D images). The image may
be, for example, a medical image of a subject collected by
computer tomography, magnetic resonance imaging, ultra-
sound, or any other medical imaging system known to one of
skill in the art. The image may also be provided from non-
medical contexts, such as, for example, remote sensing sys-
tems, electron microscopy, etc. Although an image can be
thought of as a function from R® to R, the methods of the
inventions are not limited to such images, and can be applied
to images of any dimension, e.g. a 2-D picture or a 3-D
volume. For a 2- or 3-dimensional image, the domain of the
image is typically a 2- or 3-dimensional rectangular array,
wherein each pixel or voxel can be addressed with reference
to a setof 2 or 3 mutually orthogonal axes. The terms “digital”
and “digitized” as used herein will refer to images or volumes,
as appropriate, in a digital or digitized format acquired via a
digital acquisition system or via conversion from an analog
image.

A blob-like structure can be defined as a roughly convex
local intensity distribution whose iso-level contours are
approximately ellipsoidal, but with some irregularities that do
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not destroy the ellipsoidal topology. The intensity distribution
itself can be multi-modal but can be assumed to be uni-modal
under Gaussian blurring within an appropriate upper-bound
of the smoothing bandwidth. Such a class of data structures
represents various objects of interest, such as tumors and
polyps, which are hard to segment in many medical imaging
application domains, such as CT lung and PET hot spot
segmentation.

According to an embodiment of the invention, a semi-
automatic (one-click) blob segmentation method includes
two steps. An example of a blob is a tumor. A first step is a
pre-processing step with a anisotropic Gaussian fitting. Given
an initial marker x indicating an approximate location of the
target structure, such as a tumor, the Gaussian fitting provides
an estimated target center u and an anisotropic spread matrix
2 in the form of Gaussian function:

1 -1
exp(— 3 (x— u)'z (x— u)]

2zl

O(x, u, L) =

Note that the notation (. . . )" indicated the transpose of a vector
(or matrix). The volume of interest (VOI) Q can be defined by
the extent of the data analysis given by a fixed-size N-D
window centered at x. The data to be analyzed is expressed by
I(x)eR* where xeQ <R is an N-dimensional coordinate
indicating a data (pixel/voxel) location. The resulting multi-
scale Gaussian model fitting solution is robust against (1) the
influence from non-target neighboring structures, (2) misfit of
the data, and (3) variations in the initialization point x. The
anisotropic Gaussian fitting procedure is described in the
inventors’ copending patent application, “Method for Robust
Scale-Space Analysis of 3D Local Structures in Medical
Images”, U.S. patent application Ser. No. 10/892,646, filed
Jul. 17, 2004, the contents of which are incorporated herein
by reference.

A second step of the segmentation method according to an
embodiment of the invention involves using a likelihood test
to separate a figure from the background. At each data point
xeQ2 there is an intensity value o=I(x). Treating both x and
as independent random variables, a joint likelihood function
of (%, o) can be estimated for a foreground, f(x, alin), where
in represents the interior of or part of a target tumor, and for a
background, f(x, alout), where out represents the outside of
the tumor. The space-intensity joint likelihoods can be fac-
torized as

Fx, alin)=f(xlin)f(clin)

Fx, alout)=f(x, out)f(alout)

where f(xlin) and f(alin), f(xlout) and f(alout)) denote a
marginal foreground (background) spatial and intensity like-
lihood functions, respectively. Although the two variables x
and o are not independent in general, experimental results
have shown indicate that their dependence is weak, resulting
in good segmentation results. A space-intensity joint likeli-
hood ratio r(x) is then defined by

faaling  fxlinflalin
flx, aloun ~ fx|ounf(a|our)

rix) =

Each voxel data point within the VOI can be segmented by
performing the likelihood ratio test: xein if r(x)Zth, other-
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wise xeout, where th is a threshold which depends on the
normalization factors of the foreground and background like-
lihoods. Modeling the likelihoods within a specific support
region assures the Bayesian optimality for th=1. It is to be
understood, however, that other threshold values can be used,
and the threshold can vary for different sets of points.

It is to be further understood that the likelihood ratio is an
exemplary function of the foreground and background joint
space-intensity likelihood functions, and other tests involving
these likelihood functions can be used and be within the scope
of'an embodiment of the invention. In one exemplary embodi-
ment, likelihood-based segmentation is performed by com-
parison of the foreground and background joint space-inten-
sity likelihood functions. Given the positive-valued
foreground likelihood function f(x, alin) and the background
likelihood function f(x, alout) at a point location x, the point
x is classified as a member of the foreground if f(x, atlin)>F(x,
alout), otherwise, it is classified as the background. This
segmentation scheme is equivalent to the likelihood ratio test
based segmentation method. It is preferred to the likelihood
ratio test when the background likelihood f(x, alout) can be
zero-valued for some locations x, where the foreground/back-
ground ration would not be computable.

In another exemplary embodiment, given the positive-val-
ued foreground likelihood function f(x, ctlin) and the back-
ground likelihood function f(x, alout) at a point location x,
the point x is classified as a member of the foreground if some
function F(f(x, alin)/f(x, alout)) is larger than or equivalent
to F(1) and classified as the background otherwise. The func-
tion F is a member of a family of functions F:R—R that are
monotonically and strictly increasing, i.e., order-preserving.

In another embodiment ofthe invention, given the positive-
valued foreground likelihood function f(x, alin) and the
background likelihood function f(x, ctlout) at the point loca-
tion x, the point X is classified as a member of the foreground
if F(f(x, alin)=F(f(x, alout) and classified as the back-
ground otherwise. Again, the function F is a member of a
family of functions F:R—R that are monotonically and
strictly increasing. Examples of functions that are monotoni-
cally and strictly increasing include logarithmic functions,
polynomial functions, and exponential functions.

However, it is to be understood that not all functions of the
likelihood functions will yield the desired results. Although
tests such as f(x, alin)>f(x, clout), log(f(x, clin))=log(f(x,
alout)), sqrt(f(x, alin)/f(x, clout))>1, etc., will yield consis-
tent results, other tests, such as (f(x, alin))*>f(x, clout) and
log(f(x, alin))/log(f(x, ctlout))>th, will not yield results con-
sistent with the likelihood ratio test method f(x, alin)/f(x,
alout)>1.

One can realize the segmentation outlined above by defin-
ing four likelihood functions for spatial and intensity factors
inside and outside the target structure: f(xlin), f(xlout),f
(alin), and f(alout).

One can obtain the foreground and background spatial
likelihoods by assuming that the N-D Gaussian model fitting
solution function ®(X, u, X) approximates a probability dis-
tribution of a location x being a tumor center or mean u. In
many applications, such as tumor segmentation, the surface
geometry of the target structure is approximately convex,
which assures the mean is located inside of the structure.
Thus, according to an embodiment of the invention, the Gaus-
sian model fitting solution function can be interpreted as the
conditional probability distribution P(xlin) of x being part of
the target tumor structure: P(xlin)=®(x, u, Z). However, the
conditional probability distribution for the background,
P(xlout) is ill-defined because the background has an infinite
extent in the data space x. According to another embodiment
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of'the invention, a support window S < Q that confines obser-
vations of the random variable x can be introduced so that the
background has a finite normalization. A pair of normalized
conditional probability distributions functions can be defined
over the support window as

P(xlin)=P(xlin)/ [ JP(x|in)dx
P(xlout)=P(xlout)/ [ P(xlout)dx

where P(xlin) is known and P(xlout) is an unknown underly-
ing background distribution. The total probability of a data
point being in S is P =P(xlin)P,, +P(xlout)P_ ~1IS|, where
Pin and Pout are prior probabilities of being inside and out-
side of S, P,,,+P,,,=1. Thus, according to an embodiment of

the invention, the background spatial probability distribution
can be defined as

(1/1sh) = Px | in) X Pyy

P(x | our) = a-r)

According to another embodiment of the invention, the inside
and outside probabilities are unbiased and can be set equal so

that P, =P,,,=0.5:
Pl out) = = — Pl | in) = = — L 70
X|out) = — — x|lin=—- —m—m—m™
ISl ISI - [ Px]in)dx

According to another embodiment of the invention, the back-
ground probability distribution function over S can assume
the value zero at the mean location u where the Gaussian
function ®(x, u, 2) modeling the foreground probability dis-
tribution function, takes its maximum. In this embodiment,
the normalization factor of P(xlin) becomes

IS

f Pxl i . 151
(x| in)dx = P(u| in)——
s 2

= Az

and the normalized foreground and background distributions
can be defined as

Px|in) = Ezlpﬂzwzf’m in)
Px | our) = 3(1 —27Z1Y2P(x | in)
TSl
The foreground and background spatial likelihood functions
can be defined in terms as the conditional probability distri-

bution functions over S scaled by a fixed factor 1S1/2 so that
they depend only on P(xlin):

[27E 2 P(x | in)

RN |
flx|in) = 7P(x| in) =

sl Vap s
flx|our) = 7P(x| our) = 1 = 2721V P(x | in).

Note that the background likelihood f(xlout) is a complement
of the foreground likelihood. At the mean location u, f(ulin)
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8
=1 and f(ulout)=0. At infinity, f(*=Iin)=0 and f(x=lout)=1.
In addition, since the likelihood functions share a common
scaling factor, the ratio of the likelihood functions is equiva-
lent to the ratio of the distribution functions.

The choice of the support window S can effect the segmen-
tation solution. As previously described, the background can
have an infinite spatial extent, and thus a background spatial
likelihood function is not bounded and would have an infinite
normalization factor. For this reason, a support window S was
introduced so that probability distributions can be defined
within such a window. However, the estimated background
likelihood will be sensitive to the varying range of S since
such variation of the support S would cause a large change to
the normalization factor.

According to an embodiment of the invention, the support
window S can be a function of the target scale. For example,
if a cup on a table is to be segmented, it is sensible to model
the background using specific information from the table, not
of the house in which the table is placed nor of the city in
which the house is present. The Gaussian function fitted to the
target structure by the pre-process can provide such scale
information in the form of a confidence ellipsoid of N-dimen-
sional equal-probability contour approximating the structure
boundary. Utilizing this, the support window S can be param-
eterized as a function of the ellipsoid:

S(O)={xI(x—u)T  (x—u)=c}

where the scalar ¢ is the Mahalanobis distance of x from u
with covariance 2. The constant ¢ can be determined from

|S(c)|:f dx
Ste)

and the normalization of P(xlin):

[S(e)l
20273172

. . 1 ~
fs (C)P(x | imdx = = |erz 2 fs (C)exp[— - Z (x— u)]dx.

The solution S(c) depends on the dimensionality N of the data
space X. For example, numerical solutions of the above equa-
tion for 1D, 2D and 3D cases are: ¢,~6.1152, ¢,=3.1871, and
¢;=~2.4931. Within this support window, the probability mass
of f(xlin) and f(xlout) over S are equivalent.

For the 3D segmentation, c¢;=2.4931 amounts to an
approximate 52% confidence interval of the chi-square dis-
tribution with three degrees of freedom. Empirically, previ-
ous studies for 3D tumor segmentation indicate that the equal-
probability contour with ¢;=1.6416, derived from 35%
confidence interval of the fitted Gaussian function, approxi-
mates the tumor boundary well. This suggests that S(c;)
derived above provides a data range that covers the complete
foreground and includes only a thin layer of background
region around the target. This is an appropriate support win-
dow for modeling the background because the background
model estimated over this support window will not be
strongly influenced by the non-target neighboring structures
that may appear within the VOL.

One can obtain the foreground and background intensity
likelihoods by defining the conditional intensity probability
distributions as a function of intensity differences weighted
by the corresponding normalized spatial probability distribu-
tions and sampled over the support window S:
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Pl |in) = ff’(x, a|indx = ff’(x | im@(I(x) — a)dx
s s

P(a | out) = ff’(x, | ou)dx = ff’(x | out)p(I(x) — @)dx
s s

where P(alx,{in/out}) is modeled by ¢(I(x)-cx). The function
¢ should be localized and have finite normalization. There are
several possibilities for this function. In one embodiment of
the invention, to assure unit-normalization over the support
window S, the function ¢ can be set to the discrete Dirac delta
function. According to another embodiment of the invention,
for estimating a continuous probability distribution function
from a small number of samples, a Parzen function with a
uniform step kernel can be used as ¢ while maintaining the
unit-normalization. Replacing the spatial conditional distri-
butions by the likelihood functions yields

P(a |in) = iff(x | im@(I(x) — a)dx
181 Js
_ 2
Pla | out) = —ff(xl out)p(/(x) —a)dx
1S1Js

Similar to the spatial likelihood functions, the intensity like-
lihood functions can be defined as scaled conditional distri-
bution functions with a fixed factor 1S1/2 sampled over the
support window S:

S|
flalin) = %P(wlin)=ff(XIin)cfﬁ(l(X)—w)dx
N

fla|out) = gf’(w | out) = ff(x | oung(I(x) — a)dx
s

The techniques for likelihood estimation according to
embodiments of the present invention do not require iterative
model updates since the Gaussian fitting step provides a
robust and accurate target characterization, captured in
F(xlin) and f(xlout).

FIGS. 1(a)-(f) illustrate the likelihood estimation pro-
cesses for a 1D example, according to an embodiment of the
invention. FIG. 1(a) depicts 1D noisy data with a Gaussian
fitted by the pre-process. FIG. 1(b) depicts foreground (solid)
and background (dash) spatial likelihoods and the support
window (dot-dash), derived from the Gaussian. Given the
fitted Gaussian shown by a dash-curve in FIG. 1(a), the fore-
ground (solid) and background (dash) likelihoods are analyti-
cally determined as shown in FIG. 1(5). Because both fore-
and back-ground likelihoods share the same scaling factor,
the ratio of the likelihoods and that of the probability distri-
bution functions become equivalent.

FIGS. 1(¢)-(f) illustrate the intensity likelihood estimation
processes. FIG. 1(c) illustrates the data, indicating with the
solid lines a pair of pixel location and intensity values (x,, ¢t,).
FIG. 1(d) illustrates the spatial likelihoods, showing the fore-
ground (solid) and background (dashed) likelihoods at x,.
FIG. 1(e) depicts the foreground intensity likelihood, show-
ing contributions (dashed lines) from the data point (x;, ).
FIG. 1(f) depicts the background intensity likelihood, show-
ing contribution (dashed lines) from (x,, ;). Using all data
within the support window (x,€S, «,), the foreground (FIG.
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10
1(e)) and background (FIG. 1(f)) intensity likelihoods are
estimated by accumulating ¢-smoothed counts for each inten-
sity value a, weighted by the corresponding spatial likeli-
hoods f(x,lin) and f(x;lout) shown in FIG. 1(d).
With the spatial and intensity likelihood functions derived
above, the joint likelihood ratio r(x) can be expressed as:

275 2 d(x, u, X) f 12752 D(x, e, Z)p(I(x) — )d x
S

O T o et . 5) 11— AP0, u, D)) - a)dx

This shows that the likelihood ratio at x with intensity value a
depends only on ®(x, u, Z) and I(xeS). The formal derivations
presented above assure that the ratios of the foreground and
background likelihoods are equivalent to the ratios of the
posterior probability distribution functions normalized over
the support window S(c). Thus, r(x) can be rewritten with
such posterior probability distribution functions given the
independence of x and o and P, =P, ,:

- P(in| x)P(in | @) P(n | (x, @)
rx) = =
Plout| x)Plout| @)  Plout]| (x, @)

Thus, this joint likelihood ratio test segmentation is an opti-
mal Bayesian binary classification of each voxel with a uni-
form cost when the likelihoods presented herein above are
used and the likelihood ratio test threshold th in is set to one.

FIG. 2 depicts a flow chart of a joint space-intensity like-
lihood ratio test based segmentation method, according to an
embodiment of the invention. The segmentation method
begins by providing at step 20 an image volume I(x) with a
marker x,, indicating an approximate location of a target struc-
ture, such as a blob or a tumor. At step 21, a volume of interest
VOI=I(xeQ), centered at x,, is extracted from the image
volume 1. At step 22, an anisotropic Gaussian fitting is per-
formed, resulting in an estimate of the target center u and
anisotropic spread matrix . At step 23, given the estimated
target center and spread (u, Z) and the VOI=I(xeQ), the fore-
ground and background spatial and intensity likelihood func-
tions are estimated over a support window S. At step 24, fora
voxel X in the support window and its associated intensity a.,
the likelihood ratio r(x) is computed from the spatial-intensity
joint likelihood functions. At step 25, the likelihood ratio test
is performed to determine if the voxel is inside or outside the
target structure: xein if r(x)=th, otherwise xeout, where th is
athreshold that is optimally set to one, and in and out label the
inside and outside of the target structure, respectively. At step
26, the preceding 2 steps, step 24 and 25, are repeated for all
voxels within the support window.

A 3D implementation according to an embodiment of the
invention was applied to delineating a target lung nodule from
background lung parenchyma in the presence of other non-
target structures such as vessels and lung walls. The perfor-
mance was evaluated by using high resolution chest CT
images of 39 patients including 1310 lung nodules. The
images are of size 512x512x400 voxels (depth slightly varies
across the patients) with a 12 bit intensity range. For each lung
tumor, an approximate location marker is provided by an
expert radiologist. The size of VOI is fixed to be 33x33x33
voxels.

FIGS. 3(a)-(d) illustrate examples of segmentation results
for four tumor cases, according to an embodiment of the
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invention. Each column of an example corresponds to the
segmentation results on yz, Xz, Xy planes, respectively, pass-
ing through the estimated tumor center u. The firstrow of each
example depicts the segmentation results without using the
derived support window S. In this case, the intensity likeli-
hoods are estimated by using all samples within the 33x3x33
VOI. The second row depicts the likelihood ratio segmenta-
tionresults using the derived support window S. The third row
depicts results from a 4D space-intensity joint-domain mean
shift segmentation. The results presented here illustrate that a
likelihood ratio based segmentation solution with a support
window successfully performs 3D lung tumor boundary seg-
mentation, while the mean shift and the likelihood ratio with-
out S tend to under-and over-estimate the tumor boundary,
respectively.

FIGS. 4(a)-(d) shows the intensity likelihood models
f(alin) and f(alout) estimated for the four cases in FIGS.
3(a)-(d), according to an embodiment of the invention. In
each example, the dark and light lines denote the foreground
and the background models, respectively. The first row of
each example illustrate the likelihoods computed with all
samples in the VOI, while the second rows illustrate those
computed with the support S. The background likelihoods
without S, covering a large background region, tend to over-
sample the lung parenchyma regions with low intensity val-
ues (expressed by a high peak at the low intensity range). This
over-sampling excessively suppresses the background likeli-
hood at the higher intensity values, resulting in a falsely large
intensity range in which the foreground likelihood surpasses
the background one. This is an obvious cause for the over-
estimation by this solution. The solution with the support
window S, however, employs the background intensity model
estimated with samples only within S. This in effect reduces
the intensity range to an appropriate size, resulting in better
segmentation. Example (d) illustrates this effect clearly,
where the solution without S does not effectively discriminate
the intensity information.

FIG. 5 illustrates examples of 2D views of 3D segmenta-
tion results for five tumor cases, according to an embodiment
of'the invention. These cross sectional views pass through the
estimated tumor center u. The left column illustrates the input
data. The middle column illustrates an anisotropic Gaussian
fitted to the data. A “+” in the image indicates the marker x,,,
an “%" indicates the estimated center u, and the ellipses in the
image indicate the image-plane intersection of the 35% con-
fidence ellipsoid of the estimated Gaussian. The right column
illustrates segmentation results shown as grayscale images
with the segmented regions filled in with a white value. These
results illustrate the capability of a joint spatial-intensity like-
lihood ratio based segmentation to handle irregular 3D
boundary geometries. The fourth row of the figure also illus-
trates a case where the presence of a neighboring lung wall
was segmented correctly.

With the 1310 tumor cases, the Gaussian fitting pre-pro-
cess successfully s approximated the tumor boundary for
1139 cases. Most of the failures were due to a few isolated
voxels near the target boundary being falsely segmented as a
part of the target when non-target structures were present
nearby. This can be mitigated by performing a connected
component analysis as a post-process. After such a post-
process, the error rate reduces to only 1% (11 cases). On
average, a method according to an embodiment of the inven-
tion can run in less than 3 seconds with a 2.4 GHz Pentium IV
processor, or 3 times faster than a mean shift solution.

It is to be understood that the present invention can be
implemented in various forms of hardware, software, firm-
ware, special purpose processes, or a combination thereof. In
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one embodiment, the present invention can be implemented
in software as an application program tangible embodied on a
computer readable program storage device. The application
program can be uploaded to, and executed by, a machine
comprising any suitable architecture.

FIG. 6is ablock diagram of an exemplary computer system
for implementing a toboggan-based object characterization
scheme according to an embodiment of the invention. Refer-
ring now to FIG. 6, a computer system 61 for implementing
the present invention can comprise, inter alia, a central pro-
cessing unit (CPU) 62, amemory 63 and an input/output (1/O)
interface 64. The computer system 61 is generally coupled
through the I/O interface 64 to a display 65 and various input
devices 66 such as a mouse and a keyboard. The support
circuits can include circuits such as cache, power supplies,
clock circuits, and a communication bus. The memory 63 can
include random access memory (RAM), read only memory
(ROM), disk drive, tape drive, etc., or a combinations thereof.
The present invention can be implemented as a routine 67 that
is stored in memory 63 and executed by the CPU 62 to process
the signal from the signal source 68. As such, the computer
system 61 is a general purpose computer system that becomes
a specific purpose computer system when executing the rou-
tine 67 of the present invention.

The computer system 61 also includes an operating system
and micro instruction code. The various processes and func-
tions described herein can either be part of the micro instruc-
tion code or part of the application program (or combination
thereof) which is executed via the operating system. In addi-
tion, various other peripheral devices can be connected to the
computer platform such as an additional data storage device
and a printing device.

It is to be further understood that, because some of the
constituent system components and method steps depicted in
the accompanying figures can be implemented in software,
the actual connections between the systems components (or
the process steps) may differ depending upon the manner in
which the present invention is programmed. Given the teach-
ings of the present invention provided herein, one of ordinary
skill in the related art will be able to contemplate these and
similar implementations or configurations of the present
invention.

The particular embodiments disclosed above are illustra-
tive only, as the invention may be modified and practiced in
different but equivalent manners apparent to those skilled in
the art having the benefit of the teachings herein. Further-
more, no limitations are intended to the details of construction
or design herein shown, other than as described in the claims
below. It is therefore evident that the particular embodiments
disclosed above may be altered or modified and all such
variations are considered within the scope and spirit of the
invention. Accordingly, the protection sought herein is as set
forth in the claims below.

What is claimed is:

1. A method for segmenting a digitized image comprising
the steps of:

providing a digitized volumetric image comprising a plu-

rality of intensities corresponding to a domain of points
in an N-dimensional space;

providing an approximate location of a target structure in

said image;

estimating a foreground spatial-intensity likelihood func-

tion about said target structure;

estimating a background spatial-intensity likelihood func-

tion about said target structure; and

using said foreground and background spatial-intensity

likelihood functions to segment said target structure by
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determining whether a point about said target structure
is inside said target structure.

2. The method of claim 1, further comprising determining
an estimated center and an estimated spread of said target
structure by fitting an N-dimensional anisotropic Gaussian
function to a volume of interest centered about the approxi-
mate location and determining the center and the anisotropic
spread of said Gaussian function.

3. The method of claim 2, wherein said foreground spatial-
intensity likelihood function can be factored into a product of
a foreground spatial likelihood function and a foreground
intensity likelihood function, and said background spatial-
intensity likelihood function can be factored into a product of
a background spatial likelihood function and a background
intensity likelihood function.

4. The method of claim 3, wherein said foreground spatial
likelihood function is proportional to said anisotropic Gaus-
sian function, and said background intensity likelihood func-
tion is a complement of said foreground spatial likelihood
function.

5. The method of claim 3, further comprising imposing a
window about said target structure, wherein said window is
defined as those points whose Mahalanobis distance from
said mean of said Gaussian is less than a predetermined
constant value, wherein said Mahalanobis distance is com-
puted using said spread of said Gaussian.

6. The method of claim 5, wherein said constant value is
determined by solving

1S(e)l
22Az 2

-1
|27rZ|’1/2fS(C)exp(— % (x— u)’z (x— u)]dx =

wherein Z is said spread, c is said constant value, S(c) is said
window, X is a point in said window, and u is the center of said
target structure, and

|S(c)|:f dx.
Ste)

7. The method of claim 5, wherein said foreground inten-
sity likelihood function is proportional to a foreground inten-
sity difference function weighted by said foreground spatial
likelihood function sampled within said window, and said
background intensity likelihood function is proportional to a
background intensity difference function weighted by said
background spatial likelihood function sampled within said
window.

8. The method of claim 7, wherein said proportionality
constant is equal to one half the norm of the window.

9. The method of claim 7, wherein the foreground and
background intensity difference functions comprise Dirac
delta functions.

10. The method of claim 7, wherein the foreground and
background intensity difference functions comprise Parzen
functions.

11. The method of claim 1, wherein said step of determin-
ing whether a point about said target structure is inside said
target structure is repeated for every point neighboring said
target structure to determine which points comprise said tar-
get structure.

12. The method of claim 1, wherein determining whether a
point is inside said target structure comprises comparing a
ratio of said foreground and background spatial-intensity
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likelihood functions calculated at said point to a preset thresh-
old, wherein said point is classified as inside said target struc-
ture if said ratio is greater than said threshold.

13. The method of claim 1, wherein determining whether a
point is inside said target structure comprises comparing said
foreground spatial-intensity likelihood function f(x, ctlin) to
said background spatial-intensity likelihood function f(x,
alout), wherein said point x is classified as inside said target
structure if f(x, alin)>f(x, alout).

14. The method of claim 1, wherein determining whether a
point is inside said target structure comprises comparing a
function F of a ratio of said foreground likelihood function to
said background likelihood function to F(1) at the point loca-
tion, wherein the function F is a member of a family of
functions F:R—R that are monotonically and strictly increas-
ing, wherein said point is classified as inside said target struc-
ture if the function of said ratio is greater than F(1).

15. The method of claim 1, wherein determining whether a
point is inside said target structure comprises comparing a
function F of'said foreground likelihood function f(x, alin) to
a function F of said background likelihood function f(x,
alout) at the point location x, wherein the function F is a
member of a family of functions F:R—R that are monotoni-
cally and strictly increasing, and wherein the point x is clas-
sified as inside said target structure if F(f(x, alin))=F(f(x,
alout).

16. A method for segmenting a digitized image comprising
the steps of:

providing a digitized volumetric image comprising a plu-

rality of intensities corresponding to a domain of points
in an N-dimensional space;
identifying a target structure in said image;
forming a window about said target structure whose size is
a function of the target scale; and

performing a joint space-intensity-likelihood ratio test at
each point within said window to determine whether
each said point is within said target structure; wherein
performing a joint space-intensity-likelihood ratio test
further comprises:
estimating a foreground spatial-intensity likelihood func-
tion over a window encompassing said target structure;

estimating a background spatial-intensity likelihood func-
tion over said window encompassing said target struc-
ture; and

comparing a ratio of said foreground and background spa-

tial-intensity likelihood functions to a preset threshold to
determine whether a point in said window is inside said
target structure.

17. The method of claim 16, wherein identifying a target
structure comprises providing a marker point within said
target structure and fitting an N-dimensional anisotropic
Gaussian function about said marker point and determining a
center and an anisotropic spread of said Gaussian function.

18. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform the method steps for segmenting a
digitized image, the method comprising the steps of:

providing a digitized volumetric image comprising a plu-

rality of intensities corresponding to a domain of points
in an N-dimensional space;

providing an approximate location of a target structure in

said image;

estimating a foreground spatial-intensity likelihood func-

tion about said target structure;

estimating a background spatial-intensity likelihood func-

tion about said target structure; and
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using said foreground and background spatial-intensity
likelihood functions to segment said target structure by
determining whether a point about said target structure
is inside said target structure.

19. The computer readable program storage device of
claim 18, the method further comprising determining an esti-
mated center and an estimated spread of said target structure
by fitting an N-dimensional anisotropic Gaussian function to
a volume of interest centered about the approximate location
and determining the center and the anisotropic spread of said
Gaussian function.

20. The computer readable program storage device of
claim 19, wherein said foreground spatial-intensity likeli-
hood function can be factored into a product of a foreground
spatial likelihood function and a foreground intensity likeli-
hood function, and said background spatial-intensity likeli-
hood function can be factored into a product of a background
spatial likelihood function and a background intensity likeli-
hood function.

21. The computer readable program storage device of
claim 20, wherein said foreground spatial likelihood function
is proportional to said anisotropic Gaussian function, and said
background intensity likelihood function is a complement of
said foreground spatial likelihood function.

22. The computer readable program storage device of
claim 20, the method further comprising imposing a window
about said target structure, wherein said window is defined as
those points whose Mahalanobis distance from said mean of
said Gaussian is less than a predetermined constant value,
wherein said Mahalanobis distance is computed using said
spread of said Gaussian.

23. The computer readable program storage device of
claim 22, wherein said constant value is determined by solv-
ing

NG
22Az 2

-1
|27rZ|’1/2fS(C)exp(— % (x— u)'z (x— u)]dx =

wherein Z is said spread, c is said constant value, S(c) is said
window, X is a point in said window, and u is the center of said
target structure, and

|S(c)|:f dx.
Ste)

24. The computer readable program storage device of
claim 22, wherein said foreground intensity likelihood func-
tion is proportional to a foreground intensity difference func-
tion weighted by said foreground spatial likelihood function
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sampled within said window, and said background intensity
likelihood function is proportional to a background intensity
difference function weighted by said background spatial like-
lihood function sampled within said window.

25. The computer readable program storage device of
claim 24, wherein said proportionality constant is equal to
one half the norm of the window.

26. The computer readable program storage device of
claim 24, wherein the foreground and background intensity
difference functions comprise Dirac delta functions.

27. The computer readable program storage device of
claim 24, wherein the foreground and background intensity
difference functions comprise Parzen functions.

28. The computer readable program storage device of
claim 18, wherein said step of determining whether a point
about said target structure is inside said target structure is
repeated for every point neighboring said target structure to
determine which points comprise said target structure.

29. The computer readable program storage device of
claim 18, wherein determining whether a point is inside said
target structure comprises comparing a ratio of said fore-
ground and background spatial-intensity likelihood functions
calculated at said point to a preset threshold, wherein said
point is classified as inside said target structure if said ratio is
greater than said threshold.

30. The computer readable program storage device of
claim 18, wherein determining whether a point is inside said
target structure comprises comparing said foreground spatial-
intensity likelihood function f(x, alin) to said background
spatial-intensity likelihood function f(x, alout), wherein said
point x is classified as inside said target structure if f(x,
alin)>f(x, alout).

31. The computer readable program storage device of
claim 18, wherein determining whether a point is inside said
target structure comprises comparing a function F of aratio of
said foreground likelihood function to said background like-
lihood function to F(1) at the point location, wherein the
function F is a member of a family of functions F:R—R that
are monotonically and strictly increasing, wherein said point
is classified as inside said target structure if the function of
said ratio is greater than F(1).

32. The computer readable program storage device of
claim 18, wherein determining whether a point is inside said
target structure comprises comparing a function F of said
foreground likelihood function f(x, alin) to a function F of
said background likelihood function f(x, alout) at the point
location x, wherein the function F is a member of a family of
functions F:R—R that are monotonically and strictly increas-
ing, and wherein the point X is classified as inside said target
structure if F(f(x, alin))ZF(f(x, alout).
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