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A method for determining the location, shape and orienta-
tion of a tumor in a medical image includes finding a
plurality of spatial extrema p of a D-dimensional spatial
signal f for a set of bandwidths H by performing mean
shift-based gradient-ascent iterations for a set of bandwidths
H and then determining a D-dimensional spread and orien-
tation of the signal about each extrema L by estimating a
covariance 2 of the signal f for each extrema p1. The optimal
estimate of |1 and X is determined by performing a Jensen-
Shannon divergence on the full set of u and 2.
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METHOD FOR ROBUST SCALE-SPACE
ANALYSIS OF 3D LOCAL STRUCTURES IN
MEDICAL IMAGES

CROSS REFERENCE TO RELATED UNITED
STATES APPLICATIONS

This application claims priority from “Robust Scale-
Space Analysis of 3D Local Structures in medical Images”,
U.S. Provisional Application No. 60/488,603 of Okada, et al,
filed Jul. 18, 2003, the contents of which are incorporated
herein by reference.

BACKGROUND OF THE INVENTION

A problem in the volumetric medical image analysis is to
characterize the 3D local structure of tumors across various
scales, because the size and shape of tumors varies largely
in practice. Such underlying scales of tumors also provide
useful clinical information, correlating highly with probabil-
ity of malignancy. There are a number of previously pro-
posed approaches addressing this problem. However, these
prior art approaches are prone to be sensitive to signal noises
and their accuracy degrades when the target shapes differ
largely from an isolated Gaussian. In the medical domain,
these constraints are too strong since many tumors appear as
irregular shapes within noisy background signals.

SUMMARY OF THE INVENTION

This invention is directed to methods for the robust
estimation of the covariance matrix that describes the spread
and 3-dimensional (3D) orientation of the structure of inter-
est. Given an input signal, a mean shift-based gradient
ascent is performed for an extended mean-shift vector using
all the available data points for each analysis bandwidth. The
data points that converge to the same point are grouped
together, forming a set of local structure candidates. These
convergence candidates can be interpreted as spatial extrema
of the signal. Then, for each candidate, the underlying scale
is determined by estimating a covariance matrix by a con-
strained least-squares method. Finally, for each candidate, a
stability test is performed across the analysis scales, result-
ing in an optimal scale estimate for each local target. As a
result, one can find a signal’s local scales that can vary
spatially.

These methods utilize an algorithm, referred to herein as
a mean shift-based bandwidth selection algorithm, for ana-
lyzing general discretized signals and estimating fully
parameterized covariance matrices. With the methods of the
invention, it becomes possible to address the problem of
representing local structures in images. The robust mode and
scale selection of the mean shift-based bandwidth selection
algorithm together with the consideration of the fully param-
eterized covariance matrix also enables one to estimate a
tumor’s scale in more flexible and robust manner, mitigating
the aforementioned shortcomings of the previous methods.
Since many target objects in the medical domain possess
complex 3D structures, the methods of the invention can be
deployed for a number of different application scenarios.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart depicting a method of a preferred
embodiment of the invention.

FIG. 2 is a flow chart depicting a method of another
preferred embodiment of the invention.
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FIGS. 3-4 are images depicting results of analyses per-
formed using a preferred method of the invention.

FIG. 5 depicts a preferred embodiment of a computer
system for implementing a preferred method of the inven-
tion.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

1. Fixed-bandwidth Mean Shift Vector for Continuous Sig-
nals

A medical image can be represented by a D-dimensional
continuous signal f'RP—R evaluated at n d-dimensional
points x,, and the uncertainty associated with each point x,
can be represented by a DxD matrix H,, for an i€1, . . . n.
The matrices H; are referred to as bandwidth matrices. The
signal can have one or more extrema. An extrema of the
signal can be associated with a location of a tumor or other
target object. Referring now to FIG. 1, a first step in the
analysis of the medical image represented by f is to deter-
mine, at step 11, the spatial extrema p of the signal. To find
the extrema, one can first define a function, m (x; H), where
X is a spatial location corresponding to a signal measurement
and H is the corresponding bandwidth, referred to herein as
an extended mean shift vector, by

3
fwb(x—u; H) f(wd ®

mx; H) = —X.

f Bz H) fid
where a Gaussian kernel ®(x—p; H) can be defined as
1 2
exp(— ED (x, 13 H)]

with D*(x,u; H)=(x-n)” H'(x-p) and H™' is a weighted
harmonic mean of the bandwidth matrices,

H ) = Z w0 H;.

i=1

The weights can be defined as

1 1,
—leXP(—ED (X, 15 Hi)]
|H;|2

wi(x) = —

1
Z —leXP(—EDZ(X, M; Hi)]
i=1 |Hj|2

and can be normalized to unity.

Eq. (3) can be used to locate spatial extrema p of f given
a fixed analysis bandwidth H as follows. First, make an
estimate of an extrema, \,, and then evaluate m, (x; H) for
this extrema from Eq. (3). If y, is used to denote the result
of' the first term of Eq. (3) for the initial estimate of p,, then,
for the next iteration of Eq. (3), x is replaced with y, and p,
is replaced with m, (x; H), denoted as p,. This process can
be repeated, each time replacing the second term of Eq. (3)



US 7,308,132 B2

3

with the result of the first term from the previous iteration,
and evaluating the first term on the previous evaluation of m
(x; H). For each iteration k of Eq. (3), the resulting difference
will converge to zero. The value of i, for which the extended
mean shift vector m (x; H) is sufficiently close to zero can
be taken as an extrema of the signal f. The data space of the
signal can be partitioned by grouping data points that
converge into the same extrema.

2. Constrained Least-squares Solution of Covariance Matri-
ces

The next step, step 12 of FIG. 1, is to estimate the
D-dimensional spread and orientation of the tumors whose
center | as a spatial extremum was found in step 11. The
geometrical information of a D-dimensional local surface
can be characterized by a covariance matrix 2 estimated at
the extrema.

The covariance X can be defined by the equation
m(x)~-HE+H)"'(x-n) when f can be approximated by a
Gaussian. This can be rewritten in the following simple
form,

EH’lmlzblE,u—xi—mi 4

Considering all the trajectory points {x,: i=1, ..., t,} that
converge to an extremum [, an over-complete set of linear
equations can be contructed:

A3~B, )]
where

A=(my ... mtu)TH’T,

B=(b; ... ;b))

1

and where X is a symmetric, positive definite matrix in
R?*P. The covariance can be estimated by a constrained
least-squares solution of Eq. (5). This solution yields the
following closed form,

SH=U S UpZaUp S Up T (6)
where the solution involves the following symmetric
Schur  decompositions: A"A=U %.*U,” and B’B=Q
with Q=2,U " QU P:UQZQ2UQT - This closed form can be
found by determining the unique minimizer for an area,
g(Y)=|AY-BY~7|.2, where ==YY~.

3. Scale Selection

The above two steps can result in pairs of center location
and covariance estimates {,; X,} for each analysis band-
width H. The next step, step 13, concerns finding the optimal
estimate of the target structures analyzed across a range of
bandwidths. This optimal estimate can be found by using a
form of the Jensen-Shannon divergence,

M

- 3.
2a+1 a /
JS(h) = zlog

hta

—1
> Zj] (j = 1)

J=h-a

1 hta
3 > (#j—#)T[

j=h-a

hta

where pt = mZ”j'
ha

20

25

30

35

40

45

50

55

60

65

4

Given a neighborhood parameter a, the divergence can be
computed for each analysis bandwidth h. The extremum of
the divergences JS(h) across the bandwidths can provide a
final scale estimate that is most stable over a range of scales.

The stability test described requires the set of analysis
bandwidths a priori. In one embodiment of the invention,
H=hI and h is varied with a constant step. In order to achieve
higher performance for the scale selection, it is preferred to
have more densely distributed analysis bandwidths. How-
ever, such dense sampling can prohibitively enlarge the
search space, especially when a fully parameterized H is
considered.

4. Algorithm for Local Multi-scale Analysis

In some application scenarios, the task to be solved is to
represent the scale of local structure whose rough location is
provided by another means. An example is the structural
analysis of tumors whose locations in a volumetric image
are provided manually by radiologist. The simplest strategy
in such a case is to perform the mean shift iteration only
from the given marker point. The convergence point serves
as the tumor center estimate and all the trajectory points
from the marker are used to estimate the scale. This naive
strategy can fail when the provided locations are contami-
nated by uncertainties and when the iteration converges too
soon, forcing the Eq.(4) to be under-complete and rank-
deficient. These issues can be addressed by the following
steps, depicted in FIG. 2. First, at step 21, consider a set of
starting points sampled from the neighborhood of the
marker. At step 12, after performing mean shift iterations,
the point to which most starting points converged serves as
a location estimate p. Next, at step 13, a regular sampling
around the estimate |1 can be performed. The scale estimate
2 can be given by solving, at step 14, Eq. (4) using all the
trajectory points that converged to p. The same stability test
of Eq. (7) can be used for the final estimate at step 15.

6. EXAMPLES

A 3D domain implementation of the local multi-scale
analysis algorithm described in Section 5 is evaluated with
high-resolution computerized tomography (HRCT) images
of 14 patients displaying pulmonary tumors. A total of 44
analysis scales with 0.25 interval h=(0.25%; . . . ; 11?) and
a=1 were used. The rough location of the tumors were
provided. As a pre-process, volumes of interest of size
32x32x32 are extracted using the markers. FIGS. 3 and 4
show examples of the resulting center and part-solid nodules
whose geometrical shapes are more deviated from the
simple Gaussian structure. The correct estimation of the
tumor locations, spreads, and 3D orientations for these
difficult cases demonstrates the effectiveness of the methods
of the invention.

It is to be understood that the present invention can be
implemented in various forms of hardware, software, firm-
ware, special purpose processes, or a combination thereof. In
one embodiment, the present invention can be implemented
in software as an application program tangible embodied on
a computer readable program storage device. The applica-
tion program can be uploaded to, and executed by, a machine
comprising any suitable architecture.

Referring now to FIG. 5, according to an embodiment of
the present invention, a computer system 101 for imple-
menting the present invention can comprise, inter alia, a
central processing unit (CPU) 102, a memory 103 and an
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input/output (I/O) interface 104. The computer system 101
is generally coupled through the I/O interface 104 to a
display 105 and various input devices 106 such as a mouse
and a keyboard. The support circuits can include circuits
such as cache, power supplies, clock circuits, and a com-
munication bus. The memory 103 can include random
access memory (RAM), read only memory (ROM), disk
drive, tape drive, etc., or a combinations thereof. The present
invention can be implemented as a routine 107 that is stored
in memory 103 and executed by the CPU 102 to process the
signal from the signal source 108. As such, the computer
system 101 is a general purpose computer system that
becomes a specific purpose computer system when execut-
ing the routine 107 of the present invention.

The computer system 101 also includes an operating
system and micro instruction code. The various processes
and functions described herein can either be part of the
micro instruction code or part of the application program (or
combination thereof) which is executed via the operating
system. In addition, various other peripheral devices can be
connected to the computer platform such as an additional
data storage device and a printing device.

It is to be further understood that, because some of the
constituent system components and method steps depicted
in the accompanying figures can be implemented in soft-
ware, the actual connections between the systems compo-
nents (or the process steps) may differ depending upon the
manner in which the present invention is programmed.
Given the teachings of the present invention provided
herein, one of ordinary skill in the related art will be able to
contemplate these and similar implementations or configu-
rations of the present invention.

While the present invention has been described in detail
with reference to a preferred embodiment, those skilled in
the art will appreciate that various modifications and sub-
stitutions can be made thereto without departing from the
spirit and scope of the invention as set forth in the appended
claims.

What is claimed is:
1. A method for analyzing three-dimensional structures in
medical images, in order to determine the location, shape
and orientation of a tumor, said method comprising the steps
of:
finding at least one spatial extrema p of a D-dimensional
spatial signal f for a set of bandwidths H;

estimating a D-dimensional spread and orientation of the
signal about each extrema |1 by estimating a covariance
2 of the signal f for each extrema p; and

finding a most stable estimate of 1 and 2 from the at least
one extrema |1 and covariances X to find from the signal
f an optimal estimate of a target structure

wherein the spatial extrema p of signal f are found by

solving an equation defined by

fwb(x—u; H) f(wdu
mxHys*~———— - x

f B g H)f(d

where m(x; H) is an extended fixed-bandwidth mean
shift vector, x is a spatial location corresponding to a
signal measurement, and ®(x-u;H) is a Gaussian ker-
nel for a bandwidth H.
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2. The method of claim 1, wherein ®(x-u; H) can be
defined as

ex] —lD2 '
pl-35 (&, i3 H)

wherein D*(x,u; H)=(x—p)” H'(x—u) and H™" is a weighted
harmonic mean of the bandwidth matrices,

H )= ) winH,,

i=1

and wherein the weights can be defined as w,

1 1,
—leXP(—ED (x, 45 Hi)]
W) = A2

n

1
—lexp(— EDZ (X, 15 Hi)]

= 2

and can be normalized to unity.

3. The method of claim 1, wherein finding the spatial
extrema L of signal f comprises the steps of:
making an estimate of an extrema and evaluating the
extended fixed-bandwidth mean shift vector for this
extrema, wherein y, is used to denote the first term of
m(x; H) for the initial estimate of y,;

evaluating the extended fixed-bandwidth mean shift vec-
tor m(x; H), replacing the second term with y, and
replacing the initial estimate of pu, with the previous
evaluation of m(x; H);

repeating said evaluations of the extended fixed-band-
width mean shift vector m(x; H), each time each time
replacing the second term with the first term from the
previous iteration, and evaluating the first term on the
previous evaluation of m (x; H), until a value of y, is
found for which the extended mean shift vector m (x;
H) is sufficiently close to zero; and
partitioning data points of the signal by grouping said data
points that converge into the same extrema.
4. The method of claim 1, wherein the step of estimating
the covariance comprises the steps of defining the covari-
ance by

AZ=B

where A=(m,; . . . ; m, )" H"” is a DxD dimensional

positive definite matrix and B=(b,; . . . ; btu)T , with
SH 'm~b=p-x,-m,; and

evaluating the equation
2*=U, 2, UpZoUp 2 Up T

where  ATA=U,2,*U,” and B'B=Q with

Q:ZPUPTQUPZP:UQZQ2UQT are symmetric Schur
decompositions.
5. The method of claim 1, wherein the most stable

estimate of p and X is found by calculating, for a neighbor-
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hood a about each bandwidth value h, a Jensen-Shannon
divergence defined by

1 hta
X
2a+1 Z ’

Jha
JS(h) = zlogi +
hta
2a+l l_[ 1251
J=h-a
1 hta hta -1
52, wi=p| D)% -
j=h-a J=h-a

hta

where pt = mZ”j’
ha

and finding an extrema of said divergences.

6. A method for analyzing three-dimensional structures in
medical images, in order to determine the shape and orien-
tation of a tumor whose location has been marked, said
method comprising the steps of:

sampling a set of starting points from a neighborhood of

a marker;

estimating an extrema |1 by performing mean shift-based
gradient-ascent iterations for a set of bandwidths H;

performing a regular sampling of points in a neighbor-
hood of the extrema estimate 1;

estimating a spread and orientation about the extrema 1 by

estimating a covariance 2 of the sampling of points of

the extrema p; and
estimating the stability of p and X by calculating a
Jensen-Shannon divergence.

7. A method for determining the location, shape and
orientation of a tumor in a medical image, said method
comprising the steps of:

defining an extended fixed-bandwidth mean shift vector

m(x; H) by an equation defined by

fud)(x—u; H)fwdu

mx,Hys*~———— - x

fd)(x— u, H) f (w)du

wherein X is a spatial location corresponding to a signal
measurement, and wherein ®(x-p1; H) can be defined as

ex] —lD2 ;
ol -5 (%, 5 H)

where D*(x,u; H)=(x-w)¥ H'(x-u) and H™' is a
weighted harmonic mean of the bandwidth matrices,

H' 0= ) winH,

i=1
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and where the weights can be defined as

1 1,
cexp(- 5 D0 g )|

|H;|2

wi(x) =

u 1
> —lexp(—zD%x, #; H»]
= |H2

and can be normalized to unity ®(x—-p; H);

making an estimate of an extrema and evaluating the
extended fixed-bandwidth mean shift vector for this
extrema, wherein y, is used to denote the first term of
m(x; H) for the initial estimate of y,;

evaluating the extended fixed-bandwidth mean shift vec-
tor m(x; H), replacing the second term with y, and
replacing the initial estimate of p, with the previous
evaluation of m(x; H);

repeating said evaluations of the extended fixed-band-
width mean shift vector m(x; H), each time each time
replacing the second term with the first term from the
previous iteration, and evaluating the first term on the
previous evaluation of m (x; H), until a value of y, is
found for which the extended mean shift vector m (x;
H) is sufficiently close to zero;

partitioning data points of the signal by grouping said data
points that converge into the same extrema;

estimating the D-dimensional spread and orientation of
the signal by defining the covariance as

AZ=B

where A=(m,; . . . ; mtu)T H~7 is a DxD dimensional
positive definite matrix and B=(b,; . . . ; btu)T , with
ZH-im~b,=p—x,-m, and evaluating the equation

= UpZp! UQZQ UgZ;l UL; where
ATA = UpZ3UT and B"B = Q with

0 =2pUbQUEp = UQZZQ UQT are

symmetric Schur decompositions; and

finding a most stable estimate of i and X from the at least
one extrema L and covariances 2 by calculating, for a
neighborhood a about each bandwidth value h, a
Jensen-Shannon divergence defined by

j=h-a

1
2a+1 Z %
JS(h) = Elog +

hta

2a+1 l_[ 12l

J=h-a

1 hta hta -1
500 Wi —M)T[ > Zj] wi—mw

j=h-a J=h-a

where

hta

1
HE R b
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and finding an extrema of said divergences, to find from the
signal f an optimal estimate of a target structure.
8. A program storage device readable by a computer,
tangibly embodying a program of instructions executable by
the computer to perform the method steps for analyzing
three-dimensional structures in medical images, in order to
determine the location, shape and orientation of a tumor,
said method steps comprising:
finding at least one spatial extrema p of a D-dimensional
spatial signal f for a set of bandwidths H;

estimating a D-dimensional spread and orientation of the
signal about each extrema |1 by estimating a covariance
2 of the signal f for each extrema p; and

finding a most stable estimate of 1 and 2 from the at least
one extrema |1 and covariances X to find from the signal
f an optimal estimate of a target structure wherein the
spatial extrema p of signal f are found by solving an
equation defined by

fud)(x—u; H)fwdu
mx,Hys*~———— - x

fd)(x— u, H) f (w)du

where m(x; H) is an extended fixed-bandwidth mean
shift vector, x is a spatial location corresponding to a
signal measurement, and ®(x-u; H) is a Gaussian
kernel for a bandwidth H.
9. The computer readable program storage device of claim
8, wherein ®(x-u; H) can be defined as

ex] —lD2 3
p| 507 s H)

wherein D?*(x,u; H)=(x-n)” H™! is a weighted harmonic
mean of the bandwidth matrices,

1 1,
cexp{ -5 D0k s )|
|H;|2

Z 1 1
Z —leXP(—EDz(X, M; Hi)]
=l |Hj|2

and wherein the weights can be defined as

1 1,
' exp(—zD (6 g1 H;)]
|H;|?

CR L,
Z —16XP(—§D (X, 15 Hi)]
=L |Hj|?

and can be normalized to unity.

10. The computer readable program storage device of
claim 8, the method steps for finding the spatial extrema p
of signal f comprises:
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making an estimate of an extrema and evaluating the
extended fixed-bandwidth mean shift vector for this
extrema, wherein y, is used to denote the first term of
m(x; H) for the initial estimate of y,;

evaluating the extended fixed-bandwidth mean shift vec-
tor m(x; H), replacing the second term with y, and
replacing the initial estimate of pu, with the previous
evaluation of m(x; H);

repeating said evaluations of the extended fixed-band-
width mean shift vector m(x; H), each time each time
replacing the second term with the first term from the
previous iteration, and evaluating the first term on the
previous evaluation of m (x; H), until a value of y, is
found for which the extended mean shift vector m (x;
H) is sufficiently close to zero; and

partitioning data points of the signal by grouping said data
points that converge into the same extrema.

11. The computer readable program storage device of

claim 8, wherein the method steps for estimating the cova-
riance comprises defining the covariance by

AZ-B

where A=(m,; . . .
positive definite matrix and B=(b,; . .
YH 'm~b=p-x,-m,; and

evaluating the equation

; m,u)T H™"is a DxD dimensional
- b,u)T, with

- -1 Ty-17,T.
I =Upkp UQ-ZQUQ.ZP Up;
where

ATA = UpEiU} and BTB = Q with 0 = ZpULQUpZp = UQZZQ UQT

are symmetric Schur decompositions.

12. The computer readable program storage device of
claim 8, wherein the method steps for finding the most stable
estimate of L and 2 comprise calculating, for a neighborhood
a about each bandwidth value h, a Jensen-Shannon diver-
gence defined by

hta

1
2a+1_2 %
J=h-a

—_—
h+a
21 T1 |Zj|
\| j=ha

1 hta h+a -1
52, w=w LZ Zj] (e~

Jj=h-a =h-a

JS(h) = zlog

where

hta

1
M= I

and finding an extrema of said divergences.

#* #* #* #* #*



